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Supplementary Note 1 

Consider in Channel 1 (CH1), a set of 𝑁CH1 point-like fluorophores at positions 𝐑𝑖
CH1 for 1 < 𝑖 < 𝑁CH1, in which each of 

them blinks stochastically 𝑀CH1 times on average and registers one detection for each blinking event. The probability 

density function of having one blinking event detected at location 𝐑 is governed by the average localization uncertainty of 

the fluorophores in Channel 1 (𝜎CH1) and written as: 

𝑝CH1(𝐑) =
1

𝑁CH1
∑

1

√2𝜋𝜎CH1

exp [−
(𝐑 − 𝐑𝑖

CH1)
2

2𝜎CH1
2 ]

𝑁CH1

𝑖=1

 

Accordingly, the average density of detections at location 𝐑 in Channel 1 is given by: 

𝜌CH1(𝐑) =
𝑁CH1𝑀CH1

𝑆
𝑝CH1(𝐑) =

𝑀CH1

𝑆√2𝜋𝜎CH1

∑ exp [−
(𝐑 − 𝐑𝑖

CH1)
2

2𝜎CH1
2 ]

𝑁CH1

𝑖=1

 

where 𝑆 is the area of interested, and 〈𝜌CH1〉𝐑 = 𝑁CH1𝑀CH1 𝑆⁄ . 

Therefore the average Triple-Pair-Correlation of Channel 1 (CH1), Channel 2 (CH2), and Channel 3 (CH3) is written as: 

𝐶(r1,r2) =
1

〈𝜌CH1〉𝐑〈𝜌CH2〉𝐑〈𝜌CH3〉𝐑
∫ 𝜌CH1(R)𝜌CH2(R + r𝟏)𝜌CH3(R + r2)dR 

= 𝐴 ∑ ∑ ∑ ∫ dRexp [−
(𝐑 − 𝐑𝑖

CH1)
2

2𝜎CH1
2 ] exp [−

(𝐑 + r1 − 𝐑𝑗
CH2)

2

2𝜎CH2
2 ] exp [−

(𝐑 + r2 − 𝐑𝑘
CH3)

2

2𝜎CH3
2 ]

𝑁CH3

𝑘=1

𝑁CH2

𝑗=1

𝑁CH1

𝑖=1

 

= 𝐴 ∑ ∑ ∑ ∫ dRexp [−
𝐑2

2𝜎CH1
2 ] exp [−

(𝐑 + r1 − ∆𝐫𝑖𝑗)
2

2𝜎CH2
2 ] exp [−

(𝐑 + r2 − ∆𝐫𝑖𝑘)2

2𝜎CH3
2 ]

𝑁CH3

𝑘=1

𝑁CH2

𝑗=1

𝑁CH1

𝑖=1

 

where 𝐴 = 1 (2𝜋3/2𝜎CH1𝜎CH2𝜎CH3𝑁CH1𝑁CH2𝑁CH3)⁄  and ∆𝐫𝑖𝑗 = 𝐑𝑗
CH2 − 𝐑𝑖

CH1, ∆𝐫𝑖𝑘 = 𝐑𝑘
CH3 − 𝐑𝑖

CH1. 

For simplicity, define 𝑓CH1(𝐑) = exp[− 𝐑2 (2𝜎CH1
2 )⁄ ], and 𝐶(r1,r2) is then written as: 

𝐶(r1,r2) = 𝐴 ∑ ∑ ∑ ∫ dR𝑓CH1(𝐑)𝑓CH2(𝐑 + r1 − ∆𝐫𝑖𝑗)𝑓CH3(𝐑 + r2 − ∆𝐫𝑖𝑘)

𝑁CH3

𝑘=1

𝑁CH2

𝑗=1

𝑁CH1

𝑖=1

 

and its Fourier Transfer (Supplementary Note 2) is  

𝐶̂(k1,k2) = 𝐴 ∑ ∑ ∑ 𝑓CH1
𝑐𝑜𝑛𝑗(k1 + k2)𝑓CH2(k1)𝑓CH3(k2)exp[−2𝜋𝑖(∆𝐫𝑖𝑗 ∙ k1 + ∆𝐫𝑖𝑘 ∙ k2)]

