

Supplementary Figure 1. Gene schematics of *hyls-1*, *gasr-8* and *k10g6.4*, and TEM analysis of TFs in WT and *hyls-1* cilia.

(a) Gene structure of *hyls-1*, *gasr-8* and *k10g6.4* based on WormBase (http://wormbase.org), indicating available mutants. The *tm3067* allele has a 493bp DNA fragment deletion, encompassing the 1st, 2nd and part of the 3rd exon of the *hyls-1* gene, removing the first 361bp of the 825bp CDS including the ATG. The *gk567* allele has a 1561bp DNA fragment deletion, encompassing exons 1 to 6 of *k10g6.4* and removing the first 871bp of the 1380bp CDS including the ATG. The *gk1232* allele has an 884bp DNA fragment deletion, which removes exon 2 of *gasr-8* and is predicted to result in an in-frame deletion of 261aa (S28-Q288) of the 410aa wild-type protein. All three alleles are putative *null* due to the large deletion. (b) TEM analysis of TFs in WT and *hyls-1* cilia. TEM images of four consecutive serial sections (~80 nm thickness each) of the basal body region from WT or *hyls-1* mutants. Fiber-like structures in similar size can be observed in serial sections of WT cilia. In contrast, only a few areas of electron-dense material but no organized fibers remain in the basal body region of *hyls-1* mutants. Scale bar, 200 nm.

Supplementary Figure 2. Quantitation of the expression level of IFT components, and visualization of IFT-A, IFT-B and motor association in cilia of WT and *hyls-1* **mutants. (a) Upper panel, OSM-6::GFP was immunoprecipitated from whole worm lysates with anti-GFP monoclonal antibody and then probed with anti-GFP antibody. Lower panel: whole worm lysate was probed with anti-β-Actin (loading control). After normalization against actin levels, OSM-6::GFP shows no difference in expression level in WT and** *hyls-1* **mutants. (b-d) Quantitation of IFT fluorescence intensities in the cell body shows no difference in levels between WT and** *hyls-1* **mutants. Error bars indicate S.D.** *n* **represents the number of cilia analyzed. (e) Schematic of amphid sensory organ. Each amphid contains ten cilia whose distal segments bundle together. Green dots indicate ciliary base. (f-h) All BiFC pairs, CHE-11::VN + IFT-20::VC (f), XBX-1::VN + IFT-20::VC (g), and KAP-1::VN + IFT-20::VC IFT-A (h), show fluorescence complementation in both WT and** *hyls-1* **amphid cilia, indicating formation of functional IFT complexes. However, fluorescence complementation signal is largely restricted to the cilia base in** *hyls-1* **mutants. Asterisks indicate the cilia bases. Note that not all ten cilia can be visualized in one focal plane in confocal imaging. VN, N-terminus of Venus, VC, C-terminus of Venus, Scale bar, 5 μm.**

hyls-1

hyls-1;dyf-19

Supplementary Figure 3. Genetic interactions between hyls-1 and TF mutants.

(a) TEM analysis of amphid sensory cilia of *hyls-1* and *hyls-1;dyf-19* double mutants. Red box indicates a cilium cut at the level of the TZ. Black box indicates axoneme immediately adjacent to the TZ. Compared to *hyls-1* single mutants, most axonemes terminate immediately distal to the TZ in *hyls-1; dyf-19* double mutants (Black arrows). Bar, 200 nm. (b) *hyls-1* shows no genetic interactions with *gasr-8* or *k10g6.4* in ciliogenesis. Asterisks indicate cilia base of phasmid cilia expressing the IFT marker OSM-6::GFP. Scale bar, 5 μ m. (c) Quantification of ciliation in phasmid neurons based on TBB-4::mCherry in different genetic backgrounds, >100 phasmid neurons analyzed for each genetic background.

Supplementary Figure 4. Genetic interactions between HYLS-1 and TZ proteins and compromised gating in HYLS-1-deficient cilia.

(a) Localization of TZ components in *hyls-1* mutants. HYLS-1 is not required for proper TZ localization of MKS-3, MKS-6, MKSR-2, NPHP-4, and CCEP-290. Scale bar, 1 μ m. (b) Quantification of dendrite collapse in double mutants of *hyls-1* and various TZ genes. Severe shortened dendrites were observed in *hyls-1; nphp-1* and *hyls-1; mks-5* double mutants. No genetic interaction was observed between *hyls-1* and MKS module mutants (*mks-1, mks-3 or mks-6*). > 100 phasmid neurons analyzed for each genetic background. Error bars indicate S.D. Student's t-test for significant differences, * P<0.001. (c) tdTomato-tagged non-ciliary membrane protein TRAM-1 leaks into phasmid cilia in *hyls-1* mutants. GFP-tagged MKS-3 was used as a marker to label the TZ. Scale bar, 5 μ m. (d) Non-ciliary cytoplasmic protein DAF-21 leaks into phasmid cilia in *hyls-1* mutants. Scale bar, 5 μ m.

Supplementary Table 1. Quantitative Analysis of Transition Fibers (TFs) and Transition Zone (TZ) in serial section TEM study.

		WT	hyls-1	dyf-19	hyls-1;
					dyf-19
Number of cilia examined		19	16	8	14
TF	Number of TFs with fiber-like structures	19	2 (*)	8	0
	Percentage of TFs with fiber-like	100%	12.5% (*)	100%	0
	structures				
ΤZ	Number of TZ with Y-links	10	16	8	14
	Percentage of TZ with Y-links	100%	100%	100%	100%

*: the fiber-like structure observed in *hyls-1* mutants is not intact.

