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Supplementary Figure 1 

Geometric explanation of the reason why the value-based decisions lead to more rapid 
boundary collapse than the accuracy-based decisions. The figures depict the values for 
“deciding” (blue) and for “waiting” (red) in value-based and in accuracy-based decisions. 
Sections at a  ̂   ̂        , as in Fig. 3D. 

(A) In the value-based decisions, the value functions for deciding and for waiting are 
both effectively linear and parallel to each other in the most of regime. The value for 
deciding does not depend on time, as it is      ̂   ̂   by definition. The value for 
waiting is a smoothed and shifted version of it, reflecting the uncertainty about future 
evidence and cost of evidence accumulation. When the value for waiting changes (as 
illustrated by the thin red curves in the figure), the intersections of two value functions 
moves along the value of deciding. Because the two value functions (blue and red) are 
nearly parallel, loci of intersections between them are sensitive to the uncertainty and 
cost of waiting (multiplied by time), causing the fast dynamics of the decision 
boundaries. 

(B) In the accuracy-based decisions, in contrast, the expected reward reflects the 
probability of making a correct choice, which is computed as the maximum of two 
cumulative Gaussian functions. As a result, the value function for deciding has concave 
parts and a sharp valley between them (at  ̂   ̂ ). The value for waiting is a smoothed 
and shifted version of it, as in the value-based case (A), but now more likely to have 
intersections with the value function for deciding, due to the sharp valley between the 
two concave parts. Note that, at the positive and negative extremes of  ̂   ̂ , the value 
for waiting is always under the one for deciding due to the cost of evidence 
accumulation. Thus, if the two value functions have intersections, the loci of those 
intersections are restricted around the valley. This leads to stability of the decision, 
resulting in slow dynamics of decision boundaries. Note that the more rapid collapse of 
the decision boundary in the value-based case does not necessarily imply earlier 
choices; when the boundaries are initially further apart (as for smaller average-reward 
conditions, blue lines in Fig. 5A), decisions can be slower even though the boundaries 
approach each other more rapidly. 



Supplementary Note 1 

Evidence accumulation 

Task elements 

Here we focus on the most general version of the task. All task versions discussed in the 
main text are specialized versions of the task described here, and therefore share its 
properties. This section is similar to the first section in Methods of the main text, and is 
replicated here for the sake of completeness. 

 Let   (     )
  denote the true reward associated with choice options 1 and 2. 

This true reward varies across choices/trials according to a bivariate Gaussian 
distribution    ( ̅   ) with mean  ̅  (  ̅   ̅)

  and covariance   . The decision 
maker knows this distribution, but never directly observes the true reward associated 
with either choice option. Instead, in every small time step   of duration   , she observes 

some momentary evidence     (           )
 

  (       ) that informs her about 

the true reward. After accumulating evidence for some time      , her posterior belief 
about the true reward is found by Bayes’ rule,  (    (   ))   ( )∏  (     )

 
   , and 

results in 

    (   )   ( ( )(  
   ̅      ( ))  ( )), 

where we have defined  ( )  ∑    
 
    as the sum of all momentary evidence up to time 

 , and  ( )  (  
       )   as the posterior covariance. With     , the process 

becomes continuous in time, such that  ( ) becomes the integrated momentary 
evidence, but the above posterior still holds. 

For most of the below we assume that reward   experienced by the decision 
maker upon choosing one of the two options equals the true reward, that is    . 
Therefore, the mean estimated option reward,  ̂( )  〈    (   )〉 is the mean of the 
above posterior. 

The expected reward process 

Finding the optimal policy involves predicting how the mean estimated option reward 
might evolve if we accumulate more evidence. In this section we derive the stochastic 
process that describes this evolution. This section is an extended version of the second 
section in Methods of the main text. 

Assume that having accumulated evidence until time  , the current expected 
reward is given by  ̂( ). In the absence of observing more evidence, the decision maker’s 
prediction of how this expected reward might change when (hypothetically) 
accumulating more evidence for some duration    is given by the marginalization 

 ( ̂(    )  ̂( ))  ∫ ( ̂(    )   (    )  ̂( )) (  (    )  ̂( ))   (    ). 

That is, given current knowledge about  , the decision maker hypothesizes the value of 
the next momentary evidence   (    ), and uses this value to predict her updated 
estimate  ̂(    ). This updated estimate forms by definition the mean of     (    
  ), and is therefore given by  ̂(    )   (    )(  

        (    )). 
Furthermore, we have  (    )   ( )    (    ) and  ( )   ( ( )   ̂( )    

   ) 
(following from  ̂( ) being the mean of     (   )), such that  ̂(    ) relates to 
  (    ) by 

 ̂(    )   (    ) ( )   ̂( )   (    )     (    ). 



This shows that  ( ̂(    )   (    )  ̂( )), which is the first density in the above 
marginalization, is a delta-function. 

The second term in the marginalization follows from the generative model for 
the momentary evidence,   (    )    (       ). Note that   itself is unknown, but 
the decision maker’s current belief about   is    ̂( )   ( ̂( )  ( )). Therefore, we find 
  (    )  ̂( ) by marginalizing over  , which results in 
  (    )  ̂( )   ( ̂( )        ( )   ). 