𝑁CH3

𝑘=1

𝑁CH2

𝑗=1

𝑁CH1

𝑖=1

 

= 𝐴 ∙ 𝐶̂𝜎(k1,k2) ∑ ∑ ∑ 𝐶̂𝑖𝑗𝑘(k1,k2)

𝑁CH3

𝑘=1

𝑁CH2

𝑗=1

𝑁CH1

𝑖=1

 

where 𝐶̂𝜎(k1,k2) is the Fourier Transform of the triple-convolution 𝐶𝜎(r1,r2) of the localization uncertainties from the three 

channels, and defined as 𝐶𝜎(r1,r2) = ∫ dR𝑓CH1(𝐑)𝑓CH2(𝐑 + r1)𝑓CH3(𝐑 + r2), representing how localization uncertainties 
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contribute to the final triple-pair-correlation; and 𝐶̂𝑖𝑗𝑘(k1,k2) is the Fourier Transform of the spatial triple-correlation 

𝐶𝑖𝑗𝑘(r1,r2) of the fluorophores in the three channels, with its Fourier Transform 𝐶̂𝑖𝑗𝑘(k1,k2) = exp[−2𝜋𝑖(∆𝐫𝑖𝑗 ∙ k1 + ∆𝐫𝑖𝑘 ∙

k2)], representing how spatially correlated of the fluorophores in the three different channels. 

Finally, 𝐶(r1,r2) can be written as the inverse Fourier Transform of 𝐶̂(k1,k2): 

𝐶(r1,r2) = ℱ−1 (𝐶̂(k1,k2)) = 𝐴 ∙ 𝐶𝜎(r1,r2) ∗ ∑ 𝐶𝑖𝑗𝑘(r1,r2)
𝑖𝑗𝑘

 

where ℱ−1denotes the inverse Fourier Transfer and ∗ denotes a convolution operator. 
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Supplementary Note 2 

Triple-Correlation function calculates the average probability for simultaneously observing three molecules, each in a 

different channel, as a function of their relative displacement, given by: 

𝐶(r1,r2) =
1

〈𝜌CH1
〉𝐑〈𝜌CH2

〉𝐑〈𝜌CH3
〉𝐑

∫ 𝜌CH1(R)𝜌CH2(R + r𝟏)𝜌CH3(R + r2)dR ( 1 ) 

where 𝜌CH𝑖(R) is the surface density of detections at position R = |𝑅, 𝜃⟩ in channel 𝑖. 〈 〉𝐑 denotes averaging operation 

over R. The Fourier Transform of the Triple-Correlation, known as its bispectrum is given by: 

𝐶̂(k1,k2) = 𝜌̂CH1
𝑐𝑜𝑛𝑗(k1+k2)𝜌̂CH2(k1)𝜌̂CH3(k2) 

where 𝐶̂(k1,k2) and 𝜌̂CH𝑖(k) are the Fourier Transforms of 𝐶(r1,r2) and 𝜌CH𝑖(r), respectively, with 𝐤𝒊 the corresponding 

spatial frequency of 𝐫𝒊. 𝐶(r1,r2) is calculated via an Inverse Fourier Transform from 𝐶̂(k1,k2), which involves a 4D FFT 

operation with each dimension of ~ 800 elements, and goes far beyond the computing capability of most current cluster 

computers. To address the insufficient RAM problem and conduct the computation on a desktop computer we 

implemented the following indirect procedure: 

According to the definition of the Triple-Correlation per Equation ( 1 ), at each fixed 𝐫𝟏, this can be written as: 