Strain name	Genotype
OD192	hyls-1(tm3067)V
ZP541	dyf-19(jhu455)V
VC2343	gasr-8 (gk1232)V
VC1268	k10g6.4 (gk567)II
FX2705	mks-1 (tm2705)III
FX2547	mks-3 (tm2547)II
FX3100	mks-5 (tm3100)II
RB743	nphp-1(ok500)II
VC1466	mks-6(gk674)I
ZP2174	mks-1 (tm2705)III; hyls-1(tm3067)V; IsOSM6
ZP2175	mks-6(gk674)I; hyls-1(tm3067)V; IsOSM6
ZP2176	nphp-1(ok500)II; hyls-1(tm3067)V; IsOSM6
ZP2177	gasr-8 (gk1232)V; hyls-1(tm3067)V; IsOSM6
ZP2203	dyf-19(jhu455)V; hyls-1(tm3067)V; IsOSM-6
ZP2204	k10g6.4 (gk567)II; hyls-1(tm3067)V; IsOSM-6
ZP2205	mks-5 (tm3100)II; hyls-1(tm3067)V; IsOSM-6
ZP2179	mks-3 (tm2547)II ; hyls-1(tm3067)V; IsOSM6
ZP1389	jhuEx [HYLS1:GFP+DYF-9:mCherry+pRF4]
ZP1993	jhuEx [FBF1::mCherry+GASR-8::GFP+pRF4]
ZP1997	jhuEx [NPHP1::GFP+GASR-8::mCherry+pRF4]
ZP2001	jhuEx [NPHP1::GFP+FBF1::mCherry+pRF4]
ZP1880	jhuEx [K10G6.4::GFP+DYF-9::mCherry+pRF4]
SP2101	mnIs17 [OSM6::GFP]
ZP1986	<i>hyls-1(tm3067)V</i> ; IsOSM-6
ZP2035	hyls-1(tm3067)V; Ex [CHE-11::GFP+pRF4]
PT50	che-11(e1810)V; Ex [CHE-11::GFP+pRF4]
ZP1205	jhuEx [BBS-7::GFP +pRF4]
ZP1397	jhuEx [BBS-7::GFP+MKS-5::mCherry+pRF4]

Supplementary Table 2. C. elegans strains used in this study

ZP2156	hyls-1(tm3067)V; jhuEx [BBS-7::GFP +pRF4]		
ZP2180	hyls-1(tm3067)V; jhuEx [BBS-7::GFP+MKS-5::mCherry+pRF4]		
YH490	yhEx [MKS-1::YFP+CHE-13::CFP+pRF4]		
YH751	yhEx [MKS-6::GFP+XBX-1::tdTomao+pRF4]		
YH652	yhEx [GFP::MKS-3+XBX-1::tdTomato+pRF4]		
ZP2024	hyls-1(tm3067)V; jhuEx [TBB-4::mCherry+DYF-19::GFP+pRF4]		
ZP2025	hyls-1(tm3067)V; yhEx [GFP::MKS-3+XBX-1::tdTomato+pRF4]		
ZP2026	hyls-1(tm3067)V; yhEx [MKS-1::YFP+CHE-13::CFP+pRF4]		
ZP2027	jhuEx [TBB-4::mCherry+DYF-19::GFP+pRF4]		
ZP2032	hyls-1(tm3067)V; jhuEx [NPHP1::GFP+FBF1::mCherry+pRF4]		
ZP2033	hyls-1(tm3067)V; jhuEx [NPHP1::GFP+Gasr-8::mCherry+pRF4]		
ZP1855	hyls-1(tm3067)V; jhuEx [RPI-2::GFP+MKS-5::mCherry+pRF4]		
ZP1170	jhuEx [CHE-11::Venus1-173+IFT-20::Venus155-238+pRF4]		
ZP1346	hyls-1(tm3067)V; jhuEx [CHE-11::Venus1-173+IFT-20::Venus155-238+pRF4]		
ZP2291	jhuEx [XBX-1::Venus1-173+IFT-20::Venus155-238+pRF4]		
ZP2299	hyls-1(tm3067)V; jhuEx [XBX-1::Venus1-173+IFT-20::Venus155-238+pRF4]		
ZP2290	jhuEx [KAP-1::Venus1-173+IFT-20::Venus155-238+pRF4]		
ZP2292	hyls-1(tm3067)V; jhuEx [KAP-1::Venus1-173+IFT-20::Venus155-238+pRF4]		
ZP2293	jhuEx [OSM-3::Venus1-173+IFT-20::Venus155-238+pRF4]		
ZP2294	hyls-1(tm3067)V; jhuEx [OSM-3::Venus1-173+IFT-20::Venus155-238+pRF4]		
ZP2285	jhuEx[F29G9.2::GFP+MKS-5::mCherry+pRF4]		
ZP2287	hyls-1(tm3067)V; jhuEx[F29G9.2::GFP+MKS-5::mCherry+pRF4]		
YH670	yhEx[TRAM-1::tdTomato+MKS-3::GFP+pRF4]		
ZP2297	hyls-1(tm3067)V; yhEx[TRAM-1::tdTomato+MKS-3::GFP+pRF4]		
ZP2056	jhuEx[Posm-9::OSM-9::GFP+pRF4]		
ZP2296	hyls-1(tm3067)V; jhuEx[Posm-9::OSM-9::GFP+pRF4]		
ZP2289	jhuEx[Parl-13::DAF-21::GFP+pRF4]		
ZP2298	hyls-1(tm3067)V; jhuEx[Parl-13::DAF-21::GFP+pRF4]		
DAM278	vieSi12[GFP::CCEP-290; cb unc-119(+)]		
DAM323	vieSi22[GFP::MKSR-2; cb unc-119(+)]		
DAM324	vieSi23[GFP::NPHP-4; cb unc-119(+)]		