With these two term in place, we can perform the marginalizing, which results in 

 ̂(    )  ̂( )  ( ̂( )  (    )    (    )  ), 

where we have used  ( )          (    )   to find the mean, and in the variance 
we have only kept terms of order    or lower. Therefore, the change in this estimate has 
density 

 ̂(    )   ̂( )  ̂( )  (   (    )    (    )  ), 

This is true for any    , such that with     ,  ̂( ) evolves according to the 
martingale 

  ̂( )   ( )   , 

where     is a two-dimensional Wiener process, and  ( ) ( ) =  ( )    ( ). 
Therefore, for any       , 

 ̂( )  ̂(  )   ̂(  )  ∫  ( )   
 

  
. 

For the more specialized setup with independent prior and likelihood, that is,      
   

and      , the expected reward process is given by 

 ̂ ( )  ̂ (  )  ∫
   

  
          

 

  
, 

for either option        . The magnitude of the fraction decreases over time, which 
indicates which the variability of the expected reward estimate decreases over time. 
This is to be expected, as later evidence influences this estimate less than early evidence. 

The optimal policy for single, isolated choices 

The objective function and associated value function 

Assuming that accumulating evidence for some time   comes at cost –    (negative, as 
written in terms of reward), the decision maker’s aim for single, isolated choices is to 
follow a policy that maximizes the total reward. This total reward is the reward 
experienced for choosing a particular option minus this accumulation cost, that is 
〈  ( )〉   〈 〉, with expectation over choices and accumulation times. Given some 

expected reward estimates ( ̂   ̂ ) at time  , define the value function  (   ̂   ̂ ) as being 
the total expected reward to be received after time   while following the optimal policy, 
not including the accumulation cost up to time  . Thus, this value function is given by 

 (   ̂   ̂ )        〈     ̂ ( )  ̂ ( )   (   )  ̂   ( )   ̂   〉, 

where   is a stopping time, and the expectation is over possible trajectories of the 
expected reward process  ̂( )  ̂( ). By definition of the value function, the expected 
total reward at choice option onset is given by  (    ̅   ̅), where we have used the fact 
that, a priori,  ̂( )   ̅. 



Deriving Bellman’s equation from the value function 

To derive Bellman’s equation 1 from the above expression of the value function we use 
the property that the   that we maximize over is not a random variance, and that 
 ̂( )  ̂( ) is Markov, such that we can split the definition of the value function into     
and        for very small   . For    , there won’t be any further accumulation of 
evidence, such that the corresponding value is given by      ̂   ̂  . For       , we 

are guaranteed to accumulate evidence for some duration    at cost –    , after which 
the value corresponds to the maximization 

          ⟨⟨     ̂ ( 
 )  ̂ ( 

 )   (   (    )) | ̂   (    )⟩| ̂   ( )⟩   

where the iterated expectation split the random process  ̂   ( )   ̂   ( 
 ) into 

 ̂   ( )   ̂   (    )   ̂   ( 
 ). The outer maximization is over the  ̂   (    )  

 ̂   ( 
 ), such that it can be moved into the outer expectation, 

⟨    
       

⟨     ̂ ( 
 )  ̂ ( 

 )   (   (    )) | ̂   (    )⟩ | ̂   ( )⟩  

By the definition of the value function, the above is equal to 
⟨ (      ̂ (    )  ̂ (    ))| ̂   ( )⟩. Returning to partitioning the value function 

into     and       , the function is given by the maximum over the value 
associated with either partition, resulting in Bellman’s equation 

 (   ̂   ̂ )     {  ( ̂   ̂ ) 〈 (      ̂ (    )  ̂ (    ))  ̂   ( )   ̂   〉     }, 

where we have defined   ( ̂   ̂ )       ̂   ̂  . 

The value function is sub-linearly increasing in the expected rewards 

Here, we derive some properties of the value function that will become useful to show 
that the optimal decision boundaries are parallel to the diagonal, as we will do in the 
next section. To derive these properties, we assume the evidence accumulation to be 
described by some stochastic process 

 ̂( )  ̂(  )   ̂(  )  ∫  ( )  
 

  
 ∫  ( )   

 

  
, 

for some (possibly) time-dependent drift  ( ) and (possibly) time-dependent diffusion 
covariance  ( ). This process is more general than the one corresponding to the above 
task description by allowing a non-zero drift. Including such a non-zero drift is possible 
as it does not change the critical property of this process, which is that its evolution is 
invariant under the addition of a constant. That is, if we condition on  ̂ (  )   ̂(  )  
  ̂ instead of  ̂(  ), where   ̂ is some arbitrary two-dimensional vector, we have 
 ̂( )  ̂ (  )  ( ̂( )  ̂(  ))    ̂, corresponding to a time-independent shift of the 
process. This property would not hold if either the drift  (   ̂) or diffusion covariance 
 (   ̂) were dependent on the current expected reward estimate. In what follows, we 
split the two-dimensional process into its components, 

 ̂ ( )  ̂ (  )   ̂ (  )  ∫   ( )  
 

  

 ∫   ( )√   ( )
 

  

      ∫   ( )√ ( )   

 

  

  

 ̂ ( )  ̂ (  )   ̂ (  )  ∫   ( )  
 

  

 ∫   ( )√   ( )
 

  

      ∫   ( ) ( )√ ( )    
 

  

 

In the above,   ( ) and   ( ) are the drift terms,   
 ( ) and   

 ( ) are the diffusion 
variances, and  ( )        and  ( )         determine magnitude and sign of the 
correlation between  ̂  and  ̂ . 