𝐶(r2|r1) =
1

〈𝜌CH1
〉𝐑〈𝜌CH2

〉𝐑〈𝜌CH3
〉𝐑

∫ 𝜌CH12(R|r1)𝜌CH3(R + r2)dR ( 2 ) 

with 𝜌CH12(R|r1) = 𝜌CH1(R)𝜌CH2(R + r𝟏) being a function of a single variable R. The Fourier Transform of Equation ( 2 ) can 

therefore be derived as: 

𝐶̂(k2|r1) = 𝜌̂CH3(k2)𝜌̂CH1
𝑐𝑜𝑛𝑗(k2|r1) ( 3 ) 

and a 2D Triple-Correlation map at a fixed r1 (Equation ( 2 )) can be subsequently calculated by inverse Fourier 

Transform of Equation ( 3 ). We then carried a 2D scan of r1, yielding the 4D map of the Triple-Correlation 

𝐶(𝑟1, 𝜃1, 𝑟2, 𝜃2 = 𝜃1 + ∆𝜃) (Main Text), which was then integrated along 𝜃1 to generate the final 3D 𝑔(𝑟1, 𝑟2, ∆𝜃) cube. 

We note that during scanning of r1, 𝜌
CH2

(R + r𝟏) can co-localize with 𝜌
CH3

(R) at a specific r1, and consequentially result in 

a co-localization between the product 𝜌
CH12

(R|r1) and 𝜌
CH3

(R). We also note that, at this r1, value, 𝜌
CH12

(R|r1) =

𝜌
CH1

(R)𝜌
CH2

(R + r𝟏) stays non-zero, especially in a highly dense image, due to the random co-localization between 

𝜌
CH1

(R) and 𝜌
CH2

(R + r𝟏). Therefore, the specific co-localization between the non-zero 𝜌
CH12

(R|r1) and 𝜌
CH3

(R) can result 

in a residual correlation signal at r2 = 0 at this specific r1, such as the correlation at rM-Y = 10, and rM-C = 0 in Figure 

2d(iii) in the main text. However, since in this case the 𝜌
CH12

(R|r1) represents random co-localizations between 𝜌
CH1

(R) 

and 𝜌
CH2

(R + r𝟏), this residual signal is insignificant compared to the true correlation (e.g. the correlation at rM-Y = 10, 

rM-C = 20 in Figure 2d(iii)), and can be easily excluded by the r2 − ∆𝜃 correlation map (e.g. Figure 2d(ii)). 
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To improve the accessibility of the Triple Correlation cube, we further integrate 𝑔(𝑟1, 𝑟2, ∆𝜃) along each dimension to make 

it a combination of three 2D correlation maps (Fig. 1c). Specifically, we transformed 𝑟1-∆𝜃 and 𝑟2-∆𝜃 maps from Cartesian 

coordinates to Polar coordinates via 2D cubic interpolation algorithm (MATLAB, MathWorks). 

All three maps were then further integrated along each dimension so that 𝑟1, 𝑟2, and ∆𝜃 can be fitted into a 1D modified 

Gaussian profile (Supplementary Note 3). 
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Supplementary Note 3 

The 1D correlation profile as a function of 𝑟1 (or 𝑟2) was obtained via integrating 𝑔(𝑟1, 𝑟2, ∆𝜃) along 𝑟2 (or 𝑟1) and ∆𝜃, with 

the latter performed radially through [−𝜋, 𝜋] 

𝑔𝑟1
(𝑟1) = ∫ d∆𝜃 ∫ 𝑔(𝑟1, 𝑟2, ∆𝜃)d𝑟2

𝜋

−𝜋

 

𝑔𝑟2
(𝑟2) = ∫ d∆𝜃 ∫ 𝑔(𝑟1, 𝑟2, ∆𝜃)d𝑟1

𝜋

−𝜋

 

The 1D correlation profile 𝑔𝑟1
(𝑟1) (or 𝑔𝑟2

(𝑟2)) was approximated via a modified1D Gaussian distribution as a function of 𝑟1 

(or 𝑟2) 

