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(a) mret = 3 (b) mret = 5

(c) mret = 10 (d) mret = 15

Figure S1: Comparing approaches for picking SNPs, relates to Figure 2. We
measure the accuracy (the percentage of the top SNPs correctly returned)
of the three methods for picking top SNPs on simulated GWAS data using
score (blue), distance (red) and noise (green) based methods with mret (the
number of SNPs being returned) equal to a. 3, b. 5, c. 10, and d. 15 for
varying values of the privacy parameter ε. We see that in all four graphs
that score and noise based methods outperform the neighbor method. These
results are averaged over 20 iterations.
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Figure S2: Accuracy when returning larger numbers of SNPs, relates to
Figure 2 in the main text. We measure the accuracy (the percentage of
the top SNPs correctly returned) of the PrivSTRAT method for picking top
SNPs, with mret (the number of SNPs being returned) equal to (10 and 15
for the RA datasets, with varying values of the privacy parameter ε. We see
that, in both cases, the accuracy is fairly low for these large values of mret.
These results are averaged over 20 iterations.
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(a) Large SNP Set (b) Small SNP Set

Figure S3: Accuracy on highly stratified population, relates to Figure 2. We
measure the accuracy (the percentage of the top SNPs correctly returned) of
the PrivSTRAT method for picking top SNPs using with mret (the number
of SNPs being returned) equal to 3 and 5 for two datasets based off HapMap,
a (a) larger one and a (b) smaller one, with varying values of the privacy
parameter ε. These results are averaged over 20 iterations.
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Table S1: Accuracy with no stratification, relates to Figure 2. We compare
the accuracy of PrivSTRAT with the accuracy of a differentially private ver-
sion of the allelic test statistic in the absence of population stratification.
In particular, we simulate a dataset with one causative SNP, and see what
percentage of the time each algorithm returns the causative SNP (see the
text for details). We see that, as expected, if there is absolutely no pop-
ulation stratification the privacy preserving allelic test statistic performs
better. In practice, however, there will almost always be at least some level
of population stratification.

.

Privacy Parameter (ε) .05 .1 .15 .2

PrivSTRAT .07 .61 .87 .99

Differentially Private Allelic Test Statistic .07 .86 1.0 1.0
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Table S2: Relationship between sample size and accuracy, relates to Figure
2. We compare the accuracy of our PrivSTRAT method for picking high
scoring SNPs for different sample sizes. We used mret = 3, ε = 1.0, and
averaged over 20 trials. We see that, as the sample size increases, so does
accuracy (percentage of top SNPs correctly predicted).

Size 400 600 800 1000 2136 (entire dataset)

Accuracy 0.0 .05 .116 .583 1.0
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Supplemental Data and Code

Data S1: Supplementary code and data, related to Experimental Proce-
dure. A zip file containing code and simulated data used in our work. Allows
for reconstruction of all figures in our paper that used simulated data, and
can be used to test PrivSTRAT and PrivLMM on novel datasets. Contains
a readme file explaining the documents included. Also available on github
(see main document for more information).
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Supplementary Experimental Procedure (Relates to
Experimental Procedure)

EIGENSTRAT and LMM

One of the most popular methods for overcoming population stratification
is known as EIGENSTRAT. This method is based on the observation that
the top few principle components (that is, the top few eigenvectors of the
genetic covariance matrix) of the genotype matrix encode information about
population stratification.

Formally, assume we have the genotype of n individuals at m SNPs.
Let X be the n by m matrix of normalized genotype data and y the n
dimensional phenotype vector (Experimental Procedures). The EIGEN-
STRAT method applies an eigendecomposition to the n by n covariance
matrix XXT . EIGENSTRAT works by forming two new vectors, y∗ and
x∗i , where y∗ (respectively x∗i ) is given by mean centering y (respectively
xi) and projecting the result onto the vector space orthogonal to the top k
eigenvectors of the covariance matrix (k is a user defined parameter; we set
k = 5). Intuitively, this procedure for producing y∗ and x∗i can be thought
of as removing the effects of population stratification. Having removed the
population stratification, all that remains is to test if y∗ and x∗i are corre-
lated. This is done using a χ2-distributed statistic:

χ2
i =

(n− k − 1)(x∗i · y∗)2

|x∗i |2|y∗|2

Another common method for correcting for population stratification is
based on linear mixed models (LMM). LMMs rely on the null model given

by y = Xβ + ε, where ε ∝ N(0, σ2
eIn) and β ∝ N(0,

σ2
g

m Im). Here, N(a,B)
is the normal distribution with covariance matrix B and mean a, σe and σg
are unknown variance parameters, and In is the n by n identity matrix.

