1	Submitted to Molecular	Microbiology,	3 March 2016
-			

2	Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a
3	novel organoarsenical efflux permease, confers arsenate resistance
4	
5	Jian Chen ¹ , Masafumi Yoshinaga ¹ , Luis D. Garbinski, and Barry P. Rosen*
6	
7	Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine,
8	Florida International University, Miami, Florida 33199, U.S.A.
9	
10	Legends to the Supplemental Figures:
11	
12	Figure 1S. Multiple alignment of GAPDH sequences. The protein sequence of GAPDH from
13	the ars operon of P. aeruginosa DK2 (WP_003109848.1) is compared with GAPDH sequences
14	of GapA (WP_003116409.1) and GapB (AFM64157.1) from the chromosome of P. aeruginosa
15	DK2, GapA from E. coli W3110 (BAA15576.1) and the European rabbit Oryctolagus cuniculus
16	(NP_001075722.1). Accession numbers are given in parentheses. The multiple alignment was
17	calculated with CLUSTAL W. Black or gray boxes indicate sequence identity or similarity,

19

18

respectively.

Figure 2S. Multiple alignment of ArsJ sequences. 2779 ArsJ entries in 2336 bacterial species were identified in the NCBI database, and seven representative sequences were analyzed. The protein sequence of ArsJ from *P. aeruginosa* DK2 (WP_003109849) is compared with ArsJ sequences from *Shewanella putrefaciens* 200 (WP_014610147), *Aeromonas media* (AHX62269), *Marinimicrobium agarilyticum* (WP_027330587), *Bermanella marisrubri* (WP_040298205), *Oceanimonas sp.* GK1 (WP_014290953), *Marinobacter daepoensis* (WP_029654587). Accession numbers are given in parentheses. The multiple

1

alignment was calculated with CLUSTAL W (Thompson *et al.*, 1994). Black or gray boxes
indicate sequence identity or similarity, respectively.

29

Figure 3S. Arsenate and phosphate as substrates of GAPDH. GAPDH activity was assayed 30 31 as described in Experimental procedures with 1 unit of commercial rabbit GAPDH, 0.6 mM 32 NAD⁺, 0.6 mM G3P, 10 mM DTT, with or without arsenate or phosphate, as indicated. Activity 33 was estimated from the absorbance at 340 nm resulting from reduction of NAD⁺ to NADH. A. 34 Arsenate addition: (\Box), no As(V); (o), 0.125 mM As(V); (∇), 0.25 mM As(V); GAPDH catalyzed 35 the phosphorolytic-arsenolytic reaction. B. Comparison of arsenate and phosphate: (o), no 36 addition; (∇) , 50 µM As(V); (\Box) , 50 µM Na₂HPO₄; (\Diamond) , 1 mM Na₂HPO₄. **C**. Activity with high 37 phosphate concentrations: (\Box), no addition; (∇), 3 mM Pi; (o), 10 mM Pi; (\Diamond), 25 mM Pi.

38

Figure 4S. Substrate requirements for GAPDH activity. GAPDH activity was assayed as described in *Experimental procedures* with the indicated combinations of 1 unit of commercial rabbit GAPDH, 0.6 mM NAD⁺, 0.6 mM G3P, 10 mM DTT, or with the indicated arsenicals at 0.1 mM, final concentration. **A**: <u>Specificity for arsenicals</u>: (Δ), none; (∇), As(V); (\Box), As(III); (\Diamond), MAs(III); (∇), MAs(V); (o), DMAs(V). **B**: <u>Requirement for the components of the GAPDH</u> <u>reaction</u>. (Δ), GAPDH, G3P, NAD⁺ and As(V); (\Diamond),G3P, NAD⁺ and As(V); (∇), GAPDH, NAD⁺ and As(V); (\Box), GAPDH, G3P and NAD⁺; (o),GAPDH, G3P and As(V).

46

Figure 5S. Arsenate dependence of GAPDH activity. GAPDH activity was assayed as described in *Experimental procedures* with 1 unit of commercial rabbit GAPDH, 0.6 mM NAD⁺, 0.6 mM G3P, 10 mM DTT and the indicated concentrations of As(V). A K_m of 0.46 mM As(V) was calculated. Data are the mean \pm SE (n = 3).

