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Supplementary Figure S1: Comparison of trace norm to nearest drug response neighbor in the
transductive setting
Performance comparison of nearest drug response neighbor and trace norm model in
transductive setting across three data sets. Trace norm significantly outperformed nearest drug
prediction in all thee data sets (P < 4.54e-05, P < 5.78e-14, P < 3.75e-05 for CCLE, CTD2 and
NCI60, one-sided Wilcoxon signed rank test).
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Supplementary Figure S2: Impact of task number on multitask learning performance

We trained multitask transductive trace norm model on NCI60 data set with all 255 tasks,
groups of 128 (127) tasks, groups of 64 (63) tasks, groups of 32 (31) tasks, groups of 16 (15)
tasks, groups of 8 (7) tasks, groups of 4 (3) tasks, and groups of 2 (1) tasks, and measured
performance by cross validation mean squared error of each drug. The values on top of each
boxplot shows the P values for Wilcoxon signed-rank test when comparing the drug MSEs of
each splitting scenario to those of the elastic net model.
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Supplementary Figure S3: Inductive setting performance of trace norm and elastic net on
CCLE

Elastic net significantly outperformed trace norm in CCLE data set in inductive setting (P < 5.25e-
03, one-sided Wilcoxon signed rank test).
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Supplementary Figure S4: Comparison of trace norm and kernelized-bayesian multitask
learning on CCLE, NCI60 and CTD2 data sets

Performance comparison of kernelized Bayesian multitask learning (kbmtl), and trace norm
model in inductive setting in CCLE, NCI60 and CTD2 dataset. KBMTL’s performance as measured
by MSE, was comparable to trace norm multitask learning in the two smaller data sets CCLE
(with 24 drugs, P =0.282) and NCI60 (with 59 cell lines, P = 0.660, one-sided Wilcoxon signed
rank test). However, we found that KBMTL has significantly weaker prediction performance in
CTD2 (228 cell lines and 354 drugs), compared to the trace norm model (P < 3.55e-53).
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Supplementary Figure S5: Hierarchical clustering ridge regression model vectors on the NCI60
data set

Hierarchical clustering of NCI60 drugs using weight vectors learned by ridge regression model
(adjusted Rand index = 0.40). Drugs with high label noise (P > 0.01) are noted with an asterisk.
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Supplementary Figure S6: Hierarchical clustering analysis for the CCLE data set
Hierarchical clustering of CCLE drugs using weight vectors learned by elastic net and trace norm
models.
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Supplementary Figure S7: Hierarchical clustering analysis for the CTD2 data set
Hierarchical clustering of CTD2 compounds using weight vectors learned by trace norm model.
Compounds with the same target are labeled in the same color.
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Supplementary Figure S8: Heatmap of elastic net weight vectors on the NCI60 data set
Heatmap of NCI60 drugs using weight vectors learned by elastic net model. The large white
space was caused by the sparsity of elastic net models for many drugs; dense models for other

drugs were generated when a = 0 was chosen as optimal by gimnet, and thus they became ridge
regression models.



Supplementary Tables $9: Gene ontology (GO) enrichment analysis of selected gene clusters in
NCI60

The first sheet contains GO analysis output for terms enriched in positively weighted gene
cluster (top part of the NCI60 trace norm heatmap that are mostly in red), the second sheet
contains GO analysis output for terms enriched in black box gene cluster, and the third sheet
contains GO analysis output for terms enriched in brown box gene cluster.