In what follows we demonstrate that, for any fixed      



 the value function is invariant under the addition of a constant, that is 
 (   ̂   ̂ )    ̂   (   ̂    ̂  ̂    ̂) for any scalar   ̂, that 

 the value function is increasing in both  ̂  and  ̂ , and that 
 this increase is sub-linear, that is  (   ̂    ̂   ̂ )   (   ̂   ̂ )    ̂  and 

 (   ̂   ̂    ̂)   (   ̂   ̂ )    ̂. 

The first two properties have already been demonstrated in 2 for a more restrictive 
expected reward process, but using the same approach as we are using here. 

Invariance under addition of a constant 

To demonstrate shift-invariance, fix some times      and      at which options 1 
and 2 are chosen. For such decision times,  (   ̂    ̂  ̂    ̂) is given by 

〈       
 ̂ (  )        

 ̂ (  )   (            )  ̂   ( )   ̂      ̂〉 

 〈       
( ̂ (  )    ̂)        

( ̂ (  )    ̂)   (            )  ̂   ( )   ̂   〉 

 〈       
 ̂ (  )        

 ̂ (  )   (            )  ̂   ( )   ̂   〉    ̂ 

where      if   is true, and 0 otherwise, and was used to handle both       
(choosing option 1) and       (choosing option 2) simultaneously. Here, the first 
equality results from  ̂( ) ( ̂( )    ̂ )  ( ̂( )  ̂( ))    ̂ , which is the essential 
property of our expected reward process, and the second equality results from       
and       being mutually exclusive events. The above holds for all choices of      
and     , such that it also holds for the maximum over these decision times. Therefore, 
 (   ̂   ̂ )    ̂   (   ̂    ̂  ̂    ̂) for any scalar   ̂. 

Increasing in  ̂  and  ̂  

A similar argument shows that the value function is increasing in both  ̂  and  ̂ . Fix 
again some times      and      at which options 1 and 2 are chosen, such that 
 (   ̂   ̂ ) is given by 

〈       
 ̂ (  )        

 ̂ (  )   (            )  ̂   ( )   ̂   〉 

       
 ̂  ⟨

      

(

 
 

∫   ( )  
  

 

 ∫   ( )√   ( )
  

 

     

 ∫   ( )√ ( )   

  

 )

 
 

       
 ̂ (  )   (            )

|

|
 ̂   ( )   ̂   ⟩ 

where the second line results from substituting  ̂ (  )  ̂   ( )   ̂    by its stochastic 
process, and separating out  ̂ . As       

  , the resulting expression is increasing in  ̂ . 

This holds for any choice of      and     , such that it also holds for  (   ̂   ̂ ). An 
analogue argument shows that the same holds for  ̂ . 

Increase is sub-linear 

To show that the value function is sub-linearly increasing, fix again some decision times 
     and     , with which,  (   ̂    ̂   ̂ ) can be written as 

〈       
 ̂ (  )        

 ̂ (  )   (            )  ̂ ( )   ̂    ̂  ̂ ( )   ̂ 〉 

 〈       
( ̂ (  )    ̂)        

 ̂ (  )   (            )  ̂   ( )   ̂   〉 

 〈       
 ̂ (  )        

 ̂ (  )   (            )  ̂   ( )   ̂   〉        
  ̂ 

 〈       
 ̂ (  )        

 ̂ (  )   (            )  ̂   ( )   ̂   〉    ̂   

where the last inequality follows from       
  . This holds for any choice of      and 

    , such that  (   ̂    ̂  ̂ )   (   ̂   ̂ )    ̂. An analogous argument shows that 
 (   ̂   ̂    ̂)   (   ̂   ̂ )    ̂. 



Note that, as soon as drift or diffusion of the expected reward process are 
dependent on the current expected reward estimates, none of the above properties can 
be guaranteed to hold in general. 

The optimal decision boundaries are parallel to the diagonal 

Equipped with these value function properties, we can demonstrate that the optimal 
decision boundaries are parallel to the diagonal. We will do so in two steps. First, we fix 
some   and  ̂  and show that for all  ̂     (   ̂ )   (   ̂ )  within boundaries 

  (   ̂ )       ̂   ̂   (   ̂   ̂ )   ̂   

  (   ̂ )       ̂   ̂   (   ̂   ̂ )   ̂   
 

it is optimal to accumulate more evidence, whereas outside of these boundaries it is 
better to choose option one (two) if  ̂    (   ̂ ) ( ̂    (   ̂ )). Second, we show that 
both boundaries satisfy   (   ̂    ̂)    (   ̂ )    ̂, which makes them parallel to the 

diagonal  ̂   ̂   In our argument, we have chosen to bound  ̂  for some fixed   and  ̂ . 
This is an arbitrary choice, and we could establish the same facts by an analogous 
argument that bounds  ̂  for some fixed   and  ̂  instead. 