51

52 Figure 6S. GAPDH is not an arsenate reductase. Reduction of As(V) to As(III) was assayed both in vivo and in vitro. A: Arsenate is not reduced in cells of E. coli W3110 (parental strain), 53 AW3110 ($\Delta arsRBC$) or WC3110 ($\Delta arsC$) expressing the Pseudomonas aeruginosa DK2 ars 54 55 operon gapdh gene (pGAPDH). B: Purified rabbit GAPDH reduced almost no As(V) to As(III) after 20 or 40 min of reaction with 1 unit of commercial rabbit GAPDH, 1.2 mM NAD⁺, 1.2 mM 56 G3P, 10 mM DTT and 10 µM As(V). Samples were speciated by HPLC using a C18 reverse 57 58 phase column, and the amount of arsenic in relative counts per second (cps) was estimated by 59 ICP-MS.

<i>ars</i> GAPDH	1	FEF V QINDPAG <mark>D</mark> AATHAH
PaGapA	1	LQV <mark>V</mark> AIND-LGDAAVNAH
PaGapB	121	VGKQNGDAREGTDVVLY <mark>GFGRIGR</mark> LLA <mark>R</mark> ILIEKTGGGDGLRLRAIVVRKGAEN <mark>D</mark> LVKRAS
EcGapA	1	IEIVAIND-LLDADYMAY
0.cuniculus	1	VDV <mark>VG</mark> VN <mark>GFGRIGR</mark> LVT <mark>R</mark> AAFNSGKVDV <mark>V</mark> AINDPFI <mark>D</mark> LHYMVY
<i>ars</i> GAPDH	45	LINF <mark>DS</mark> VHGRWHHEASSDGDSVVIGGKRIKITANKAIADTDWSGCDLVIEASGK
PaGapA	47	LFQY <mark>DS</mark> VHGRFPGEVEHDAESLRVM <mark>G</mark> DRIAVSAIRNPAELPWKSL <mark>G</mark> VDIVLECTGL
PaGapB	181	LLRR <mark>DS</mark> VHGPFDGTITIDEENNTLTANG <mark>NLIQVIYSNDPA</mark> SIDYTQYGIKNALLVDNTGK
EcGapA	44	MLKY <mark>DS</mark> THGRFDGTVEVKDGHLIVNGKKIRVTAERDPANLKWDEVGVDVVAEATGL
0.cuniculus	44	MFQY <mark>DS</mark> THGKFHGTVKAENGKLVINGKAITIFQERDPANIKWGDAGAEYVVESTGV
<i>ars</i> GAPDH	99	MKTVAVLQTYLD-Q <mark>G</mark> VKRVVVSAPVKEKGALNV <mark>VM</mark> GVNQHLFDPAQHRIVTA <mark>ASCTTN</mark> CL
PaGapA	103	FTSRDKAAAHLQ-A <mark>G</mark> AGKVLISAPGKDVDA-TVVYGVNHEVLR-ASHRIVSNASCTTNCL
PaGapB	241	WRDAEGLGQHLKCPG <mark>IDRVVLTAP</mark> GKGALK-NIVHGINHTDIG-ADDK <mark>IIS</mark> AASCTTNAI
EcGapA	100	FLTDETARKHIT-A <mark>G</mark> AKKVVMTGPSKDNTP-MFVKGANFDKYA-G-QDIVS <mark>NASCTTN</mark> CL
0.cuniculus	100	FTTMEKAGAHLK-GGAKRVIISAPSX-DAP-MFVMGVNHEKYD-NSLKIVSN <mark>ASCTTN</mark> CL
<i>ars</i> GAPDH	158	APVVKVIHENLGIRHGSITTIHDLTNTQSILDQPHKD-LRRARASGMSLIPTTTGSATAI
PaGapA	160	APVAQVLHREL <mark>GIEHG</mark> LMTTIHAYTNDQNLSDVYHPD-LYRARSATQSMIPTKTGAAEAV
PaGapB	299	VPVLKAVNDQY <mark>GI</mark> VNGHVETVHSYTNDQNLIDNFHKG-SRRGRSAPLNMVITETGAATAA
EcGapA	156	APLAKVINDNF <mark>GI</mark> IE <mark>GLMTTVH</mark> ATTATQKTVDGPSHKDWRGGRGASQNIIPSSTGAAKAV
0. cuniculus	156	APLAKVIHDHFGIVEGLMTTVHAITATQKTVDGPSGKLWRDGRGAAQNIIPASTGAAKAV
<i>ars</i> GAPDH	217	AEIFPELRGRUNGHAVRVPLANASLTDCVFEVERQTSADEVNQLLKRAAENE-L-KDILG
PaGapA	219	GLVLPELAGKLTGLAVRVPVINVSLVDLTVQVARDTSVDEVNRLLREASEGSPVLG
PaGapB	358	AKALPVLKGKLTGNAIRVPTPNVSMAILNLNLEKATTREEINEYLRQMAMHSDLQKQIDF
EcGapA	216	GKVLPELNGKLTGMAFRVPTPNVSVVDLTVRLEKAATYEQIKAAVKAAAEGE-M-KGVLG
0.cuniculus	216	GKVIPELNGKLTGMAFRVPTPNVSVVDLTCRLEKAAKYDDIKKVVKQASEGP-L-KGILG
<i>ars</i> GAPDH	275	YEERPLVSIDYRTDPRSSIIDALSTMVVNGTQVKLYAWYDNEWGYANRTVELAKLVGLAG
PaGapA	275	YNTQPLVSVDFNHDPRSSIF <mark>DA</mark> NHT-KVSGRLVKAMA <mark>WYDNE</mark> RGFSNRMLDSALALAAAR
PaGapB	418	VSSQEVVSTDFVGSRHAGVVDAEAT-ICNDNRVVLYVWYDNEFGYSCQVVRVMEDMAGVN
EcGapA	274	YTEDDVVS <mark>TDFNGEVCTSVFDA</mark> KAGIALNDNFV <mark>KLVSWYDNE</mark> TGYSNKVLDLIAHISK
0.cuniculus	274	YTEDQVVSCDFNSATHSSTFDAGAGIALNDHFVKLISWYDNEFGYSNRVVDLMVHMASKE

