

а



| <b>۱</b> ۸/ | F | ᄃ | "  |
|-------------|---|---|----|
|             |   |   | ۱Э |

| b |                                                   | 1 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 | 64 | 68 | 72 | 76 | 80 |
|---|---------------------------------------------------|-----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   | ELECTROCARDIOGRAM (ECG)                           |     |   | 0  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | SHIRPA                                            |     |   | 0  | _  |    |    |    |    | _  |    |    |    | _  |    |    |    | )  | _  | _  |    |
|   | GRIP STRENGTH                                     |     |   | 0  |    |    |    |    |    | _  |    |    |    | _  |    |    |    | )  | _  | _  |    |
|   | SLIT LAMP/OPTHALMOSCOPE                           |     |   |    | 0  |    |    |    |    |    |    |    | 0  |    |    |    | 0  |    | 0  |    |    |
|   | OPTOKINETIC DRUM                                  |     |   | _  | 0  |    |    | _  |    |    |    |    | 0  | _  |    |    | 0  | _  | 0  |    |    |
|   | CLICK BOX                                         |     |   |    | 0  |    | _  | 0  |    |    | 0  | _  | 0  |    |    |    |    |    |    | _  |    |
|   | AUDITORY BRAINSTEM RESPONSE<br>+ CLICK STIMULUS   |     |   | _  | 0  | _  |    | _  |    | _  | 0  |    |    |    |    |    | _  |    |    | _  |    |
|   | ECHO-MRI                                          |     |   | _  | 0  |    |    | 0  |    | _  |    | _  |    | 0  |    |    |    |    | 0  | _  |    |
|   | DUAL ENERGY X RAY<br>ANALYSIS (DEXA)              |     |   |    | 0  |    |    |    |    |    |    |    |    | 0  |    | _  |    | _  | _  |    |    |
|   | X RAY                                             |     |   | _  | 0  |    |    |    |    |    |    |    |    | 0  | _  | _  |    | _  | 0  | )  |    |
|   | PUPILLOMETRY                                      |     |   |    |    | 0  |    |    |    |    |    |    | _  |    | _  |    |    | 0  |    |    |    |
|   | SLEEP TRACKING                                    |     |   |    |    | 0  |    |    |    |    | _  |    |    |    |    | _  | _  | 0  |    |    |    |
|   | CLINICAL CHEMISTRY                                |     |   | _  |    |    | _  | 0  |    | _  |    |    |    | 0  |    |    |    |    | _  | _  | 0  |
|   | FASTED BLEED                                      |     |   | _  | 0  |    |    | 0  |    |    |    |    |    | 0  |    |    |    |    |    |    | 0  |
|   | FASTED INSULIN                                    |     |   |    |    |    |    | _  | 0  |    |    | _  |    |    | 0  |    |    |    | 0  | _  |    |
|   | INTRAPERITONEAL GLUCOSE<br>TOLERANCE TEST (IPGTT) |     |   |    |    | _  |    |    | 0  |    |    |    | _  |    | 0  |    |    |    | 0  | _  |    |

**Supplementary Figure 1.** An overview of the breeding and phenotyping in the Harwell Ageing Screen. (a) The Harwell Ageing Screen employed a  $G_3$  breeding scheme illustrated here. A male  $G_0$  (C57BL/6J) mouse is treated with ENU and crossed to wild-type female mice (C3H.Pde6b+) to produce  $G_1$  offspring that are heterozygous for ENU-induced mutations.  $G_1$  male mice are then outcrossed again to C3H.Pde6b+ females and  $G_2$  daughters from this mating backcrossed to the  $G_1$  father to generate  $G_3$  progeny. Each  $G_1$  male gives rise to a single pedigree of  $G_3$  mice, which contain a range of mutations derived from the founder  $G_1$  male. For each mutation an individual  $G_3$  mouse may be homozygous, heterozygous or wild-type. (b) Mice were phenotyped at the time points outlined above and as described in Materials and Methods. The time points above are the core phenotyping pipeline with additional tests carried out where required.