The optimal decision boundaries 

To determine the optimal decision boundaries,   (   ̂ ) and   (   ̂ ) on  ̂ , first observe 
that, by the definition of the value function,  (   ̂   ̂ )       ̂   ̂    Furthermore, as 
long as  (   ̂   ̂ )       ̂   ̂   it is best to accumulate more evidence, and to decide as 
soon as  (   ̂   ̂ )       ̂   ̂  . Therefore, for any combination of  ̂  and  ̂ , decisions 
ought to be made at the smallest   at which  (   ̂   ̂ )       ̂   ̂   holds. This will form 
the basis for finding the optimal decision boundaries. 

Assume first that  ̂   ̂ , in which case      ̂   ̂    ̂ , such that  (   ̂   ̂ )  
 ̂ , and choosing option 1 is optimal as soon as  (   ̂   ̂ )   ̂ . The value function is 
increasing in  ̂ , such that for any fixed   and  ̂ , there exists some threshold   (   ̂ ) in 
 ̂  below which  (   ̂   ̂ )   ̂  for all  ̂  (as  (   ̂   ̂ ) cannot be smaller than  ̂ ). Above 
this threshold, we have  (   ̂   ̂ )   ̂ . Therefore, the threshold determines the optimal 
decision boundary for option 1, and is positioned at the largest  ̂  at which  (   ̂   ̂ )  
 ̂  still holds, that is   (   ̂ )       ̂   ̂   (   ̂   ̂ )   ̂  . 

Alternatively, we have  ̂   ̂ , in which case      ̂   ̂    ̂ , such that 
 (   ̂   ̂ )   ̂ , and choosing option 2 is optimal as soon as  (   ̂   ̂ )   ̂ . In this case, 
for any fixed   and  ̂ , the value function is sub-linearly increasing in  ̂ , such that it 
grows at most as fast as  ̂ . Therefore, we will have  (   ̂   ̂ )   ̂  for smaller  ̂ , which 
will approach  (   ̂   ̂ )   ̂  with growing  ̂  at some threshold   (   ̂ ) in  ̂ . This 
threshold determines the optimal decision boundary for option 2, and is positioned at 
the smallest  ̂  at which  (   ̂   ̂ )   ̂  still holds, that is   (   ̂ )       ̂  
 ̂   (   ̂   ̂ )   ̂  . 

The optimal decision boundaries are parallel to the diagonal 

As the last step we show that both decision boundaries are parallel to the diagonal. For 
the first boundary, we have for some arbitrary scalar   ̂, 

  (   ̂ )    ̂       ̂   ̂   (   ̂   ̂ )   ̂     ̂ 
      ̂ 

   ̂ 
   (   ̂ 

    ̂  ̂ 
    ̂)   ̂ 

    ̂  
      ̂ 

   ̂ 
   (   ̂ 

   ̂ 
 )   ̂ 

   
   (   ̂ 

 ) 
   (   ̂    ̂)  

where we have defined  ̂ 
   ̂    ̂ for both        , and the third equality follows 

from the shift-invariance of the value function. The same argument applied to 



  (   ̂ )    ̂ results in   (   ̂ )    ̂    (   ̂    ̂). Therefore, both decision 
boundaries are parallel to the diagonal  ̂   ̂   

The decision boundaries are independent of shifts of the prior 

Assume prior means   ̅
    ̅    ̅, shifted for both options equally by some scalar   ̅. 

From the shift invariance of the expected reward process we know that it will only affect 
the reward expectation estimates by a similar shift, that is  ̂( ) ( ̂( )   ̅ )  
( ̂( ) ( ̂( )   ̅))     ̅. Furthermore, the shape of the value function is invariant to 

such shifts, as, by  (   ̂    ̅  ̂    ̅)   (   ̂   ̂ )    ̅, these shifts only change the 
value function’s magnitude, but not its shape. As it is the value function’s shape that 
determines the optimal decision boundaries, these decision boundaries are not affected 
by such shifts in the prior means. 

Optimal decision boundaries might be non-parallel for non-linear utility 
functions 

Here we show that a non-linear utility function   between experienced and true reward, 
    (  ) will cause the expected reward process to have a drift and/or diffusion that 

might depends on the current estimate of the expected rewards. As a consequence, the 
value function might cease to be invariant under addition of a constant, which might 
lead to non-parallel decision boundaries. Here, we only provide a theoretical argument. 
In the main text, we numerically compute the optimal decision boundaries for 
 ( )      ( ), and demonstrate that they are indeed non-parallel. 

