Supplementary Information Repetitive Biomimetic Self-healing of Ca²⁺-Induced Nanocomposite Protein Hydrogels

Jun Chen¹, Qiuchen Dong¹, Xiaoyu Ma¹, Tai-Hsi Fan², and Yu Lei^{1, 3*}

¹Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA ²Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA ³Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA

*Corresponding author

1. Calcium BSA hydrogel in different chemical environment

Supplementary Figure S1 | Time-dependent optical images of the as-prepared protein hydrogels in different chemical environment.

2. SEM images of calcium BSA Hydrogel

Supplementary Figure S2 | (a to f) SEM images of lyophilized calcium BSA hydrogels with 10, 15, 20, 30, 40, and 50 mM of Ca^{2+} , respectively.

3. Tensile test for quantitative self-healing evaluation

Supplementary Figure S3 | Breaking stress of 20 mM Ca^{2+} induced 10% BSA hydrogel: original, healed for 24 hrs at room temperature without adding anything, and healed with appearance of physiological Ca^{2+} concentration for 7 hrs at room temperature, respectively.