Figure S2











**Supplementary Figure 2.** Phenotyping of *Acan*<sup>A1946V</sup> mutant mice. (a) Percentage fat mass of mice heterozygous (het) or homozygous (hom) for the *Acan*<sup>A1946V</sup> mutation, and wild-type (wt) littermate controls from pedigree MPC-227, were determined by echo MRI. An increased percentage fat mass was observed in homozygous mutant mice at both 12 and 18 months compared to wild-type and heterozygous mice. (b) Homozygous *Acan*<sup>A1946V</sup> mice have a significantly lower absolute lean mass at all ages tested when compared to wild-type animals. (c) From 6-months of age there were no significant differences in total bodyweight between mice heterozygous or homozygous for the *Acan*<sup>A1946V</sup> mutation, or wild-type controls. Wild-type mice, n=8 at 3 months, n=8 at 6 months, n=7 at 12 months and n=4 at 18 months. Heterozygous mice n=7 at 3 months, n=6 at 6 months, n=5 at 12 months and n=3 at 18 months. Homozygous mice n=6 at 3 months, n=6 at 6 months, n=4 at 12 months and n=3 at 18 months. The mean is represented by a bar and significance determined using a one-way ANOVA with multiple comparisons with Tukey's multiple comparisons test comparing wild-type, heterozygote and homozygote mutant mice. X ray analysis of homozygous *Acan*<sup>A1946V</sup> mice at 18 months of age showed bone deposition in several joints most significantly around knees and elbows. Control littermate knee (d) *Acan*<sup>A1946V</sup> homozygote knee (e). (f) – (i) Histological analysis of fat deposits also revealed qualitative differences in fat from *Acan*<sup>A1946V</sup> homozygotes and wild-type littermates. Gonadal white adipose tissue from controls (f) or homozygous *Acan*<sup>A1946V</sup> mice (a) and larger adipocytes. Analysis of brown adipose tissue showed increased fat accumulation in wild-type littermates (h) when compared to homozygous *Acan*<sup>A1946V</sup> mice (i).

Figure S3



**Supplementary Figure 3. Hearing data from MPC-96.** Auditory thresholds for the  $G_3$  mice from MPC-96 were determined using ABR phenotyping as part of the Harwell Ageing Screen. (a) At 9-months of age several mice showed mildly elevated hearing thresholds, particularly at 32 kHz. (b) Rescreening of these mice at an additional 12-month timepoint revealed their hearing impairment had progressed, with elevated hearing thresholds measured at all frequencies tested. Statistical significance was determined using a two-tailed unpaired t test with Welch's correction. \* P<0.05; \*\*\* P<0.001.

## Figure S4



**Supplementary Figure 4. Mapping and identification of the** *trombone* **mutation. (a)** Diagram showing the location of the ~12.5 Mb critical interval identified for *trombone* on chromosome 2 (51572483-64082361 bp) (Genome assembly: GRCm38). **(b)** Confirmation of the NGS identified ENU-induced coding lesion in exon 15 of the *Slc4a10* gene (ENSMUST00000112480). The lesion consists of a nucleotide transversion (c.1940T>C) at codon 647, which alters the wild-type (WT) sequence CTC, encoding a Leucine (Leu, L), to the mutant (m) sequence C**C**C, encoding a Proline (Pro, P). Electropherograms showing the sequence surrounding *Slc4a10* nucleotide 1940 (indicated by an arrow) in normal hearing wild-type (*Slc4a10*<sup>+/tmb</sup>) trombone mice and a hearing loss mutant (*Slc4a10*<sup>trmb/trmb</sup>) mouse. **(c)** Schematic representation of the Slc4a10 protein illustrating the location of the mutation identified in *trombone*. The murine *Slc4a10* gene consists of 27 exons, spanning ~280 Kb of genomic DNA on

chromosome 2. Slc4a10 is a 1118 amino acid sodium bicarbonate cotransporter protein that contains many transmembrane domains (dark gray bars). The location of the homozygous Slc4a10 mutation identified in *trombone* by the present study is shown. **(d)** Evolutionary conservation of the Leucine (L) residue of Slc4a10 altered to Proline (P) in the *trombone* mutant. *H. Sapiens*, ENSG00000144290; *M. musculus*, ENSMUSG00000026904, *G. gallus*, ENSGALG00000001741; *T. rubripes*, ENSTRUG0000008287; *D. rerio*, ENSDARG00000063133.