 Our argument is based on the task setup with independent prior and likelihood, 
that is, for which      

   and      . In this case, the posterior over the true value 
given evidence   (   ) is independent across choice options, and is for option   given by 

      (   )    (
  

    ̅       ( )

  
       

 
 

  
       )  

Given this posterior, our aim is to derive the process that describes the evolution of the 
expected reward estimate  ̂ ( )  〈 (  )    (   )〉 over time. Given that   and   ( ) are 

sufficient statistics of the posterior   , the expected reward estimate will be fully 

determined by these statistics, which implies that there exists a function   such that 

 ̂ ( )   (    )  In the following, we first derive the expected reward process for some 

general  , and then will give its expression resulting from a linear and a non-linear  ( ). 

 To find the process for a general  , we assume   to be twice differentiable and 
invertible in   . By definition of the momentary evidence, we have              . 

Therefore, by Itō’s Lemma, 

  (    )  (
  

  
   

  

   
 

  

 

   

   
 )    

  

   
    

. 

Using  ̂ ( )   (    ), and chopping the process into small time bins of size   , the above 

results in 

 ̂ (    )   ̂ ( )  (
  

  
   

  

   
 

  

 

   

   
 )    

  

   
√      

where     (   ). Using this expression and marginalizing over    using the above 

posterior gives 



 ̂ (    )  ̂ ( )   ( )

   ( ̂ ( )  (
  

  
 

  
    ̅       ( )

  
       

  

   
 

  

 

   

   
 )     (

  

   
)

 

  )  

such that the process governing  ̂ ( ) is given by 

  ̂ ( )  (
  

  
 

  
    ̅       ( )

  
       

  

   
 

  

 

   

   
 )    

  

   
     

The above expression   ( ) still appears on the right-hand side, but its occurrences can 

be replace by   ( )     (   ̂ ( )) as   is invertible in the second argument. 

A linear utility function 

Let us turn to specific functions  . We first assume   to be linear, that is,  ( )      . 
In this case, we find   to be given by 

 (    )  〈 (  )    (   )〉   
  

    ̅       

  
        

    

Computing its derivatives with respect to   and   , and plugging them into the above 

expression for   ̂ ( ) results after a few lines of algebra in 

  ̂ ( )   
   

  
       

     

which has no drift, and a diffusion that only depends on time. Therefore, a linear 
mapping between experienced and true reward results again in decision boundaries 
that are parallel to the diagonal. 

A non-linear utility function 

As an example of a non-linear   we use  ( )  (      )   . This function increases 
non-linearly with a diminishing gradient to its asymptote    . We use this function 
rather than the  ( )       ( ) used for simulations in the main text, as it result in a 
closed-form  , given by 

 (    )  
 

 
(   

  

 
   ̅   

        

  
       

)  

Taking derivatives and substituting them into the above expression for   ̂ ( ) results 

after some lines of algebra and a fair amount of cancellations in 

  ̂ ( )  
     ̂ ( )

  
       

     

In contrast to the linear case, the diffusion now depends on the current expected reward 
estimate  ̂ ( ), such that the process ceases to remain invariant under the addition of a 

constant. This dependency on  ̂ ( ) is required, as it ensures that  ̂ ( ) remains upper-

bounded by    , as imposed by our choice for  . As a result, we cannot guarantee 
anymore that the optimal decision boundaries remain parallel to the diagonal. 



The optimal policy that maximizes the reward rate 

The objective function and associated value function 

In contrast to maximizing the total expected reward for a single, isolated choice, we now 
move to maximizing the total expected reward for an arbitrary number of choices within 
a temporally bounded interval. As we describe in the main text, as long as this interval is 
large enough, the objective becomes equivalent to maximizing the reward rate 

  
〈     (   )〉   〈 〉

   〈 〉
  

where the expectation is over choices and decision times, and    is the (average) 
waiting time between a choice and the next choice onset. 

To find the optimal policy for this case, we move from using the standard value 
function  ( ) to the average-adjusted value function  ̃( ) that penalizes the passage of 

some time    by the cost –     3,4. As shown in Methods in the main text, this causes 
Bellman’s equation to be given by 

 ̃(   ̂   ̂   )     {
 ̃ ( ̂   ̂   ) 

〈 ̃(      ̂ (    )  ̂ (    )  )  ̂   ( )   ̂   〉  (   )   
}  

with  ̃ ( ̂   ̂   )       ̂   ̂      . The above is subject to the constraint 
 ̃(    ̅   ̅  )   , which allows us to infer the value of  . This recursive definition of the 
value function can, as before, be written in a non-recursive way, given by 

 ̃(   ̂   ̂   )     
   

⟨     ̂ ( )  ̂ ( )  (   )(   ) | ̂   ( )   ̂   ⟩       

again subject to  ̃(    ̅   ̅  )   . These two forms can be shown to be equivalent as 
before, by splitting the non-recursive form into a part corresponding to immediate 
decisions,      ̂   ̂      , and one corresponding to accumulating evidence some 
more time    and deciding later, ⟨ ̃(      ̂ (    )  ̂ (    )  )| ̂   ( )⟩  (   )  . 

Taking the maximum over these two parts results in Bellman’s equation. 