We consider a slight modification of the LMM based approach used in
EMMAX [5]. This approach uses maximum likelihood (ML) to estimate σe
and σg. We can then apply the Wald test to see if a given SNP is associated

with our disease phenotype. More specially, if we let K = σ2
eIn +

σ2
g

mXX
T ,

then we get a χ2 distributed statistic

χ2
i,LMM =

(xTi K
−1(In − 1

n1n)y)2

xTi K
−1xi

where 1n is the n by n matrix of all ones.
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Calculating χ2

Following the discussion in the main text of how to obtain an ε-phenotypically
differentially private estimate of χ2

i , we let:

udp = µi · y + Lap(0,
2 maxj |µij |

ε
)

and

ydp = |y∗|+ Lap(0,
2

ε
)

as estimates, where Lap(0, λ) is a random variable with distribution:

Lap(0, λ) ∝ exp(−|x|
λ

)

We can then estimate the EIGENSTRAT statistic as

(n− k − 1)
u2
dp

y2
dp

The approach taken by PrivLMM is almost identical, except there is no need
to estimate |y∗|, only σe and σg. (see below).

p-values and Confidence Intervals

In order to calculate p-values based on PrivSTRAT results, it is worth noting
that, for fixed ε, our PrivSTRAT statistic is asymptotically χ2 distributed,
allowing us to estimate a p-value.

For small ε or small population size, however, this p-value tends to be
slightly inflated. One way of overcoming this limitation is to select appro-
priate confidence intervals for the non-private EIGENSTRAT statistic. In
particular, when calculating the PrivSTRAT statistic, our algorithm releases

udp = µi · y + Lap(0,
2 maxj |µij |

ε
)

and

ydp = |y∗|+ Lap(0,
2

ε
)

These quantities facilitate selection of confidence intervals for |µi · y|
and |y∗|, which can be combined to produce a (slightly smaller) confidence
interval for χ2

i . Note, however, this method tends to overestimate the size
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of the confidence interval, and thus underestimate the level of certainty in
our estimate.

Algorithm 1 Calculates the neighbor distance

Require: y, µi, c
Ensure: Returns the neighbor distance, di(c).

Let ûj = max(µij(1− yj), µij(0− yj))
Let l̂j = min(µij(1− yj), µij(0− yj))
Let i1, · · · , in be a permutation on 1, . . . , n such that ûi1 ≥ · · · ≥ ûin . Let
uj = ûij for all j.

Let j1, · · · , jn be a permutation on 1, . . . , n such that l̂j1 ≤ · · · ≤ l̂jn . Let

lk = l̂jk for all k.

Let Uk =
∑k

j=1 uj and Lk =
∑k

j=1 lj , k = 1, · · · , n.
Return k such that c ∈ [Lk+1, Lk) ∪ (Uk, Uk+1]

Proofs of correctness

Theorem 1. Algorithm 1 returns the correct value of di(c).

Proof. Let Uk, Lk, lk and uk be as in Algorithm 1.
Assume that y and y′ differ in at most k coordinates, then

µiy − µiy′ =
∑

j,yj 6=y′j

µij(yj − y′j) ≤ −(l1 + · · ·+ lk)

so

µiy
′ ≥ µiy −

k∑
i=1

lk = Lk

Similarly

µiy
′ ≤ µiy +

k∑
i=1

uk = Uk

so if di(c) ≤ k than Lk ≤ c ≤ Uk. It is easy to see, however, that if Lk ≤
c ≤ Uk than di(c) ≤ k, so di(c) = k if and only if c ∈ [Lk, Lk−1)∪ (Uk−1, Uk].
Therefore Algorithm 1 correctly calculates di(c).
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Details About the Distance Based Method

Note that the distance based method for picking high scoring SNPs requires
the choice of a boundary value, c. This value is a kind of baseline. Previous
work, however, has shown that this arbitrary choice of c can change the
accuracy of the method [13].