Supplementary Figure 5. Electroretinography in trombone mice. (a) Representative traces from dark-adapted animals to single-flash stimuli of increasing stimuli (top to bottom, flash intensity shown on left margin in log cd.s/m<sup>2</sup>). Responses of  $Slc4a10^{trmb/trmb}$  mice (shown in red) are grossly similar to littermate, wild-type controls (in black). (b) Quantification of the amplitude (size) of a- and b-wave components in N=5 animals per group confirms that the size of responses is intensity dependent, but very similar between genotypes (Two-way repeated measures ANOVA for a-waye with intensity and genotype as factors, intensity P < 0.0001, genotype P = 0.4060, intensity x genotype P = 0.6266. Two-way repeated measures ANOVA for awave with intensity and genotype as factors, intensity P < 0.0001, genotype P = 0.7909, intensity x genotype P = 0.2054). (c) Quantification of the implicit time (speed) of the b-wave component in N=5 animals per group shows there is no significant difference in the timing of single-flash, darkadapted recordings (Two-way repeated measures ANOVA with intensity and genotype as factors, intensity P < 0.0001, genotype P = 0.3375, intensity x genotype P=0.5354). (d) Representative traces from dark-adapted animals to flickering stimuli of a fixed intensity (-2 log cd.s/m<sup>2</sup>) of increasing frequency (top to bottom, frequency shown on left margin in Hertz). The responses of Slc4a10<sup>trmb/trmb</sup> mice (show in red) are grossly similar to littermate, wild-type controls (in black) at lower frequencies (0.5 - 5 Hz) but differences in the phase/timing of responses become apparent to faster flicker (10 – 15 Hz). (e) Quantification of the peak-to-peak amplitude of the waveforms in N=5 animals per group shows the size of the wave changes as a function of stimulus frequency but is not different between genotypes (Two-way repeated measures ANOVA with frequency and genotype as factors, frequency P < 0.0001, genotype P = 0.6266, intensity x genotype P = 0.2324). (f) Quantification of the delay until the first positive deflection (implicit time) of the waveforms in N=5 animals per group shows the timing of responses is dependent on the stimulus frequency and this relationship is very different between genotypes (Two-way repeated measures ANOVA with frequency and genotype as factors, frequency P < 0.0001, genotype P =0.2123, intensity x genotype P < 0.0001). Pairwise comparisons show that responses of mutants are very significant delayed compared to wild-types principally in the 7 -15 Hz range. (g) Representative traces from light-adapted animals to single-flash stimuli of increasing stimuli (top to bottom, flash intensity shown on left margin in log  $cd.s/m^2$ ). Responses to dimmer stimuli are small and similar between genotypes but responses to higher flash intensities appear to be much smaller and slower in trombone mice (in red) compared to littermate, wild-type controls (in black). (h) Quantification of the amplitude (size) of the b-wave in N=5 animals per group confirms that the size of responses is intensity dependent but that responses to higher flash intensities are significantly smaller in mutants than wild-types (Two-way repeated measures ANOVA with intensity and genotype as factors, intensity P < 0.0001, genotype P = 0.1174, intensity x genotype P = 0.0251). (i) Quantification of the implicit time of the b-wave in N=5 animals per aroup shows responses are significantly slower in *trombone* mice compared to littermate, wild-type controls (Two-way repeated measures ANOVA with intensity and genotype as factors, intensity P = 0.0004, genotype P = 0.0061, intensity x genotype P < 0.0001). In all panels Slc4a10<sup>trmb/trmb</sup> mice are show in red and littermate, wild-type controls are indicated in black. In all graphs plotted values are mean+SEM, N=5. The following symbols indicate significant pairwise comparisons in Bonferroni's multiple comparisons test: \*  $P \le 0.05$ , \*\*  $P \le 0.01$ , \*\*\*\*  $P \le 0.0001$ .

| Ageing Screen Procedure                | Ageing IMPRESS<br>identifier <sup>1</sup> | Equivalent IMPC<br>procedure <sup>2</sup> | False Positive Rate <sup>3</sup> |
|----------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|
| Intraperitoneal glucose tolerance test | IMPC_IPG_001                              | IMPC_IPG_001                              | 0.64%                            |
| Body Composition (DEXA lean/fat)       | IMPC_DXA_001                              | IMPC_DXA_001                              | 0.62%                            |
| Electrocardiogram                      | IMPC_ECG_001                              | IMPC_ECG_001                              | 0.64%                            |
| Electrocardiogram                      | IMPC_ECH_001                              | IMPC_ECH_001                              | 0.61%                            |
| Auditory brainstem response            | IMPC_ABR_002                              | IMPC_ABR_002                              | 0.92%                            |
| Hematology                             | IMPC_HEM_002                              | IMPC_HEM_002                              | 0.63%                            |
| FACs Analysis                          | IMPC_ACS_003                              | IMPC_ACS_003                              | 0.60%                            |
| Clinical Blood Chemistry               | IMPC_CBC_003                              | IMPC_CBC_003                              | 0.64%                            |
| SHIRPA                                 | IMPC_CSD_003                              | IMPC_CSD_003                              | 1.22%                            |
| Indirect Calorimetry                   | IMPC_CAL_003                              | IMPC_CAL_003                              | 0.58%                            |
|                                        |                                           | Overall:                                  | 0.71%                            |

**Supplementary Table 1. Estimation of the false positive rate of the reference range phenotype detection method.** Phenotype procedures that occur in both the IMPC project and the Harwell ageing screen were selected for the FPR analysis. <sup>1</sup>Ageing IMPRESS identifier: documents the IMPRESS identifiers for the ageing procedure used. <sup>2</sup>Equivalent IMPC procedure: documents the equivalent IMPC IMPRESS identifier. Reference ranges were created using IMPC wildtype animals for each parameter in the procedures. <sup>3</sup>False positive rate: FPRs determined from the reference range method as described in Methods.