𝑔𝑟(𝑟 > 0) =
𝐴

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑟 − 𝑟0)2

2𝜎2
) +

𝐴

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑟 + 𝑟0)2

2𝜎2
) ( 4 ) 

where 𝑟0 > 0 and 𝜎 > 0 denotes the center and the standard deviation of the Gaussian function, respectively. Note that in 

Polar coordinates, a Gaussian distribution cannot extend to the 𝑟 < 0 region. Instead, the ‘𝑟 < 0’ portion of a normal 

Gaussian distribution centering at 𝑟 = 𝑟0 > 0 is considered as the ‘𝑟 > 0’ portion of another normal Gaussian distribution 

centering at 𝑟 = −𝑟0 < 0. Therefore, the radial integration along ∆𝜃 through [−𝜋, 𝜋] yields a modified 1D Gaussian profile 

(Equation ( 4 )) where the first and the second terms originate from the 𝑟 > 0 portion of a normal Gaussian distribution 

centered at 𝑟 = 𝑟0 > 0 and another Gaussian distribution centered at  𝑟 = −𝑟0 < 0, respectively. 

The correlation distance was then calculated as follows: 

𝑑 =
∫ 𝑔𝑟(𝑟)𝑟d𝑟

∞

0

∫ 𝑔𝑟(𝑟)d𝑟
∞

0

 ( 5 ) 

The 1D correlation profile as a function of ∆𝜃 was obtained via integrating 𝑔(𝑟1, 𝑟2, ∆𝜃) along 𝑟2 and 𝑟1 

𝑔∆𝜃(∆𝜃) = ∬ 𝑔(𝑟1, 𝑟2, ∆𝜃)d𝑟1d𝑟2 

Since the molecular pattern can be imaged as a pair of reflectional symmetries, with 𝑔∆𝜃(∆𝜃) being symmetric with 

respect to ∆𝜃 = 0, we used a modified Gaussian distribution similar to Equation ( 4 ) 

𝑔∆𝜃(∆𝜃) =
𝐴

√2𝜋𝜎
𝑒𝑥𝑝 (−

(∆𝜃 − ∆𝜃0)2

2𝜎2
) +

𝐴

√2𝜋𝜎
𝑒𝑥𝑝 (−

(∆𝜃 + ∆𝜃0)2

2𝜎2
) ( 6 ) 

where ∆𝜃0 > 0 and 𝜎 > 0 denotes the center and the standard deviation of the Gaussian function, respectively. 
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Supplementary Figure S1-S8 

 

Supplementary Figure S1. Correlation profile is well fitted with modified Gaussian function. (a) Image of simulated 

molecular pattern (left), with a zoomed-in image shown on the right along with the geometric features of the internal 

arrangement of the molecular pattern. (b) A 2D Triple-Correlation map as a function of 𝑟𝑀−𝑌 and ∆𝜃, and its 1D correlation 

𝑔𝑟𝑀−𝑌
(𝑟) obtained by integrating the 2D map along ∆𝜃 (i, black line); its 1D correlation 𝑔∆𝜃(∆𝜃) obtained by integrating the 

2D map along 𝑟𝑀−𝑌 (ii, black line). Both of these are well fitted by Equation (4) and (6), (red lines, Supplementary Note 3) 

yielding a correlation distance of 𝑟𝑀−𝑌 = 8.33 ± 0.07 A.U. (Equation ( 5 ) in Supplementary Note 3) and Gaussian 

distribution of ∆𝜃 centered at 0.00 with 𝜎 = 32.1 deg. (c) A 2D Triple-Correlation map as a function of 𝑟𝑀−𝐶 and ∆𝜃, and its 

1D correlation 𝑔𝑟𝑀−𝐶
(𝑟) (i, black line) and 𝑔∆𝜃(∆𝜃) (ii, black lines). Their fits (red lines) yield a correlation distance of 

𝑟𝑀−𝐶 = 19.4 ± 0.2 A.U and a Gaussian distribution of ∆𝜃 centering at 0.00 with 𝜎 = 34.9 deg. (d) A 2D Triple-Correlation 

map as a function of 𝑟𝑀−𝑌 and 𝑟𝑀−𝑌, and its 1D correlation 𝑔𝑟𝑀−𝑌
(𝑟) (i, black line) and 𝑔𝑟𝑀−𝐶