In order to deal with this we use a slightly modified version of the
distance based method [12]. For a given ε and choice of mret, let x1, · · · , xm
be a reordering of the list |µ1 · y|, · · · , |µm · y| in decreasing order. Than we
can choose c so that

c =
|xmret |+ |xmret+1|

2
+ Lap(0.0,maxi,j

|µi,j |
.1ε

)

We then run the distance based method with a privacy budget of .9ε
and a boundary of c. This approach is still ε-phenotypically differentially
private, and removes some of the accuracy issues of previous approaches.

Simulated dataset

In order to produce simulated data, we used PLINK [11]. The code used to
generate this data is available on our website.

We generated two populations of individuals. For each set we first used
plink to choose the MAF for 10000 SNPs, each uniformly at random from
[.05,.5]. 9900 of the SNPs had no effect on phenotype, 100 had an odds ratio
of 1.1. We then generated 5000 people from each of the populations, half
of whom where cases, the other half controls. We then combined these two
populations to produce our simulated dataset.

The code to do this is present online, as is the simulated data generated
in this way.

Estimating the Number of Significant SNPs

The final task we consider is the estimation of the number of significant SNPs
in a differentially private way for EIGENSTRAT–in other words, to estimate
the number of SNPs with χ2

i ≥ c for some user-defined c (often corresponding
to a particular p-value cut off). This is equivalent to estimating the number

of SNPs with |µi · y| ≥ |y∗|
√

c
n−k−1 .

In order to do this we first calculate a .1ε-phenotypic differential privacy

estimate of |y∗|
√

c
n−k−1 , denoted cdp, using the Laplacian mechanism.
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Since we can calculate bi(cdp) (see the Experimental Procedures) it is
easy to apply the method described by Johnson and Shmatikov, 2013, to
get a .9ε-phenotypic differential privacy estimate of the number of SNPs
with |µi · y| ≥ cdp, which is returned to the researcher. The overall result
is an ε-phenotypic differential privacy estimate of the number of significant
SNPs. Note that the choice of 0.1 and 0.9 are arbitrary, and can be changed
to improve results.

PrivLMM: Privacy-Preserving LMM Association

Note that the above framework can be applied to other GWAS statistics
besides EIGENSTRAT. In particular, it can be applied to linear mixed
models (LMM).

As was the case with EIGENSTRAT, it is worth noting that, if

µi,LMM = µi,LMM (σ2
e , σ

2
g) =

xTi K
−1(In − 1

n1n)√
xTi K

−1xi

then

χ2
i,LMM = |µi,LMM · y|2

This implies that high-scoring SNPs correspond to SNPs with large
values of |µi,LMM · y|.

This allows us to apply the framework used for PrivSTRAT to this
LMM statistic, giving us a method, PrivLMM, that provides phenotypic
differential privacy. The one added complication is that we need to calculate
σe and σg in a privacy-preserving way, but this is easily done using the
sample-and-aggregate framework (See below).

Runtime

We also assessed the runtime of each step in the PrivSTRAT statistic. Note
that, as in EIGENSTRAT, PrivSTRAT calculates the top Principal Com-
ponents (PCs) by performing singular value decomposition (SVD) on the
normalized genotype matrix X. Note that our current implementation of
PrivSTRAT uses a fast, approximate method for performing this SVD de-
composition by default, though also includes an option for performing an
exact SVD. Note that we used the exact SVD method for the Case Study (to
ensure greater reproducibility between runs) and the approximate method
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in all other experiments. This approximate method differs from the stan-
dard smartpca algorithm used by default in EIGENSTRAT (note that the
newest version of EIGENSTRAT has also implemented a fast approximation
similar to the one we use [6]). Therefore, in order to assess the effects of
the privacy-preserving nature of PrivSTRAT on runtime, we calculated the
runtime of PrivSTRAT using both the exact and approximate methods for
calculating the SVD.