Pseudomonas Shewanella Marinobacter Bermanella Aeromonas	1 1 1 1	MKALSSLSPEVRQYLLVTGNYWAFTLTDGALRMLVVLHFHSLGYSPLQIAALFLFY MAKLTGFLSNISPEIRQYLVVTGNYWAFTLTDGALRMLVVLHFHGLGYSPLQIAMLFLFY MNSAIRQYLVITGNYWAFTLTDGALRMLVVLHFHQLGYSPLAIALLFIFY MALANISTEIRQYLIVTGNYWAFTLTDGALRMLVVLHFHSLGYSPFSIAMLFLFY MALTRLSPEIRQYLLVTGNYWAFTLTDGALRMLVVLYFHGLGYSPLAIAS
Oceanımonas Marinimicrobium	1	MLNRLSPGIRQYLVVTGNYWAFTLTDGALRMLVVLHFHGLGYSPLEIALLFLFY M <mark>L</mark> AQLSPAIRQYLLITGNYWAFTLTDGALRMLVVLHFH <mark>Q</mark> LGYSPL <mark>AIAL</mark> LFLFY
Pseudomonas Shewanella Marinobacter Bermanella Aeromonas Oceanimonas Marinimicrobium	57 61 56 56 55 55	EFFGVVTNLVGGYLGARVGLNRTMNIGLAMQVVALLMLTVPSALLTIPWVMGAQALSGIA EIFGVVTNLVGGWLGARLGLNKTMNVGLFMQIVALSMLLVPSGMLTVAWVMAAQALSGIA ELFGVVTNLVGGYLGARLGLNRTMNIGLFLQIVALLMLAVPAAALTVPWVMAAQALSGIA EIFGVITNLVGGWLGARLGLNRTMNTGLLLQIVALAMLLVPLEWLTVVWVMAAQALSGIA EIFGVVTNLVGGWLGARLGLNRTMNIGLALQVLALGMLLAPSLWLTVPWVMGAQALSGIA EIFGVITNLVGGWLGARLGLNRTMNIGLALQVVALGMLLVPAAWLTVPWVMAAQALSGIA EIFGVITNLVGGWLGARLGLNRTMNIGLALQVVALGMLLVPAAWLTVPWVMAAQALSGIA
Pseudomonas Shewanella Marinobacter Bermanella Aeromonas Oceanimonas Marinimicrobium	117 121 111 116 116 115 115	KDLNKMSAKSSIKLLVPDAQQGKLYKWVAILTGSKNALKGVGFFLGGALLALLGFKGAVL KDLNKMSAKSSIKLLVPNDAQGELYKWVANLTGSKNALKGAGFFLGGALLTLFGFQLAVL KDLNKMSAKSGIKLLVPDEQQGRLYKWVAILTGSKNALKGVGFFLGGVLLMSAGFRGAVV KDLNKMSAKSAIKLLVPENAQGQLYKWVSILTGSKNALKGAGFFMGGVLLTALGFKGAVL KDLNKMSAKSSIKLLVPGEAQGQLYQWVALLTGSKNALKGVGFFLGGALLTLIGFQGAVL KDLNKMSAKSSIKLLVPAEAQGTLYQWVALLTGSKNALKGVGFFMGGALLMGLGFAGAVA
Pseudomonas Shewanella Marinobacter Bermanella Aeromonas Oceanimonas Marinimicrobium	177 181 171 176 176 175 175	AMAVVLALIWVGSMLSLKKDLGKAKAKPKFRDMLSKSRAINILSAARMFLFGARDVWFVV GMAIGLLVWIFSLLSLQRDLGKAKNKPKFTEIFSKSSVNTLSAARMFLFGARDVWFVV AMAVVLGLVWLASLFLLGQDLGK <mark>S</mark> KAKPKFSDILSKSRAINVLSAARMFLFGARDVWFVV AMASMLILVWLFSIAKLKKELGKAKNKPKFSQLFSKSTAINWLSAARMFLFASRDVWLVV VMALALALVWCISMLTLKRDLGKAKNKPKFREIFSKSRAINYLSAARLFLFGARDVWFVV AMAVALTLVWLLSLMLLTQDLGKAKQKPKFRDMLSKSRAINLSAARLFLFGARDVWFVV SMALALLFVWIASLIFLRKDLGRAKSKPKFSEIFSKSTAVNVLSAARLFLFGARDVWFVV