(𝑟) (ii, black lines). Their fits 

(red lines) yield the correlation distance of 𝑟𝑀−𝑌 = 8.31 ± 0.06 and 𝑟𝑀−𝐶 = 18.4 ± 0.5. These results are all in excellent 

agreement with the simulated molecular patterns in terms of their internal spatial organization. The Triple-Correlation is an 

average of Triple-Correlation profiles 10 simulated images. Errors are given as propagated fitting errors. 
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Supplementary Figure S2. Localization uncertainty widens TPC profiles. (a and c) Simulated molecular patterns with 

the same internal geometry properties but different localization uncertainties. The simulated localization uncertainty is 

𝜎CH1 = 𝜎CH2 = 𝜎CH3 = 1 AU and 𝜎CH1 = 𝜎CH2 = 𝜎CH3 = 3 AU for (a) and (c), respectively. (b and d) Normalized 2D Triple-

Correlation maps derived from simulated patterns in (a) and (c). A higher level of localization uncertainty (c) results in 

widened TPC profiles. 
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Supplementary Figure S3. A broad distribution along 𝐫𝐌−𝐘, 𝐫𝐌−𝐂, and ∆𝜽 results from cluster sizes comparable to 

their inter-cluster distances. (a) Schematic illustration of how cluster size broadens the TPC profile along 𝐫M−Y and 𝐫M−C 

(i), and ∆𝜃 (ii). (b, d, and f) Simulated molecular patterns of the same linear and sequential internal organization but with 

different cluster size of 𝑅 = 1, 3, and 5 units for (b), (d), and (f), respectively. (c, e, and g) Normalized 2D Triple-

Correlation maps derived from simulated patterns in (b, d, and f). The molecular patterns with a smaller cluster size 

results in a narrower correlation profile along 𝑟𝑀−𝑌, 𝑟𝑀−𝐶, and ∆𝜃. 
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Supplementary Figure S4. Triple-Correlation profile of triangular molecular patterns is well fitted with a modified 

Gaussian function. (a) Image of a simulated triangular molecular pattern (left), with a zoomed-in image shown on the 

right along with the geometric features of a molecular pattern internal arrangement. (b) A 2D Triple-Correlation map as a 

function of 𝑟𝑀−𝑌 and ∆𝜃, and its 1D correlation 𝑔𝑟𝑀−𝑌
(𝑟) (i, black line) and 𝑔∆𝜃(∆𝜃) (ii, black line). Their fits (Equation (4) 

and (6), red lines, Supplementary Note 3) yield a correlation distance of 𝑟𝑀−𝑌 = 9.08 ± 0.04 A.U. (Equation ( 5 ) in 

Supplementary Note 3) and a Gaussian distribution of ∆𝜃 centered at 42.0 with 𝜎 = 35.0 deg. (c) A 2D Triple-Correlation 

map as a function of 𝑟𝑀−𝐶 and ∆𝜃, and its 1D correlation 𝑔𝑟𝑀−𝐶
(𝑟) (i, black line) and 𝑔∆𝜃(∆𝜃) (ii, black lines). Their fits (red 

lines) yield a correlation distance of 𝑟𝑀−𝐶 = 19.7 ± 0.1 A.U and a Gaussian distribution of ∆𝜃 centered at 38.4 with 𝜎 =

32.7 deg. (d) A 2D Triple-Correlation map as a function of 𝑟𝑀−𝑌 and 𝑟𝑀−𝑌, and its 1D correlation 𝑔𝑟𝑀−𝑌
(𝑟) (i, black line) and 

𝑔𝑟𝑀−𝐶
(𝑟) (ii, black lines). Their fits (red lines) yield correlation distances of 𝑟𝑀−𝑌 = 9.09 ± 0.04 and 𝑟𝑀−𝐶 = 19.5 ± 0.2. The 

resolved distances are in excellent agreement with the simulated molecular patterns in terms of their internal spatial 

organization, but the resolved ∆𝜃 display a relative discrepancy with respect to their pre-assigned parameters. We reason 

that this discrepancy stemmed from the 2D cubic interpolation from Cartesian to Polarized coordinates as mentioned in 

Supplementary Note 2. The Triple-Correlation is an average of Triple-Correlation profiles from 10 simulated images. 