The optimal decision boundaries are parallel to the diagonal 

The argument showing that the optimal decision boundaries are parallel to the diagonal 
for single, isolated trials relies on the three properties of the value function that we have 
derived further above. As long as these properties also hold for the average-adjusted 
value function, the optimal decision boundaries are again guaranteed to be parallel to 
the diagonal. 

To show that this is indeed the case, consider the non-recursive form of the 
average-adjusted value function. This form differs from the value function for single, 
isolated trials in two points. First, the accumulation cost increases from    to  (   ). 
Second, an additional, final cost of      is introduced. It is critical that neither of these 
changes influence the desired value function properties, which is easy to check by 
applying the same arguments we have used to demonstrate properties of the value 
function to the average-adjusted value function. This implies that the average-adjusted 
value function is invariant under the addition of a constant, is increasing in  ̂  and  ̂ , 
and does so sub-linearly. These properties are the only ones required to show that, as 
for single, isolated choices, the optimal decision boundaries are again parallel to the 
diagonal. 

The value function is strictly decreasing in the reward rate 

Here we show that, without constraining the reward rate to satisfy  ̃(    ̅   ̅  )   , 
this value function is strictly decreasing in the reward rate as long as      (rather 



than     ). To do so, fix some times      and      at which options 1 and 2 are 
chosen. With these times fixed, the average-adjusted value function  ̃(   ̂   ̂   ) can be 
written as 

⟨      
 ̂ (  )        

 ̂ (  )   (            )| ̂   ( )   ̂   ⟩

  (               )  

As      and      we have               . Therefore,                  , 
such that the above is strictly decreasing in  . This holds for any valid choice of    and 
  , such that it also holds for the average-adjusted value function  ̃(   ̂   ̂   ). If     , 
the value function is still decreasing in  , but not necessarily strictly. 

The reward rate is strictly increasing with positive shifts of the prior means 

Assume     , priors means  ̅   ̅    ̅  for some scalar   ̅, and reward rate   
corresponding to prior means  ̅ such that  ̃(    ̅   ̅  )     As the average-adjusted 
value function is invariant under the addition of a constant, we have  ̃(    ̅

    ̅
   )  

 ̃(    ̅    ̅   ̅    ̅  )   ̃(    ̅   ̅  )    ̅    ̅. Assuming   ̅    (or   ̅   ), there 
exists some      (or     ) such that  ̃(    ̅

    ̅
    )   , as the value function is 

strictly decreasing in  . Therefore, the reward rate is strictly increasing in   ̅. If     , 
the reward rate is still increasing in   ̅, but not necessarily strictly. 

Note that here we are ignoring a special boundary case: if the prior means 
become sufficiently negative and we have no accumulation cost,    , then the chance 
of receiving positive reward for either choice becomes negligible. This means that 
making such choices will lead to a negative reward rate, whereas not choosing at all 
leads to a reward rate of zero. Thus, it is best to not choose at all. This will happen for all 
significantly negative prior means, such that for those, the reward rate will not be 
strictly increasing anymore. This also shows that, for    , the reward rate is lower-
bounded by zero. As soon as    , it always becomes advantageous to make choices 
within some finite accumulation times, such that in these cases, the reward rate can 
become negative. 

Larger prior means  ̅ imply faster choices 

As we have shown in the last section, larger prior means imply higher reward rates. 
Here we show that such higher reward rates imply faster choices (or, more technically, 
never slower choices). To do so, assume prior means  ̅ and  ̅  (low and high) with 
associated reward rates   and   , such that         for some     . In what 

follows, we will show that if the optimal policy for    implies a choice at time    for 
expected reward estimates  ̂  and  ̂ , then the optimal policy for   promotes 
accumulating more evidence for the same expected reward estimates. As a result, the 
policy associated with higher prior means leads to faster choices. 

As a first step, we refine how the value function behaves with changes in the 
reward rate. Without considering  ̃(    ̅   ̅  )   , fix some      and      at which 
options 1 and 2 are chosen. Then the average-adjusted value function  ̃(   ̂   ̂      ) 

for reward rate      and some      can be written as 

⟨      
 ̂ (  )        

 ̂ (  )  (   )(            )| ̂   ( )   ̂   ⟩     
   (               ) 

 ⟨      
 ̂ (  )        

 ̂ (  )  (   )(            )| ̂   ( )   ̂   ⟩            

where the inequality results from               . The above holds for all valid    
and   , such that  ̃(   ̂   ̂      )   ̃(   ̂   ̂   )      . This shows as before that the 



value function is strictly decreasing in   (for     ), but now additionally provides the 

slope, 
  ̃(   ̂   ̂   )

  
 –  , for this decrease. 

