
SUPPLEMENTARY FIGURES 

 

 

Supplementary Fig. 1:  Ti L-edge for increasing Ti3+ concentrations. Dark blue: 0 % Ti3+. Light blue: 12 % Ti3+. Orange: 

24 % Ti3+. Red: 36 % Ti3+. Dark green: 48 % Ti3+. Light green: 60 % Ti3+. 

 

 
Supplementary Fig. 2: O K-edge in SrTiO3 vacuum annealing series. a) Oxygen K-edge after vacuum annealing at 

different temperatures. b) Normalized A/B2 peak ratio for each temperature.  

 



 
Supplementary Fig. 3: Impact of different donor distributions for the simulation. a) Model geometry. b) Donor 

distributions for the simulation of the LRS and the HRS. c) Experimental read-out sweeps of the device in Fig. 3 with 

simulated I-V-characteristics based on the model in panel b. d) Conduction-band profiles at zero bias-for the LRS and the HRS. 

 

 

 

  



SUPPLEMENTARY TABLES 

Supplementary Table 1: Values of the physical parameters used for the simulation of the I-V curves. 

Symbol Value Symbol Value 

T 300 K ΔEg 3.12 eV 

HRS
VON  3.351020 cm−3 1

VOE  3 meV 

LRS
VON  7.51020 cm−3 1 2

VOE   30 meV 

NNb 11020 cm−3 1
NbE  50 meV 

NC 2.11020 cm−3 Bn0(0) 1.35 V 

NV 1.31020 cm−3 Bn0(L) 0.05 V 

εr,opt 70 A* 120 A cm−2 K−2 

εr 5.5 mt 9.110−31 kg 

µn 5.5 cm2(Vs)−1   

 

  



SUPPLEMENTARY NOTE 1 

The distinctive peaks of the O K-edge stem from the excitation of O 1s core level electrons into 

unoccupied states of O 2p character1,2 as given by the selection rules. These states are partly unoccupied 

due to the hybridization of the O 2p band with metal bands due to partially covalent bonding. The first O 

K-edge peak (peak A) corresponds to a transition from the O 1s level to a hybrid level between oxygen 2p 

and Ti t2g states. The intensity of this peak therefore corresponds to the number of unoccupied hybridized 

Ti t2g states available for the transition from the O 1s level1. In the first approximation, we therefore expect 

a linear decrease of the peak A intensity with the number of electrons in the conduction band1. Such a 

trend was previously observed for a series of different transition metal oxides1, in aliovalent substitution 

series of LaxSr1-xTiO3
3 and Nd1-xTiO3

4 as well as in SrTiO3 thin films with oxygen vacancies induced by 

fabrication5,6 or via electroforming in resistive switching devices7. At the same time, the valley between 

peaks B2 and C becomes shallower and peak B2 increases slightly with increasing oxygen vacancy 

concentration. Compared to the absorption edge around peak A, this change in intensity cannot be easily 

understood in a simple band-structure model and remains an open question for future investigation. The 

experimental calibration of the A/B2 ratio with increasing Ti3+ concentration, on the other hand, supplies a 

valid measure for the charge carrier density.  

 

  



SUPPLEMENTARY METHODS 

The calculation of the I-V curves in Fig. 4c of the main text was performed using a one-dimensional 

numerical model of electron diffusion combined with a Schottky-contact barrier model to account for 

electron tunneling and thermionic emission across the metal-oxide contacts8. 

The model geometry consists of an oxide layer of length L = 120 nm, representing the 20 nm thick SrTiO3 

layer and a 100 nm thick part of the Nb:SrTiO3 bottom electrode as illustrated in Supplementary Fig. 3a . 

At the contact interface at x = 0, a Schottky barrier of nominal barrier height eBn0(0) is assumed to be 

present, while the interface at x = L forms an ohmic contact (low nominal barrier height eBn0(L)). A donor 

concentration NVO of doubly ionizable oxygen vacancies is assumed in the SrTiO3 layer, and a donor 

concentration of homogeneously distributed singly ionizable donors of NNb is assumed in the Nb:SrTiO3 

bottom electrode. All donors are considered immobile throughout the simulations. Further, the 

temperature is taken to be constant. Neglecting the minority carriers, the Poisson equation for the structure 

with homogeneous permittivity reads 
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       (Supplementary Equation 1) 

Here, ψ denotes the electrostatic potential, e the elementary charge, ε0 the free space permittivity, εr the 

relative permittivity of the oxide, n the electron concentration, VON   ( 2
VON  ) the concentration of the 

singly (doubly) ionized oxygen vacancies, and NbN   the concentration of the singly ionized Nb donor. The 

carrier concentrations n, VON  , 2
VON   , and NbN   can be calculated as 
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 (Supplementary Equation 3) 
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 (Supplementary Equation 4) 
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 (Supplementary Equation 5) 
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(Supplementary Equation 6) 

where kB is the Boltzmann constant, T the temperature, 1
VOE  and 1 2

VOE   are the oxygen-vacancy 

ionization energies, 1
NbE  is the ionization energy of the Nb donor, EC is the conduction band edge, EFn 

the electron quasi-Fermi level in the oxide layer, Fn = ˗EFn/e the electron quasi-Fermi potential, Eg the 

band gap, and NC (NV) the effective density of states in the conduction (valence) band. 

