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FEM-IMPLEMENTATION

For a given traction pattern t(x), the direct boundary value problem (BVP) formulated in

Eq. 1 is now solved by means of the finite element method (FEM) as typically applied to

elastic problems [1–3]. The first step in such a calculation is the transformation of the given

equations into the weak form. Therefore we multiply the equation with an arbitrary field

δu and integrate over the substrate volume Ω:

∫
Ω

(∇δu)T : C : ∇u dV =

∫
∂Ω

(δu)T t dS. (1)

C represents the constant elasticity matrix for isotropic elastic materials, Cijkl = λδijδkl +

µ(δikδjl + δilδjk). In the following we impose a discretization scheme, by partitioning the in-

tegral over Ω into smaller elements corresponding the generated substrate mesh. We further

apply a local interpolation scheme. This has the objective to reduce the infinite dimensional

space of displacement solutions to a finite dimensional subspace of nodal displacement values.

The weak form for a single element reads:

∫
Ωe

(∇δue)T : C : ∇ue dV =

∫
∂Ωe

(δue)T t dS. (2)

In our calculations, we consider hexahedral elements with eight nodal points at the element

boundary. As an advantage of hexahedral elements, the volume and surface integration

can be mapped to an integration over the unit cube parametrized by Cartesian coordinates,

(x1, x2, x3)→ (ξ1, ξ2, ξ3), while the coordinate transformation is determined by an individual

Jacoby matrix calculated for each element. Thus the integration reads:

∫
Ω̃e

(∇ξδũ
e)T : C : ∇ξũ

eJV dṼ =

∫
∂Ω̃e

δũetJS dS̃. (3)

J represents the Jacobian and the tilde marks quantities with respect to the new coordinate

ξ. For subsequent interpolation of the displacement field we use interpolation functions

Φn(ξ), which are based on an elementary set of linear shape functions. By interpolation of

nodal values we can rewrite the displacement field, which now only dependents on a discrete

number of degrees of freedom (DoFs) (in the hexahedral case used here, this is the number

2



of nodes multiplied by the dimension, 8 ∗ 3 = 32):

ũe(ξ) = N(ξ)uenode =


Φ1 0 0 . . . Φn 0 0

0 Φ1 0 . . . 0 Φn 0

0 0 Φ1 . . . 0 0 Φn





u1

u2

u3

...

un


(4)

uenode is a vector of nodal displacement DoF values and N(ξ) is the interpolation matrix,

which interpolates the element displacement ũe(ξ) for a given configuration of nodal val-

ues uenode. The same can be achieved for the virtual displacement δũe(ξ) = N(ξ)δuenode.

Applying this to Eq. 3, we obtain

δuenode

[∫
Ω

(∇ξN(ξ))T : C : ∇ξN(ξ)JV dṼ

]
︸ ︷︷ ︸

Ke

uenode = δuenode

[∫
∂Ωe

N(ξ)T tJS dS

]
︸ ︷︷ ︸

Re

(5)

Ke is called the element stiffness matrix and Re the element load vector. Since δuenode is a

vector of arbitrary values, we can reduce the problem to solving a linear algebraic system:

Keuenode = Re. (6)

The components of the element stiffness matrix and the load vector are calculated numeri-

cally. Here, the integrals have been solved by means of Gauss quadrature. In this way we

calculate the stiffness matrix and load vector for each element. In a subsequent step, we

assemble a global system that forms the domain Ω:

KUnode = R. (7)

K, R, and Unode are the global stiffness matrix, the global load vector, and the global DoF

vector. Nodal DoFs are only shared by neighboring elements and thus K is a sparse matrix,

while most of the matrix entries are zero. K is further singular and hence not invertible,

since we have still not introduced constraints to avoid rigid body motions. Therefore, the

system must be further restrained by incorporating appropriate boundary conditions (BCs).

For our direct BVP we consider the BCs illustrated in Fig. 2. The traction BC enters the

system through the surface integral in the load vector R. The zero stress BC leads to no

constraints of the system. Only the remaining zero displacement BC applied to the bottom
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surfaces constrains Eq. 7 and by forcing the displacement condition, we can reduce the

system to

KfUf ,node = Rf (8)

where Kf is the reduced non-singular stiffness matrix, Uf,node is the global vector of uncon-

strained (free) DoFs, and Rf is the corresponding load vector. We solve the system with

respect to Uf,node by using the conjugated gradient (CG) method. Alternatively, it is also

possible to directly invert K by means of e.g. Gauss-elimination. In order to evaluate a

displacement solutions at every position within the domain Ω, we apply interpolation via

the introduced functions Φn with respect to obtained global DoF configuration U.
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