Pseudomonas Shewanella Marinobacter Bermanella Aeromonas Oceanimonas Marinimicrobium	237 241 231 236 236 235 235	ALPVYLSETLSWDFWLVGGFLAAWVIGYGIVQSFAPALTGKKRGHVPDGRAAFIWAL ALPVYLASAFGWDHWYVGGFLALWVIGYGIVQGFAPRLTGTKSASQNKVPDGRSALGWAA ALPVYMATVFGWDHWQVGGFLACWVIGYGFVQTVAPRITGLASGKGKHPDGKTAALWAL ALPVYLASQFNWDHWTVGGFLALWIIGYGFVQTQAPNITGAKRGKHPDGKTAALWAL ALPVYLASSLGWDNGYVGSFLALWIIAYGVVQTQAPRFTGKREGRVPDGKVAMGWAL ALPVFLSQSLGWHHGQTGGFMALWIIGYGLVQALAPRVTGKAAGNVPDGRVATGWAL ALPVFLASQFDWDHWKVGGFLALWVIGYGAVQSVAPRITGRNTGTMPDGRTAFGWAL
Pseudomonas Shewanella Marinobacter Bermanella Aeromonas Oceanimonas Marinimicrobium	294 301 284 293 293 292 292	ILAVLPAAIALGLDMNLSAQIVLLGGLMLFGALFAVNSSLHSYLIVSYAKEDGVSLDVGF ILSIVPAGIALAISYDFHAANILIWGLMLFGALFAINSSLHSYLIVSYADEDGVSLDVGF LLAGVPAAMAGALVVGWPPEWVVIGGLLFGILFAINSSLHSYLIVRYARGDGVSLDVGF VMAGLPALIAIALSNDSYTLISIVFGLLIFGFVFAINSSVHSYLIVSYASNDGVSLDVGF VLALTPALIALALHFDLHPAISLVGGLMVFGALFAINSSLHSYLIVSYAGSDGVSLDVGF GLTLVPGLIALGLMTGLNPAMVLIGGLLLFGALFAVNSSLHSYLIVSYAKEDGVSLDVGF GLTLVPALIALALGDVAPQWSLLGGLMVFGVLFAVNSSLHSYLIVSYAKEDGVSLDVGF
Pseudomonas Shewanella Marinobacter Bermanella Aeromonas Oceanimonas Marinimicrobium	354 361 344 353 353 352 352	YYMSNAMGRLIGTVLSGWVFQAYGLVACLWISAAFVLLAALISIALPRHAEVVTT YYMANAMGRLIGTVLSGWVYQVYGMAACLWISAAFIALAALISIKLPRHRAI YYMSNAAGRLMGTLLSGWVYQAWGLEACLWISAALVAMAALLSLGLPDRRDEAIG YYMANAMGRLIGTLLSGWLYQAYGLEACLWVSSAFLILTFIISLALPKEGTAKPS YYMANALGRLLGTLLSGLVFQLHGLEACLWLSTLFILLAALISLGLPRHQPPVSS YYMANAMGRLLGTLLSGGLFQWAGQGSAGMQACLWVSMAFLLLTTLISLRLPRSVVN YYMANAMGRLVGTVLSGWVYQVAGLVACLWISFAFLALATVIALALPRD
Pseudomonas Shewanella Marinobacter Bermanella Aeromonas Oceanimonas Marinimicrobium	409 399 408 408	PN EQRFV- QSHGVS

GAPDH activity (A_{340nm})