Asymptotically, the calculation of the exact SVD is by far the most
time-consuming step (O(n2m) runtime), followed by the calculation of the
neighbor distance (O(nm log(n))), which is slightly slower than the approx-
imate SVD calculation (O(nmk)).

Estimating Heritability

Another issue to consider is the estimation of σe and σg in PrivLMM. This,
however, can be done using a sample-and-aggregate based framework [1].
In particular, the works by choosing some integer K > 1, and dividing
the set of participants into K disjoint sets of equal size. On each of these

subsets we can estimate h2 =
σ2
g

σ2
e+σ2

g
using FaST-LMM [3], GCTA [15] or

a similar tool (our implementation uses FaST-LMM). This gives us K es-
timates of h2, namely h2

1, . . . , h
2
K . Let h̃2 be the average of these K val-

ues. Our ε-differentially private estimate of h2 is then given by calculating
h̃2 + Lap(0, 1

Kε) and rounding the result to the interval [0, 1].
Next we want to use the same framework to estimate σ2

e . Note, how-
ever, that this would require a bound on σ2

e . Note that σ2
e ≤ V ar(y),

and that we can get a ε-differentially private estimate vdp of V ar(y) easily
using the laplacian mechanism. Then we can easily apply the sample-and-
aggregate methodology to max{vdp, σ2

e} to get an ε-differentially private es-
timate. Since σ2

g = σ2
e(

1
1−h2 − 1) this allows us to get a 3ε-differentially

private estimate of (σ2
e , σ

2
g). Note that this method relies on a very gen-

eral methodology, and so it seems likely much more accurate results can be
obtained with a little work.

Alternative Methods for Picking High Scoring SNPs

In addition to the distance method used by PrivSTRAT, we implemented
two other approaches for picking high scoring SNPs: a noise based method
and a score based method. In this section we introduce the algorithmic
details. We begin by defining:
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∆ = max
j∈{1,...,n}

max
S⊂{1,...,m},|S|=mret

∑
i∈S
|µij |

Our modified version of the noise based method for picking high scoring
SNPs [13] works by calculating, for each i, si = |µiy|+ Lap(0, 2∆

ε ), where

Lap(0, λ) ∝ exp(−|x|
λ

)

This method then returns the mret SNPs with the largest value of si.
Similarly, our modified score based method [13] works by picking mret

SNPs without repetition, where the probability of picking the ith SNP
is proportional to exp( ε|µiy|2∆ ). Both the noise and score method are ε-
phenotypically differentially private, as is proven below.

Theorem 2. The modified versions of the score and noise based methods
for picking high scoring SNPs given in the manuscript are ε-phenotypically
differentially private.

Proof. The proofs are similar to those given in previous works [13], except
we use a score function where the score of returning SNPs s1, · · · , smret

equals

mret∑
i=1

|µsi · y|. For completeness we give the details below.

To see that this is true for the score method, let S be the collection of
all ordered sets of exactly mret SNPs. Define the score function

q : S× {0, 1}n → R

so that

q(s1, · · · , smret , y) =

mret∑
i=1

|µsi · y|

Note that, if y, y′ ∈ {0, 1}n differ in exactly one coordinate, then for any
s1, · · · , smret we have that:

|q(s1, · · · , smret , y)− q(s1, · · · , smret , y
′)| ≤

mret∑
i=1

|µsi · (y − y′)|

≤ ∆

where ∆ is defined as in the text. Therefore the result follows from the
properties of the exponential mechanism [10].
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Next consider the noise method. Again, using the fact that

|q(s1, · · · , smret , y)− q(s1, · · · , smret , y
′)| ≤

mret∑
i=1

|µsi · (y − y′)|

≤ ∆

the result follows from [13].

We do not focus on these methods since, consistent with previous work
[12], testing suggests that they are not as accurate as the distance based
method, even if they are somewhat faster. See, for example, Fig S1.