Errors are given as propagated fitting errors. 
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Supplementary Figure S5. Different molecular patterns are revealed by Triple-Correlation. (a) Image of simulated 

molecular patterns (left), with a zoomed-in image shown on the right along with the geometric features of the molecular 

patterns’ internal arrangement. The two different patterns are randomly distributed in the image. (b) A 2D Triple-

Correlation map as a function of 𝑟𝑀−𝑌 and ∆𝜃, and its 1D correlation 𝑔𝑟𝑀−𝑌
(𝑟) (i, black lines) and 𝑔∆𝜃(∆𝜃) (ii, black line). 

Both of these are well fitted (Equation (4) and Equation (6), red lines, Supplementary Note 3). 𝑔𝑟𝑀−𝑌
(𝑟) is fitted with two 

Gaussian distributions which yield a correlation distances of  𝑟𝑀−𝑌_1 = 9.00 ± 0.12 A.U. and 𝑟𝑀−𝑌_2 = 19.1 ± 0.3 (Equation 

( 5 ) in Supplementary Note 3); 𝑔∆𝜃(∆𝜃) yields a Gaussian distribution of ∆𝜃 centered at 0.00 with 𝜎 = 35.0 deg. (c) A 2D 

Triple-Correlation map as a function of 𝑟𝑀−𝐶 and ∆𝜃, and its 1D correlation 𝑔𝑟𝑀−𝐶
(𝑟) (i, black line) and 𝑔∆𝜃(∆𝜃) (ii, black 

lines). Similarly, 𝑔𝑟𝑀−𝑌
(𝑟) is fitted with two Gaussian distributions, yielding correlation distances of 𝑟𝑀−𝐶_1 = 8.92 ± 0.10 

A.U. and 𝑟𝑀−𝐶_2 = 19.4 ± 0.2; 𝑔∆𝜃(∆𝜃) yields a Gaussian distribution of ∆𝜃 centered at 0.00 with 𝜎 = 35.5 deg. (d) A 2D 

Triple-Correlation map as a function of 𝑟𝑀−𝑌 and 𝑟𝑀−𝑌, and its 1D correlation 𝑔𝑟𝑀−𝑌
(𝑟) (i, black line) and 𝑔𝑟𝑀−𝐶

(𝑟) (ii, black 

lines). These fits yield correlation distances of 𝑟𝑀−𝑌_1 = 8.8 ± 0.2, 𝑟𝑀−𝐶_1 = 19.4 ± 0.4 and 𝑟𝑀−𝑌_2 = 8.8 ± 0.1, 𝑟𝑀−𝐶_2 =

19.6 ± 0.2. The two different patterns appear as two distinct distributions. The Triple-Correlation is an average of Triple-

Correlation profiles from 10 simulated images. Errors are given as propagated fitting errors. 
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Supplementary Figure S6. Spatial organization of nascent DNA, PCNA, and RPA within replication fork foci is 

revealed by Triple-Correlation. (a) A 2D Triple-Correlation map as a function of the distance between DNA and RPA 

(𝑟𝐷−𝑅) and ∆𝜃, and its 1D correlation 𝑔𝑟𝐷−𝑅
(𝑟) (i, black line) and 𝑔∆𝜃(∆𝜃) (ii, black line). Both curves are well fitted with 