The electron current density jn is expressed as 
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    (Supplementary Equation 7) 

with the electron mobility µn and the electron diffusion coefficient Dn. They are both assumed to be field-

independent and to be linked to each other via the Einstein relation 
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Along with (6), the steady-state electron continuity equation is applied to solve for n and jn: 
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    (Supplementary Equation 9) 

Here, the current density due to tunneling through potential barriers jtunnel is converted into a local 

generation/recombination rate using the procedure outlined in Supplementary Ref. 9. In Supplementary 

Equation 9, a positive sign in front of the tunneling current-density term corresponds to an annihilation of 

carriers in front of the tunneling barrier. The tunneling current density through a barrier with potential 

energy minimum Emin and potential energy maximum Emax is calculated as 
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  (Supplementary Equation 11)

is the transmission coefficient as obtained from the Wentzel–Kramers–Brillouin approximation and 
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 (Supplementary Equation 12)

is the supply function. In the above equations, A* is the effective Richardson constant, h is the Planck 

constant, xa and xb are the classical turning points, and mt is the electron tunneling mass. 

The current density of thermionic emission jTE at the geometry boundaries xi = {0, L} is formulated 

analogously to the tunneling current density in Supplementary Equation 10. With a transmission 

coefficient of 1 for charge carrier emission over the barrier and the upper integration limit of infinity, one 

obtains the boundary conditions for the solution of the electron continuity equation: 
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  (Supplementary Equation 13)

Here, it is EF,a(xi) = {EF,M1, EFn(L)} and EF,b(xi) = {EFn(0), EF,M2} with EF,M1 (EF,M2) being the metal Fermi 

level of the top (bottom) contact. 

The boundary conditions for the potential are expressed in terms of applied potential ψa(xi) at the 

electrodes and the potential barrier heights Bn0(xi) at the contacts. The potential at the contact interface is 

given as 
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with ψi
0(xi) being the intrinsic potential and ηFn

0 the energy difference between the bottom of the 

conduction band and the Fermi level in the undisturbed oxide, normed by kBT. The term Bn(xi) denotes 

the effective potential barrier height at the contact that results from including image-force-induced barrier 

lowering by an amount ΔBn(xi) (Schottky effect). It is described as 
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(Supplementary Equation 15)

with the optical relative dielectric constant εr,opt. With the right hand side of Supplementary Equation 15 

substituted for Bn(xi), Supplementary Equation 14 is transformed into 
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(Supplementary 

Equation 16) 

yielding nonlinear Robin boundary conditions for the potential at the contact interfaces. The total current 

density in the structure can be computed as the drift-diffusion current density according to Supplementary 

Equation 7 at a location x of minimal conduction-band energy. 



To calculate the current-voltage curves, the simultaneous solution of the Poisson equation (Supplementary 

Equation 1) and the continuity equation for electrons (Supplementary Equation 9) is computed for 

different applied voltages Va = ψa(0) ˗ ψa(L) as follows: With ηFn expressed in terms of ψ and φFn according 

to Supplementary Equation 6, Supplementary Equations 2–5 are substituted for the charge carrier 

concentrations in Supplementary Equation 1. For a fixed value of φFn, the resulting nonlinear differential 

equation is solved for the potential using a Newton-Raphson scheme with the boundary conditions 

Supplementary Equation 16 being linearized and updated in each iteration step. The new values for ψ and 

the corresponding values for EC are used in Supplementary Equation 7, 10, 11, and 13 during the solution 

of the continuity equation (Supplementary Equation 9). Due to the dependence of the supply function on 

the quasi-Fermi level or corresponding carrier concentration, the resulting differential equation is as well 

linearized and iteratively solved in a Newton-Raphson loop to obtain n and φFn. This procedure of 

consecutively solving Supplementary Equation 1 and Supplementary Equation 9 is repeated until self-

consistency is reached. 

As described in the main text, we calculated I-V characteristics for the LRS and the HRS assuming 

different oxygen-vacancy distributions in both states, denoted by LRS
VON  and HRS

VON . The concentration 

values and other parameters used in the simulations are given in Supplementary Table 1. 

As there is experimental evidence of a concentration gradient near the Schottky-contact interface in the 

LRS [David Cooper, CEA LETI, Grenoble, France; unpublished results], we also simulated the I-V 

characteristic for the case of a non-uniform oxygen-vacancy distribution in the LRS shown in 

Supplementary Fig. 1b. Here, the average concentration over the first 3 nm is taken to be 7.51020 cm−3, 

which is the value obtained from the PEEM experiments and the same value that was used for the 

calculations with the homogeneous profile shown in Fig. 4b. Further, the concentration is assumed to 

decrease to the value of HRS
VON  in direction of the bottom electrode interface. For the HRS, the same donor 

profile as presented in the main document (Fig. 4b) was used. As evident from Supplementary Fig. 3c, the 

simulated I-V characteristic of the inhomogeneous LRS provides a good match to the experimental data, 



similar to the one obtained for the homogeneous oxygen-vacancy profile. These findings indicate that the 

barrier width and height (Supplementary Fig. 3d) is primarily determined by the concentration in vicinity 

of the Schottky-barrier interface. For a fixed average concentration in this region, the presence of a 

concentration gradient within the SrTiO3 layer only has a small impact on the I-V characteristic. We 

therefore conclude that the small change of concentration (by a factor 2-3) in the near-interface region 

only is able to induce a current modulation by more than two orders of magnitude, resulting in distinct 

resistances of the LRS and the HRS. 
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