| Pedigree<br>ID | Phenotype Description                                                         | Chr | Gene     | Category | CDS<br>position | Mutation | Functional<br>Class | SIFT Score           | Supporting<br>Evidence | Novelty                              | Known Gene-<br>Phenotype<br>association |
|----------------|-------------------------------------------------------------------------------|-----|----------|----------|-----------------|----------|---------------------|----------------------|------------------------|--------------------------------------|-----------------------------------------|
| MPC-59         | Yellow coat colour                                                            | 8   | Mcr1     | Early    | N/A             |          | IAP insertion       | N/A                  | s, a, f, e, p          | Known gene<br>- Known<br>function    | Coat Colour                             |
| MPC-63         | Progressive tremors from 9 months                                             | 7   |          | Late     |                 |          |                     |                      |                        |                                      |                                         |
| MPC-66         | Abnormal gait from 4 months                                                   | 18  |          | Early    |                 |          |                     |                      |                        |                                      |                                         |
| MPC-81         | Reduced fat mass                                                              | 8   |          | Late     |                 |          |                     |                      |                        |                                      |                                         |
| MPC-81         | Coat colour                                                                   |     |          | Early    |                 |          |                     |                      |                        |                                      |                                         |
| MPC-87         | Hydronephrosis, tubular dilation and vacuolation                              |     |          | Early    |                 |          |                     |                      |                        |                                      |                                         |
| MPC-91         | Sudden death                                                                  | 7   | Bcat2    | Early    | 988C>T          | Q330*    | Stop Gain           | NP                   | s, f                   | Known gene<br>– Novel<br>function    | Maple Syrup Urine<br>Disease            |
| MPC-91         | Hyperactivity, impaired hearing                                               | 4   | Whrn     | Early    | 1068+1C>T       | Intronic | Splice Donor        | NP                   | s, g, e, p             | Known gene<br>-<br>Novel<br>function | Deafness/<br>Retinal/Schizophrenia      |
| MP-95          | Ataxia                                                                        |     |          | Early    |                 |          |                     |                      |                        |                                      |                                         |
| MPC-96         | Low HDL and total LDL                                                         | 10  | Pla2g12b | Early    | 196T>A          | Y66N     | Missense            | Damaging<br>(0.006)  | s, e, p                | Known gene<br>- Known<br>function    | Cholesterol<br>transport/fatty liver    |
| MPC-96         | Reduced body size                                                             | 12  | Pld4     | Early    | 472C>T          | L158F    | Missense            | Damaging<br>(0.008)  | s, p                   | Known gene<br>- Known<br>function    | Growth/size                             |
| MPC-96         | Late onset and progressive hearing loss                                       | 2   | Slc4a10  | Late     | 1940T>C         | L647P    | Missense            | Damaging<br>(0.007)  | s, f, e                | Novel gene -<br>Novel<br>function    | Retinal dysfunction                     |
| MPC-96         | Cataracts                                                                     |     |          | Late     |                 |          |                     |                      |                        |                                      |                                         |
| MP-97          | Situs Inversus                                                                | 15  |          | Early    |                 |          |                     |                      |                        |                                      |                                         |
| MPC-102        | Abnormal gait from 12 months, progressive deterioration                       | 7   | Eftud1   | Late     | 2948A>G         | K983R    | Missense            | Tolerated<br>(0.607) | s, f, e                | Known gene<br>- Novel<br>function    | Ribosomal maturation                    |
| MPC-107        | Elevated creatinine and urea at 18 months                                     |     |          | Late     |                 |          |                     |                      |                        |                                      |                                         |
| MP-107         | X ray abnormalities identified at 4 months with late onset joint degeneration | 11  |          | Late     |                 |          |                     |                      |                        |                                      |                                         |
| MPC-111        | Low BMD and body weight                                                       | 1   |          | Early    |                 |          |                     |                      |                        |                                      |                                         |
| MPC-116        | X Ray abnormalities on knees                                                  |     |          | Late     |                 |          |                     |                      |                        |                                      |                                         |
| MPC-119        | Testicular calcification at 18 months                                         |     |          | Late     |                 |          |                     |                      |                        |                                      |                                         |
| MPC-119        | Low fat mass                                                                  |     |          | Early    |                 |          |                     |                      |                        |                                      |                                         |
| MPC-121        | Tremors/low grip strength                                                     | 3   |          | Early    |                 |          |                     |                      |                        |                                      |                                         |
| MPC-125        | Low bone mineral density, low fat mass,<br>low body weight                    | 4   | Lpar1    | Early    | N/A             | N/A      | Intronic            | N/A                  | S                      | Known gene<br>– Novel<br>function    | Bone growth                             |