Equation (4) and (6) (red lines, Supplementary Note 3) yielding 𝑟0 = 13 ± 17 nm with 𝜎 = 186 ± 1 nm, and consequently a 

correlation distance of 𝑟𝐷−𝑅 = 148.3 ± 1.3 nm (Equation ( 5 ) in Supplementary Note 3);and a Gaussian distribution of ∆𝜃 

centered at 0.00 with 𝜎 = 28.1 deg. (b) A 2D Triple-Correlation map as a function of distance between DNA and PCNA 

(𝑟𝐷−𝑃) and ∆𝜃, and its 1D correlation 𝑔𝑟𝐷−𝑃
(𝑟) (i, black line) and 𝑔∆𝜃(∆𝜃) (ii, black lines). Their fits (red lines) yielded 𝑟0 =

24 ± 4 nm with 𝜎 = 184.9 ± 0.6 nm, and consequently a correlation distance of 𝑟𝐷−𝑃 = 147.2 ± 0.5 nm and a Gaussian 

distribution of ∆𝜃 centered at 0.00 with 𝜎 = 24.6 deg. (c) A 2D Triple-Correlation map as a function of 𝑟𝐷−𝑅 and 𝑟𝐷−𝑃, and 

its 1D correlation 𝑔𝑟𝐷−𝑅
(𝑟) (i, black line) and 𝑔𝑟𝐷−𝑃

(𝑟) (ii, black lines). These fits (red lines) yield correlation distances of 

𝑟𝐷−𝑅 = 150.9 ± 0.5 nm (with 𝑟0 = 25 ± 4, 𝜎 = 187.8 ± 0.6, Equation 4), and 𝑟𝐷−𝑃 = 133.4 ± 0.6 nm (with 𝑟0 = 25 ± 5, 𝜎 =

166 ± 1, Equation 4). The Triple-Correlation is an average of Triple-Correlation profiles of 13 nuclei in U2OS cells. Errors 

are given as propagated fitting errors. We note that the overlapped portion between nascent DNA and replisome proteins 

resulted in a high Triple-Correlation response at 𝑟𝐷−𝑅 (or 𝑟𝐷−𝑃) of ~ 0 nm through all ∆𝜃 = [−𝜋, 𝜋], and further resulted in 

high correlation at 𝑟𝐷−𝑅 (or 𝑟𝐷−𝑃) of ~ 0 nm, as represented in the 1D correlation plots after integration of ∆𝜃 

(Supplementary Figure S7 and Supplementary Note 3) For the order of integration, we found that when the 2D 

interpolation from Cartesian to Polar coordinates (Cubic algorithm, Supplementary Note 1) is followed by integration of ∆𝜃 

does not converge to accurately represent the correlation distance (c). Therefore, we take the correlation distance 

obtained in (c), which integrates ∆𝜃 without 2D interpolation beforehand, as more accurate correlation distance. (d) 
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Schematic illustration of the spatial organization of nascent DNA, RPA, and PCNA within a replication fork derived from 

the Triple Correlation analysis. 
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Supplementary Figure S7. Broad 2D correlation profile in Cartesian coordinates results in a high correlation 

distribution at 𝑟 = 0 nm. (a) A schematic illustration of a 2D correlation profile in Cartesian Coordinates, with its center 

close, but not equals to zero, and a quite broad distribution. (b) the 2D correlation profile obtained by transforming the 

correlation in (a) from Cartesian to Polar coordinates. Due to its non-zero center and broad distribution, transforming from 

a Cartesian to Polar coordinate system yields high correlation at 𝑟 = 0 nm contributing to all [−𝜋, 𝜋] distributions. (c) 1D 

correlation plots obtained by integrating the correlation in (b) (or (a)) through [−𝜋, 𝜋]. Due to the high correlation at 𝑟 = 0 

nm all through [−𝜋, 𝜋], the 1D correlation plot peaks at 𝑟 = 0 rather than at its original center represented in (a). 
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Supplementary Figure S8. Spatial organization of nascent DNA, MCM, and RPA within replication fork foci is 

revealed by Triple-Correlation. (a) A 2D Triple-Correlation map as a function of distance between DNA and RPA (𝑟𝐷−𝑅) 