No Stratification

Here we compare the accuracy of PrivSTRAT with that of differentially
private methods for picking high scoring SNPs based off the allelic test
statistic, in the case when there is no population stratification. In particular,
we compare it to the accuracy of the distance based method for picking high
scoring SNPs using the allelic test statistic [12, 9, 8]

In order to do this we generate a simulated dataset consisting of 10000
individuals and 10000 SNPs, where the the genotypes are generated using the
same method as in the simulated dataset introduced above, except with only
one population instead of two. Moreover, instead of having 100 causative
SNPs, this set only has one causative SNP with an odds ratio of 1.5.

We tested both methods for picking high scoring SNPs on this dataset.
In particular, for varying values of ε and mret = 1, we measured accuracy
as the number of times the causative SNP was returned (averaged over 100
trial). The results are show in Table S1. We see that, as might be expected,
in this case the allelic test statistic is more accurate. This is not surprising,
since in this case the allelic test statistic is testing the correct null hypothesis.
Though this is an interesting comparison, in reality there will almost always
be at least some level of population stratification.

Difference From Standard GWAS

The privacy preserving framework we introduce here is slightly different
than that taken in standard GWAS. In particular, in standard GWAS the
quantity mret (the number of SNPs to be returned) is not known ahead of
time. Instead, the user sets some p-value and gets back a list of all SNPs
whose p-value is less than that boundary.
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If one wants to perform such a study, they can use the method intro-
duced above for calculating the number of significant SNPs, and then use
the returned value as mret. In order to ensure accuracy, however, it seems
more reasonable to choose a small mret ahead of time. This ensures the
accuracy of the GWAS on the highest scoring SNPs, even if it comes at a
cost to some SNPs near the p-value threshold of interest.

Large Values of mret

Our experiments show that, for small mret (mret ≤ 5 or so), our methods are
reasonably accurate. It turns out, however, that like previous approaches
to differentially private GWAS, these methods do not always scale to large
mret when the number of individuals is small. This is shown for PrivSTRAT
on the RA dataset in Fig S2. We see that, though accuracy is comparable
to methods that do not correct for population stratification, it is still not as
useful as we would like. Luckily, this accuracy should greatly increase as n
gets larger.

It is also worth asking if accuracy is the best measure of utility for
our method. In particular, using accuracy to measure utility ignores the
difference between returning SNPs that score almost as high as the top
scoring SNPs versus returning low scoring SNPs. Moreover, GWAS assumes
we are using SNPs to tag nearby regions of the genome. This implies that
returning a SNP that is near a high scoring SNP can also be useful. Using
accuracy as the measurement, however, ignores this as well. Therefore, in
order to decide if our method is useful for larger mret values, we should first
decide exactly what makes a given result preferable to another.

Missing Genotype

The above analysis assumed that there was no missing genotype data. In
practice, however, many entries in a given genotype matrix will be undefined.
There are various ways of dealing with this, most notably imputation. In
this work we take a simpler approach (one that is built into the pysnptools
package). This approach works by replacing each missing entry in the geno-
type vector at a given SNP with the mean value taken over all non-missing
entries at that SNP. We plan for future versions of PrivSTRAT to make use
of imputation based strategies for dealing with missing genotype data.
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Calculating PCA

By default, PrivSTRAT uses an approximate version of SVD to perform the
PCA in the paper, similar to that suggested in [6]. In particular, we use
the TruncatedSVD command in sklearn.decomposition. This is due to the
fact that calculating the PCA is by far the most time consuming step in the
algorithm. One can, however, use an exact version of the SVD (by setting
the -e flag to 1), which uses the SVD method in numpy.linalg.

Sample Size vs Accuracy

As mentioned in the text, it has been noted that there is a tradeoff be-
tween sample size and privacy in differentially private statistics. To demon-
strate this is true of our method, we subsampled the RA dataset to generate
smaller subsets (consisting of n = 400, 600, 800 and 1000, half cases, half
controls). We ran the PrivSTRAT algorithm for picking high scoring SNPs
with mret = 3, ε = 1.0. We see that the accuracy (that is to say percentage
of top SNPs correctly predicted) increases markedly with sample size, as is
expected (Table S2).