| MPC-131 | Elevated ALP, ALT, AST, reduced inorganic<br>phosphate and albumin. Reduced body<br>weight | 2  |        | Early      |                    |                  |                        |                                         |               |                                      |                                                                |
|---------|--------------------------------------------------------------------------------------------|----|--------|------------|--------------------|------------------|------------------------|-----------------------------------------|---------------|--------------------------------------|----------------------------------------------------------------|
| MPC-134 | Elevated AST                                                                               | 16 |        | Early      |                    |                  |                        |                                         |               |                                      |                                                                |
| MPC-142 | Deafness with vestibular defects                                                           | 7  | Myo7a  | Early      | 1515C>A            | N505K            | Missense               | Damaging<br>(0.01)                      | а             | Known gene<br>–<br>Known<br>function | Deafness with vestibular defects                               |
| MPC-151 | Progressive hearing loss, reduced fat mass, cardiomyopathy                                 | 3  | Wars2  | Late       | 349G>T             | V117L            | Missense and<br>splice | Damaging<br>(0.013)                     | s, g, f, e, p | Novel gene –<br>Novel<br>function    | GWAS Waist-Hip ratio                                           |
| MPC-162 | Reduced visual acuity                                                                      |    |        | Early      |                    |                  |                        |                                         |               |                                      |                                                                |
| MPC-165 | Impaired glucose tolerance                                                                 |    |        | Early      |                    |                  |                        |                                         |               |                                      |                                                                |
| MPC-168 | Impaired glucose tolerance                                                                 |    |        | Early      |                    |                  |                        |                                         |               |                                      |                                                                |
| MPC-169 | Deafness with vestibular defects                                                           | 5  |        | Early      |                    |                  |                        |                                         |               |                                      |                                                                |
| MPC-172 | Impaired glucose tolerance                                                                 |    |        | Early      |                    |                  |                        |                                         |               |                                      |                                                                |
| MPC-173 | Deafness/ Progressive corneal opacity                                                      | 1  | Ikzf2  | Early/Late | 1551C>A            | H517Q            | Missense               | Damaging<br>(0.00)                      | s, f, e       | Novel gene –<br>Novel<br>function    | T cell development                                             |
| MPC-174 | Coat colour                                                                                | 7  |        | Early      |                    |                  |                        |                                         |               |                                      |                                                                |
| MPC-178 | Hypertrophic cardiomyopathy                                                                | 9  | Ecsit  | Late       | 626A>T             | N209I            | Missense               | Damaging<br>(0.008)                     | s, f, e, p    | Novel gene –<br>Novel<br>function    | Mitochodrial complex I<br>assembly, TLR signal<br>transduction |
| MPC-178 | Reduced bone mineral density, reduced growth                                               | 1  | Irs1   | Early      | 655G>T             | E219*            | Stop Gain              | NP                                      | s, e, p, a    | Known gene<br>–<br>Known<br>function | Insulin signalling                                             |
| MPC-178 | Low fat and lean mass                                                                      | 7  | Herc2  | Early      | 13476T>A           | C4492*           | Stop Gain              | NP                                      | s, p, a       | Known gene<br>–<br>Known<br>function | Prader Willi Sydrome                                           |
| MPC-184 | Reduced fat mass                                                                           | 13 |        | Early      |                    |                  |                        |                                         |               |                                      |                                                                |
| MPC-185 | Reduced fat mass                                                                           | 3  |        | Early      |                    |                  |                        |                                         |               |                                      |                                                                |
| MPC-186 | Fatty liver                                                                                | 2  |        | Late       |                    |                  |                        |                                         |               |                                      |                                                                |
| MPC-187 | Fitting and hyperactivity                                                                  | 11 | Ap2b1  | Early      | 16T>A              | Y6N              | Missense               | Damaging<br>(0.00)                      | S             | Known gene<br>– Novel<br>function    | Clathrin endocytosis                                           |
| MPC-188 | Deafness                                                                                   | 13 | Gpr98  | Early      | 8554+2T>C          | Donor<br>splice  | Intronic               | NP                                      | s, e, p, a    | Known gene<br>–<br>Known<br>function | Deafness                                                       |
| MPC-188 | Deafness                                                                                   | 18 | Loxhd1 | Early      | 4370A>T<br>5323G>A | I1457N<br>T1775A | Missense<br>Missense   | Damaging<br>(0.001)<br>Tolerated (0.14) | s, e, p, a    | Known gene<br>–<br>Known<br>function | Deafness                                                       |
| MPC-190 | Impaired glucose tolerance                                                                 |    |        | Early      |                    |                  |                        |                                         |               |                                      |                                                                |
| MPC-190 | Deafness                                                                                   | 11 | Myo15  | Early      | 4940A>G            | D1647G           | Missense               | Damaging<br>(0.001)                     | s, f, e, p, a | Known gene<br>–                      | Deafness                                                       |
| P-      |                                                                                            |    |        |            |                    |                  |                        | · /                                     |               |                                      |                                                                |