and ∆𝜃, and its 1D correlation 𝑔𝑟𝐷−𝑅
(𝑟) (i, black line) and 𝑔∆𝜃(∆𝜃) (ii, black line), with the latter yielding a Gaussian 

distribution of ∆𝜃 centered at 0.00 with 𝜎 = 24.6 deg. (b) A 2D Triple-Correlation map as a function of the distance 

between DNA and MCM (𝑟𝐷−𝑀) and ∆𝜃, and its 1D correlation 𝑔𝑟𝐷−𝑀
(𝑟) (i, black line) and 𝑔∆𝜃(∆𝜃) (ii, black lines), with the 

latter yielding a Gaussian distribution of ∆𝜃 centered at 0.00 with 𝜎 = 24.6 deg. (c) A 2D Triple-Correlation map as a 

function of 𝑟𝐷−𝑅 and 𝑟𝐷−𝑀, and its 1D correlation 𝑔𝑟𝐷−𝑅
(𝑟) (i, black line) and 𝑔𝑟𝐷−𝑀

(𝑟) (ii, black lines). Their fits (red lines) 

yield correlation distances of 𝑟𝐷−𝑅 = 141.4 ± 1.0 nm (with 𝑟0 = 25 ± 9, 𝜎 = 175.9 ± 1.3, Equation 4), and 𝑟𝐷−𝑀 = 165.1 ±

1.0 nm (with 𝑟0 = 25 ± 11, 𝜎 = 205.7 ± 1.3, Equation 4). The Triple-Correlation is an average of the Triple-Correlation 

profiles of 9 nuclei in U2OS cells. Errors are given as propagated fitting errors. (d) Schematic illustration of the spatial 

organization of nascent DNA, RPA, and MCM within a replication fork derived from the Triple Correlation analysis. 
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Supplementary Figure S9. Spatial organization of nascent DNA, PCNA, and RPA within replication fork foci in 

U2OS cells treated with 1 mM HU. (a) A 2D Triple-Correlation map as a function of the distance between DNA and RPA 

(𝑟𝐷−𝑅) and ∆𝜃, and its 1D correlation 𝑔𝑟𝐷−𝑅
(𝑟) (i, black line) and 𝑔∆𝜃(∆𝜃) (ii, black line), with the latter yielding a Gaussian 

distribution of ∆𝜃 centered at 0.00 with 𝜎 = 21.2 deg. (b) A 2D Triple-Correlation map as a function of the distance 

between DNA and PCNA (𝑟𝐷−𝑃) and ∆𝜃, and its 1D correlation 𝑔𝑟𝐷−𝑃
(𝑟) (i, black line) and 𝑔∆𝜃(∆𝜃) (ii, black lines), with the 

latter yielding a Gaussian distribution of ∆𝜃 centered at 0.00 with 𝜎 = 18.3 deg. (c) A 2D Triple-Correlation map as a 

function of 𝑟𝐷−𝑅 and 𝑟𝐷−𝑃, and its 1D correlation 𝑔𝑟𝐷−𝑅
(𝑟) (i, black line) and 𝑔𝑟𝐷−𝑃

(𝑟) (ii, black lines). Their fits (red lines) 

yield correlation distances of 𝑟𝐷−𝑅 = 100.7 ± 0.6 nm (with 𝑟0 = 12 ± 8, 𝜎 = 125.8 ± 0.8, Equation 4), and 𝑟𝐷−𝑀 = 109.8 ±

0.9 nm (with 𝑟0 = 12 ± 11, 𝜎 = 137.2 ± 1.0, Equation 4). The Triple-Correlation is an average of Triple-Correlation profiles 

from 18 nuclei in U2OS cells. Errors are given as propagated fitting errors. (d) Schematic illustration of a replication fork 

that stalled due to depletion of dNTP pools, as derived from Triple Correlation analysis. Dashed arrow denotes replisome 

processing DNA replication at a slower speed. 

 