 Let us now fix the expected reward estimates,  ̂  and  ̂ , and consider at which 
time it were optimal to make a choice given that these are our current estimate. As we 
have discussed further above for single, isolated trials, the optimal decision time is the 
smallest time at which the value for deciding equals the value function, that is, where 
 (   ̂   ̂ )       ̂   ̂   holds. Adjusting to the reward rate case, we instead need 
 ̃(   ̂   ̂   )       ̂   ̂       to hold. Thus, for reward rate   , the optimal decision 
time is 

              ̂   ̂    ̃(   ̂   ̂   
 )         

Observe that, due to        , the left-hand side of the condition within brackets is 

lower-bounded by 

 ̃(    ̂   ̂      )  (    )    ̃(    ̂   ̂    )       (    )  
  ̃(    ̂   ̂   )       

such that at the optimal decision time    associated with reward rate     we have 
     ̂   ̂        ̃(    ̂   ̂   ). This implies that, for reward rate  , the value for 
waiting might be higher than that for deciding, such that it might be better to 
accumulate more evidence. Thus, the optimal decision time associated with reward rate 
 , given by              ̂   ̂    ̃(   ̂   ̂   )      , is at least as large as   . 
Therefore, decision times for the larger reward rates are shorter than (or, technically, at 
most as long as) those for smaller reward rates. 

The policy that maximizes the correct rate 

Evidence accumulation and expected rewards 

We assume the same general evidence-generating process as in the previous sections, 
with prior    ( ̅   ) and momentary evidence      (       ). This results in the 
posterior     (   ) as discussed at the beginning of this document,     (   )  
 ( ̂( )  ( )). 

In contrast to the previous sections, we do equate experience reward   and true 
reward  , but instead that the decision maker receives reward       for choosing the 
option   associated with the larger   , and         otherwise. With the above posterior, 

we have for    , 

 (         ̂   ̂ )  ∫  (      ̂   ̂     ( ))     

 

  

  (
 ̂   ̂ 

√   ( )
)  

where, in the first equality we have defined            and    ( )     ( )  

   ( )       ( ) (with    ( ) denoting components of  ( )), and  ( ) in the last term is 

the cumulative distribution function for the standard Gaussian  (   ). Therefore, the 
expected reward for choosing option   becomes 

〈     (   )〉         (         ̂   ̂ )          (         ̂   ̂ ) 

        (
 ̂   ̂ 

√   ( )
)          (

 ̂   ̂ 

√   ( )
)  

Importantly, the above is only a function of the difference of  ̂  and  ̂  rather than their 

individual values. 



Bellman’s equation for single choices and correct rate maximization 

The statistics (   ̂   ̂ ) are sufficient for both the posterior     (   ) and the expected 
reward for choosing either option. Therefore, we can define the value function over 
these statistics. The work in Drugowitsch et al. (2011) 4, which is closely related to the 
setup considered in this section, used a slightly simpler evidence-generating process, 
which allowed the use of alternative sufficient statistics (   ), where    (   
      ̂   ̂ ). 

Single, isolated choices 

For single, isolated choices, the value for deciding immediately is the maximum over the 
expected rewards for either option, and is therefore given by 

  (   ̂   ̂ )     

{
 
 

 
       (

 ̂   ̂ 

√   ( )
)          (

 ̂   ̂ 

√   ( )
)  

      (
 ̂   ̂ 

√   ( )
)          (

 ̂   ̂ 

√   ( )
)

}
 
 

 
 

  

The value for accumulating more evidence remains unchanged from before, and results 
in the value function 

 (   ̂   ̂ )     
   

⟨  (   ̂ ( )  ̂ ( ))   (   )| ̂   ( )   ̂   ⟩  

with associated Bellman Equation 

 (   ̂   ̂ )     {  (   ̂   ̂ ) ⟨ (      ̂ (    )  ̂ (    ))| ̂   ( )   ̂   ⟩     }  

In both cases, the expectation is over the temporal evolution of  ̂( ). 

Correct rate maximization 

For correct rate maximization, we again move to the average-adjusted value function, 
 ̃(   ̂   ̂   ), where   is the correct rate. As before, the difference between the standard 
and the average-adjusted value function is that the latter additionally penalizes the 

passage of some time    by –    . Fixing  ̃(    ̅   ̅  )   , the average-adjusted value 
for deciding immediately is thus given by 

 ̃ (   ̂   ̂   )    (   ̂   ̂ )       

Therefore, the overall adjusted value function is 

 ̃(   ̂   ̂   )     
   

⟨ ̃ (   ̂ ( )  ̂ ( )  )  (   )(   )| ̂   ( )   ̂   ⟩  

with associated Bellman Equation 

 ̃(   ̂   ̂   )     {
 ̃ (   ̂   ̂   ) 

⟨ ̃(      ̂ (    )  ̂ (    )  )| ̂   ( )   ̂   ⟩  (   )  
}   

As before, the expectation is in both cases over the temporal evolution of  ̂( ). 

The optimal policy is invariant to shifts in the prior mean 

In contrast to the optimal policy associated with maximizing the reward rate, the 
optimal policy that maximizes the correct rate remains unchanged when adding the 
same constant to both elements of the prior mean  ̅. This is shown in two steps. First, we 
show that introducing such a shift in the prior mean does not affect how the  ̂( ) evolves 
over time (other than being shifted as a whole). Second, we show that the value for 
deciding immediately is only sensitive to the difference  ̂ ( )   ̂ ( ) rather than the 
individual values of these estimates. Together, this allows us to show that the value 



function is unaffected by shifts in the prior mean, such that the associated optimal policy 
is neither. 