|         |                                                                           |    |        |       |           |                |              |                     |               | Known<br>function                    |                                        |
|---------|---------------------------------------------------------------------------|----|--------|-------|-----------|----------------|--------------|---------------------|---------------|--------------------------------------|----------------------------------------|
| MDC-101 | Progracsiva Tramars                                                       | 12 | HoyP   | Forby | 675T> C   | V77E*          | Stop Coin    | ND                  | cfopp         | Known gene<br>-                      | Sandhoff syndromo                      |
| MPC-191 | Flogressive fremois                                                       | 15 | пехь   | Larry | 0/31>0    | 1223           | Stop Gain    | INF                 | s, i, e, µ, a | Known<br>function                    | Sandhon syndrome                       |
| MPC-200 | Epidermal and follicular hyperkeratosis                                   | 8  | Ces2F  | Late  | 1286A>T   | Q429L          | Missense     | Tolerated (0.3)     | S             | Novel gene –<br>Novel<br>function    | Carboxylic ester<br>hydrolase activity |
| MPC-201 | Impaired glucose tolerance                                                |    |        | Early |           |                |              |                     |               |                                      |                                        |
| MPC-201 | Progressive retinal degeneration and reduced visual acuity from 12 months | 9  | Idh3a  | Late  | 685G>A    | E229K          | Missense     | Damaging<br>(0.028) | s, e, p       | Known gene-<br>known<br>function     | Retinitis pigmentosa                   |
| MPC-202 | Age-related hearing loss                                                  | 2  |        | Late  |           |                |              |                     |               |                                      |                                        |
| MPC-203 | Age-related hearing loss                                                  | 1  |        | Late  |           |                |              |                     |               |                                      |                                        |
| MPC-203 | Tremors and abnormal gait                                                 |    |        | Early |           |                |              |                     |               |                                      |                                        |
| MPC-205 | Elevated creatinine and urea from 6 months                                | 2  | Lama5  | Late  | 2651A>G   | E884G          | Missense     | NP                  | s, g, e, p    | Known gene<br>-Novel<br>function     | Organogenesis                          |
| MPC-205 | Age-related hearing loss                                                  | 10 | Ptprq  | Late  | 5945+2T>C | Intronic       | Splice Donor | NP                  | s, , e, p, a  | Known gene<br>-Novel<br>function     | Early onset deafness                   |
| MPC-214 | Decreased pupillary response                                              | 13 | Chrm3  | Early | 35T>A     | L12*           | Stop Gain    | NP                  | s, e, f, p    | Known gene<br>–<br>Known<br>function | Muscle function                        |
| MPC-225 | Impaired glucose tolerance                                                |    |        | Early |           |                |              |                     |               |                                      |                                        |
| MPC-225 | Abnormal gait                                                             | 7  | Mag    | Early | 328G>T    | E110*          | Stop Gain    | NP                  | s, e, p, a    | Known gene<br>-<br>Known<br>function | Axonal function                        |
| MPC-227 | Impaired glucose tolerance                                                |    |        | Early |           |                |              |                     |               |                                      |                                        |
| МРС-227 | Low cholesterol                                                           | 4  | Abca1  | Early | 1196T>A   | V399E          | Missense     | Damaging<br>(0.009) | s, e, p, a    | Known gene<br>-<br>Known<br>function | Tangiers disease                       |
| MPC-227 | Obesity and joint degeneration                                            | 7  | Acan   | Late  | 5837C>T   | A1946V         | Missense     | Damaging<br>(0.00)  | s, e, p       | Known gene<br>-Novel<br>function     | Bone/Growth,<br>osteoarthritis         |
| MPC-227 | Deafness                                                                  | 2  |        | Early | Multiple  | Non-<br>Coding |              |                     |               |                                      |                                        |
| MPC-231 | High fasted glucose                                                       | 11 |        | Early |           |                |              |                     |               |                                      |                                        |
| MPC-231 | Polycystic Kidneys                                                        |    |        | Early |           |                |              |                     |               |                                      |                                        |
| MPC-231 | Deafness                                                                  | 18 | Loxhd1 | Early | 5087C>T   | T1696M         | Missense     | Damaging<br>(0.00)  | s, , e, p, a  | Known gene<br>–<br>Known<br>function | Deafness                               |
| MPC-231 | Deafness                                                                  | 18 | Hars   | Early | 331T>C    | S111P          | Missense     | Damaging<br>(0.011) | S             | Novel gene –<br>Novel<br>function    | Histidyl-tRNA<br>synthetase            |