Cryptic Relatedness

Though we have focused on the issue of population stratification, another
issue in GWAS is that of cryptic relatedness–that is to say pairs of individ-
uals who are more closely related than one would expect at random [14]. As
with population stratification this can lead to false positives and inflation of
χ2 statistics.

While the LMM based statistics are designed to deal with this issue,
EIGENSTRAT is not. As such, before performing a GWAS with EIGEN-
STRAT it is important to remove related individuals, using tools such as
Plink [11]. Extending this to our framework, one should also remove closely
related individuals when using EIGENSTRAT. Luckily, in the large, diverse
populations that PrivSTRAT is aimed at, even after removing close rela-
tives there should be a sizable number of individuals remaining on which to
perform our GWAS.

Validation

Repeating the experiment in the case study 1000 times shows that the av-
erage error for rs9419011 is 1.22 (with the error being less than 0.78 in 50%
of the trials) and for rs498422 is 8.70 (with the error being less than 5.91 in
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50% of the trials). Notably, the reported p-value for rs9419011 is significant
(that is to say it is less than 0.025, the Bonferonni corrected threshold) in
all but 15 of the 1000 trials, while the reported p-value for rs498422 is not
significant in 932 of the 1000 trials. This means our privacy-preserving val-
idation results agree with the unperturbed validation results in 98.5% and
93.2% of the cases, respectively.

Increased Stratification

Most of the data sets we tested on had small levels of population stratifica-
tion. Because of this limitation we decided to test PrivSTRAT on a dataset
with higher levels of population stratification. In particular, we downloaded
the HapMap dataset. After quality control (removing close relatives, etc)
we were left with a set consisting of 880 individuals from numerous popula-
tions. We sampled around 10,000 of the SNPs at random (9874 to be exact)
using the –thin option in Plink.

Using this, we generated simulated phenotype data by picking 5 SNPs
at random, and having each SNP correspond to an odds ratio of 1.5. We
than used PrivSTRAT on this dataset to return high scoring SNPs. Due
to the high population stratification we used k = 10 (note that this choice
is based off genomic data, not phenotypic data, so does not give away any
private phenotypic information). The results, pictured in Fig S3a, are not as
striking as in the other cases, but still give reasonable results for mret = 3.

Note that this performance is not as good as for the datasets presented
in the paper. One reason for this is size: each of the other datasets is at least
twice as large as the HapMap dataset. There are, however, other factors in
play: the size of each SNPs effect (aka the odds ratio), the number of SNPs
used, etc. For example, if we run the same test with a smaller set of SNPs
(2470, just a little over one fourth), the results are much better (see Fig
S3b).

Details About Differential Privacy

As an aside, it is worth noting that differential privacy is only meant to
ensure that by choosing to participate in a given study, the individual does
not lose much more privacy than they would if they had not chosen to
participate. It is still possible that the results of the study can lead to a
loss of privacy due to the resulting scientific discoveries. For example, if
the results of the study determine that a given allele is associated with a
disease of interest, than this reveals that anyone who has that allele has
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an increased risk of the given disease. Privacy lost to such discoveries,
however, is considered unavoidable–the only way to avoid such privacy loss
is to curtail the growth of science, something that even the most privacy
minded researchers are not likely to advocate.

Note that phenotypic differential privacy does not entail releasing ge-
nomic data. Rather, it guarantees that even when an adversary deduces
genotypic information about a participant, phenotypic information will not
be deducible. This choice is motivated by the fact that, in many cases, our
main concern is preventing the leakage of private phenotype information. By
focusing on protecting phenotypic data–that is to say by using phenotypic
differential privacy instead of standard differential privacy– we are able to
achieve increased accuracy.

Future Work

Potential future studies include: settings where stronger privacy guarantees
(beyond just protecting private phenotype data); recent theoretical work
that employs differential privacy to help prevent false positives due to over-
fitting in adaptive data analysis (looking at data to determine the optimal
analysis techniques), overcoming a major problem in medical research [2];
and recent work that shows background knowledge about haplotypes [7] and
population genetics [4] can improve accuracy in privacy-preserving genomic
analysis, perhaps improving the accuracy of PrivSTRAT and PrivLMM and
diminishing false GWAS results which can lead to wasted time and resources.
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