 We have previously shown that the process describing the evolution of the 
expected reward estimate,  ̂( ), features drift and diffusion that only depends on time, 
but not on its current estimate. This was sufficient such that the whole process could be 
shifted without affecting its evolution, that is  ̂( ) ( ̂(  )    ̂)  ( ̂( )  ̂(  ))    ̂ for 
     and some two-dimensional vector   ̂. This was demonstrated under the 
assumption that    , such that we have  ̂( ) ( ̂(  )    ̂)  ( ̂( )  ̂(  ))    ̂ for the 
setup considered in this section. Therefore, the time evolution of  ̂( ), that is, how  ̂( ) 
changes in relative terms, is unaffected by a shift in the prior mean, as  ̂( ) ( ̂( )   ̅  
  ̅)  ( ̂( ) ( ̂( )   ̅))    ̅. 

 Furthermore, both   (   ̂   ̂ ) and its average-adjusted counterpart, 
 ̃ (   ̂   ̂   ), are only sensitive to  ̂ ( )   ̂ ( ) rather than the individual values of 
these estimates. To see this, expand   (   ̂    ̂  ̂    ̂) for any scalar   ̂, which 
immediately results in   (   ̂    ̂  ̂    ̂)    (   ̂   ̂ ). The same procedure 
demonstrates  ̃ (   ̂    ̂  ̂    ̂  )   ̃ (   ̂   ̂   ). 

 Both of these properties in combination imply that  (   ̂    ̂  ̂    ̂)  
 (   ̂   ̂ ). To see this, fix some      and      at which options 1 and 2 are chosen. 
Then,  (   ̂    ̂  ̂    ̂) can be written as 

⟨  (   ̂ ( )  ̂ ( ))   (   )|              ̂   ( )   ̂      ̂⟩ 

 〈  (   ̂ ( )    ̂  ̂ ( )    ̂)   (   )               ̂   ( )   ̂   〉 

 ⟨  (   ̂ ( )  ̂ ( ))   (   )|              ̂   ( )   ̂   ⟩  

where the first equality is based on shifting  ̂( ), and the second equality uses the 
property of   ( ) discussed above. As this holds for all valid decision times,    and   , it 
also holds for  (   ̂    ̂  ̂    ̂), such that  (   ̂    ̂  ̂    ̂)   (   ̂   ̂ ). A 
similar argument leads to  ̃(   ̂    ̂  ̂    ̂  )   ̃(   ̂   ̂   ). Therefore, the 
optimal policy is the same for prior mean  ̅ and  ̅    ̅ . 

 

 

Supplementary Note 2 
The sensitivity to the absolute reward magnitudes (Fig. 5A) is a remarkable property 
that differentiates value-based decision-making from classic perceptual decision-
making. In a typical perceptual decision-making paradigm, the decision maker is 
rewarded based on whether the answer is “correct” or “incorrect,” but not the values of 
options themselves. Therefore, the optimal strategy for perceptual decisions is to 
maximize the correct response rate. In value-based decisions, instead, subjects are 
always rewarded, even if they choose the “incorrect”, lower-rewarding option (due to 
the stochastic realization of the evidence). This difference implies that a strategy that 
maximizes the correct-rate in value-based tasks does not necessarily maximize the 
reward-rate. Indeed, a strategy that maximizes the reward rate is sensitive to absolute 
reward magnitudes, unlike one that maximizes only the correct rate. In addition to the 
sensitivity to absolute reward magnitudes, the optimal boundaries in the value-based 
case tend to approach each other more rapidly (with a steeper slope over time) than for 

perceptual decisions (optimal asymptotic rate     rather than   √ , see 2,5,6). 

 



Supplementary Note 3 
Oud et al.7 recently demonstrated that humans can behave suboptimally in some forms 
of value-based decision-making tasks. Indeed, using a new stimulus-dependent reward 
design, they reported that human subjects tend to be slower than expected from a policy 
that maximizes reward rate for both value-based and perceptual decisions suggesting 
suboptimal decisions. Indeed reward rates could be increased by forcing subjects to 
wait shorter by imposing artificial deadlines. Although the exact source of this sub-
optimality has yet to be clarified, there are multiple possibilities of how it could arise. In 
particular, our theoretical results demonstrate that prior knowledge of the reward 
distribution critically affects how the boundaries ought to collapse to maximize the 
reward rate. This implies that incorrectly or incompletely learned priors (or 
misunderstanding the task, e.g., using the accuracy-based strategy for value-based 
tasks) can result in exceedingly slow choices even when subjects follow the optimal 
policy for the prior they have learned.  

 There is already preliminary evidence that human subjects can adjust their 
decision policy in response to changes in the prior reward distribution. For instance, 
Otto and Daw (Comput. Syst. Neurosci. Abstr., 2016) have found that subjects tend to 
respond faster in a value-based decision-making task following increases in reward 
rates, in line with our prediction. However, it is still unclear how long it takes subjects to 
fully adjust their policies in response to a change in the prior reward distribution. This 
question will require further experiments with long trial blocks using distinct task 
statistics (e.g., different expected rewards within each block).  
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