| MPC-232 | Elevated ALT                                                       | 6  | Trim24  | Early | 714T>A  | C238*  | Stop Gain | NP                   | s, e, p, a    | Known gene<br>–<br>Known<br>function | Cell cycle control                    |
|---------|--------------------------------------------------------------------|----|---------|-------|---------|--------|-----------|----------------------|---------------|--------------------------------------|---------------------------------------|
| MPC-232 | Renal developmental abnormalities                                  | 8  | PskH1   | Early | 23T>A   | V8D    | Missense  | Damaging<br>(0.001)  | s, f, e       |                                      |                                       |
| MPC-233 | Reduced body size, hyperactivity                                   |    |         | Early |         |        |           |                      |               |                                      |                                       |
| MPC-234 | High fasted glucose and fructosamine                               |    |         | Late  |         |        |           |                      |               |                                      |                                       |
| MPC-234 | Deafness                                                           | 5  | Slc26a5 | Early | 1136G>T | G379V  | Missense  | Damaging<br>(0.00)   | s, , e, p, a  | Known gene<br>–<br>Known<br>function | Deafness                              |
| MPC-234 | Progressive hearing loss                                           | 8  | Nek5    | Early | 1660G>A | A554T  | Missense  | Tolerated (0.56)     | S             | Known gene<br>– Novel<br>Function    | Skeletal muscle differentiation       |
| MPC-236 | Decreased sleep, late motor function deterioration                 | 11 | Vamp2   | Late  | 305T>A  | I102N  | Missense  | Damaging<br>(0.00)   | s, f, e, a    | Known gene<br>– Novel<br>Function    | Synaptic vesicle<br>docking           |
| MPC-242 | Impaired glucose tolerance, insulin resistance, obesity, diarrhoea | 13 | Pcsk1   | Early | 286G>T  | V96L   | Missense  | Damaging<br>(0.01)   | s, f, e, p, a | Known gene<br>– Known<br>function    | Human mutations and<br>GWAS Obesity   |
| MPC-244 | Neonatal malaise, ataxia                                           | 12 |         | Early |         |        |           |                      |               |                                      |                                       |
| MPC-246 | Deafness and vestibular defects                                    | 18 | Slc12a2 | Early | 1728T>A | C576*  | Stop Gain | NP                   | s, e, p, a    | Known gene-<br>Known<br>function     | Deafness and vestibular defects       |
| MPC-253 | Colitis                                                            | 13 |         | Late  |         |        |           |                      |               |                                      |                                       |
| MPC-256 | Elevated Creatinine and urea at 12 months                          | 5  |         | Late  |         |        |           |                      |               |                                      |                                       |
| MPC-264 | Progressive hearing loss and tremors                               | 12 | Zfyve26 | Late  | 3943C>T | R1315* | Stop Gain | NP                   | s, e, p       | Known gene<br>-Novel<br>function     | Spastic paraplegia 15                 |
| MPC-264 | Deafness                                                           | 13 | Slc12a7 | Early | 1795C>T | Q599*  | Stop Gain | NP                   | s, e, p, a    | Known gene-<br>Known<br>function     | Deafness and renal tubular acidosis   |
| MPC-265 | Deafness and vestibular defects                                    | 5  | Grxcr1  | Early | 552C>A  | N184K  | Missense  | Tolerated<br>(0.089) | s, e, p, a    | Known gene-<br>Known<br>function     | Deafness                              |
| MPC-265 | Deafness                                                           | 19 | Pdzd7   | Early | 833T>C  | L278P  | Missense  | Damaging<br>(0.00)   | s, e, p, a    | Known gene-<br>Known<br>function     | Deafness                              |
| MPC-267 | Increased sleep                                                    | 3  |         | Early |         |        |           |                      |               |                                      |                                       |
| MPC-269 | Retinal degeneration                                               | 14 | Rpgrip1 | Early | N/A     | N/A    | Intronic  | NP                   | s, e, p, a    | Known gene-<br>Known<br>function     | Leber congenital<br>amaurosis         |
| MPC-269 | Progressive hearing loss                                           | 7  | Tmem145 | Early | 147T>A  | C49*   | Stop Gain | NP                   | S             | Novel gene –<br>Novel<br>Function    | G-protein coupled receptor signalling |
| MPC-274 | Coat colour                                                        |    |         | Early |         |        |           |                      |               |                                      |                                       |
| MPC-275 | Tail kink                                                          | 6  |         | Early |         |        |           |                      |               |                                      |                                       |
| MPC-276 | Increased sleep                                                    | 1  |         | Early |         |        |           |                      |               |                                      |                                       |
|         |                                                                    |    |         |       |         |        |           |                      |               |                                      |                                       |

| MPC-282 | Impaired glucose tolerance/glycosouria | 13 |       | Early |           |          |                 |                    |            |                                  |                                     |
|---------|----------------------------------------|----|-------|-------|-----------|----------|-----------------|--------------------|------------|----------------------------------|-------------------------------------|
| MPC-285 | Impaired glucose tolerance             | 7  |       | Early |           |          |                 |                    |            |                                  |                                     |
| MPC-285 | Deafness and vestibular defects        | 9  | Муоб  | Early | 1382-2A>G | Intronic | Splice Acceptor | NP                 | s, e, p, a | Known gene-<br>Known<br>function | Deafness and vestibular defects     |
| MPC-285 | Decreased pupillary response           | 6  |       | Early |           |          |                 |                    |            |                                  |                                     |
| MPC-286 | Impaired glucose tolerance             | 12 |       | Late  |           |          |                 |                    |            |                                  |                                     |
| MPC-286 | Reduced fat mass                       |    |       | Early |           |          |                 |                    |            |                                  |                                     |
| MPC-290 | Craniofacial abnormalities             | 10 |       | Early |           |          |                 |                    |            |                                  |                                     |
| MPC-290 | Low fat and lean mass                  | 11 |       | Early |           |          |                 |                    |            |                                  |                                     |
| MPC-290 | Deafness                               | 17 |       | Early |           |          |                 |                    |            |                                  |                                     |
| MPC-290 | Deafness                               | 2  |       | Early |           |          |                 |                    |            |                                  |                                     |
| MPC-291 | Impaired glucose tolerance             |    |       | Early |           |          |                 |                    |            |                                  |                                     |
| MPC-292 | Limb grasp and progressive tremors     | 7  |       | Late  |           |          |                 |                    |            |                                  |                                     |
| MPC-294 | Obesity                                | 14 | Gnrh1 | Early | 73T>C     | S25P     | Missense        | Damaging<br>(0.00) | s, e, p, a | Known gene-<br>Known<br>function | Endocrine/exocrine function, growth |
| MPC-295 | Neonatal jaundice                      | 1  |       | Early |           |          |                 |                    |            |                                  |                                     |
| MPC-298 | Retinal degeneration                   | 1  |       | Late  |           |          |                 |                    |            |                                  |                                     |
| MPC-303 | Limb grasping                          | 2  |       | Early |           |          |                 |                    |            |                                  |                                     |
| MPC-312 | Deafness and vestibular defects        |    |       | Early |           |          |                 |                    |            |                                  |                                     |
| MPC-312 | Impaired glucose tolerance             | 2  |       | Early |           |          |                 |                    |            |                                  |                                     |

