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Autoregressive stochastic processes and turbulence modelling

The stochastic equation for turbulent accelerations, Eqn. (2) in the main text, is effectively a
2"%-order autoregressive process. The theory of such processes is well known (Priestly 1981) and is
here summarized in terms of turbulence models. As first noted by Sawford (1991) autoregressive
processes provide a hierarchy of stochastic models for the position, x, velocity, u and acceleration, A,
of a body being carried along a turbulent flow. At the lowest (zeroth) order in this hierarchy, the
position of the body is modelled as a Markovian process, at first order the position and the velocity
of the body are jointly Markovian, and at second order the position, velocity and acceleration are
collectively Markovian. Physically, the hierarchy corresponds to the neglect of memory effects at
zeroth order, to the inclusion of a timescale, T, representative of the largest (energy-containing)

scales of motion, at first-order, and to the inclusion of the Kolmogorov timescale, tn , representative

of the smallest (dissipative) scale of motion, at second-order. The hierarchy can be written as,

dx =+/2KdW

du = —qudt + 2ac; dW (A1)
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where K is the turbulent diffusivity, O'U2 is the velocity variance and quantity dW is Gaussian noise

with mean zero and variance dt. Notice that this hierarchy forms the basis for three separate models
that are not used jointly. With the diffusion model, x is modelled and u and A are undefined. With
the Langevin equation, u is modelled directly, x is obtained by integrating u in time, and A is
undefined. Finally, with the 2"¥-order model A is model directly and u and x are obtained by
successive integrations in time.

It can be shown (Sawford 1991) that the 2"%-order model is equivalent to a stochastic model for

velocity, u,
c:j—ttj =-pu+f (A2)

where fis a random force (Gaussian distributed with mean zero) that is exponentially correlated
with time scale 1/ f8,, a, = p, + fB,and a, = B, 3,.



Since their introduction by Sawford (1991), second-order regressive models of particle accelerations
in turbulent have been shown to be in close agreement with experiment and with data from direct
numerical simulations (see e.g., Lamorgese et al. 2007, Reynolds 2003, Reynolds 2005).

Flying to the right of the mean wind line

According to our theory, Eqn. 10, the average size of jerks experienced by a migrant, <Ji|A,V>, is

minimized when the smallest diagonal component of
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is minimized, where <uu> and <VV> are the variances of the migrant’s velocity parallel to and

orthogonal to its heading, and <UV> is the associated covariance. To facilitate analysis <uu> , <VV> and

<UV> can be approximated by the variances and covariance of the turbulent velocities, v and v/, of

the surrounding airstream. These two sets of velocities are related by U = U’ cos@ —V'sin&and
V=U'sin@ +V'cos@ where @is the angle between the migrant’s heading and the mean wind
direction. It follows from this that

<uu> = <u’u '> cos’ @ — 2<u’v'> cos@sin b + <V’V’> sin’ @,
<vv> = <u'u '> sin’ 6 + 2<u’v’> cos@sin @ + <V'V'> cos’ 4, (A4)

(uv) = ((u'u’) —(v'v') )sin 26 + 2(uv') cos 26
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The largest value of<uu> is attained when tan 26 = and in this case <VV> is minimized

and <UV> =0 so that
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The smallest diagonal component [auzr is therefore minimized when the migrant is flying at an
angle @ to the mean wind line, i.e., is flying downwind (0 = 0) when (u’v'} = (0 and is flying to the

right (6? > O)Of the mean wind line when <U'V'> < 0; a condition which in the Northern Hemisphere

is characteristic of the presence of the Ekman spiral.
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