## Supplementary Table 2 - An overview of the current output of the Harwell Ageing Screen listing map locations and genes containing the causative mutation where known.

A phenotypic description for each mutant identified as part of the Harwell Ageing Screen is shown above with key details of the mutation. The chromosomal location of the causative allele is listed and where possible the gene. Mutants are classified as early or late according the time point the phenotype was originally identified in the screening pipeline; early being before and late being detected after 6 months of age. Pedigrees with Late onset mutations are highlighted. We show the supporting evidence for the role of the listed mutation in the development of the observed phenotype; s = confirmation of the mutation through Sanger sequencing of affected individuals, g= genetic proof through complementation studies, f= a relevant functional deficit or alteration in the protein, e=expression of the protein is within relevant tissue(s), p=the phenotype relevant to known function of gene, and a = the existence of additional mouse alleles with very similar phenotypes. The coding DNA sequence (CDS) position affected, amino acid

change and SIFT scores are given where possible (NP = no prediction from SIFT analysis). For mutants where the gene has been identified, we have highlighted two classes: 1) known gene – novel function: loci were the gene already has well described functions but the mutant reveals novel functionality 2) novel gene – novel function: loci where no function has been ascribed to date to the gene in the phenotypic area under investigation, and where novel function is revealed through the mutant phenotype. For both cases, the known gene-disease associations are briefly described.

## Position Reference Alternative Functional Class Entrez Gene Transcript Amino Acid Amino Acid Amino Acid Read Alternative allele allele allele Name SNV Position Position Reference Alternative Depth frequency 52274671 G А Intron variant Neb 19 12 G А Neb 19 52295606 Intron variant 32 . . . G 52368209 А 15 6 Intergenic variant . . . . А 52610937 G Intron variant Cacnb4 14 6 . . . . 52830164 Т С 13 6 Intergenic variant . . . . 53081955 А G 23 10 Intron variant Fmnl2 . . . . 53537814 А 12 G 5 Intergenic variant . . . . 53698132 Т С Upstream gene variant 23 11 . . . . . С 54032394 G Intergenic variant 13 8 . . . . 54046845 А G 19 10 Intergenic variant . . . . т С 55371519 22 Intergenic variant 7 . . . . 55449695 Т А Intron variant Kcnj3 24 11 . . . 55707875 Т А Intergenic variant 28 14 . . . . 55922589 G 6 А Intergenic variant 14 . . . . 56207939 Т А Intergenic variant 13 5 . . . 56505251 Т С Intergenic variant 15 8 . . . . 57344733 Т Intron variant 18 А Gpd2 8 . . . 57754165 А G 19 Intergenic variant 12 . . . . 58028598 А G Galnt5 22 Intron variant 11 . . . G Downstream gene variant 58263200 А Acvr1c 12 7 . . . G 59389135 А 34 17 Upstream gene variant . . . . 59964245 А Т Baz2b 24 11 Intron variant . . . . 60775938 А Т 22 11 Intron variant Rbms1 . . . 60930362 Т С 30 21 Intron variant Rbms1 . . . . 61624059 Т А Intron variant Tank 24 13 . . . 61685164 С Т Intergenic variant 17 9 . . . . 61872836 С Т 23 Intergenic variant 7 . . . 62268849 Т С Р L 19 Missense variant Slc4a10 1940 647 12 62654908 С Т Intergenic variant 21 11 . • • • 62906040 А Т 17 11 Intron variant Kcnh7 . . . . 62928313 С Т Kcnh7 22 13 Intron variant

.

.

•

.

## Supplementary Table 3. List of ENU-induced SNVs within the trombone mapped critical interval (Chr2:51572483-64082361, GRCm38).

| 62948024 | Т | С | Intron variant     | Kcnh7 |   | • | 21 | 10 |
|----------|---|---|--------------------|-------|---|---|----|----|
| 63048732 | А | т | Intron variant     | Kcnh7 | • | • | 15 | 7  |
| 63508788 | С | Т | Intergenic variant |       |   |   | 24 | 11 |
| 64023704 | А | G | Intron variant     | Fign  |   |   | 19 | 11 |