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I. RENORMALIZED MEAN-FIELD THEORY

The second osmotic virial B2 is plotted in Fig. 1 for the
patchy model and MFT; renormalization dictates thatB2

for the RMFT matches the molecular model exactly.
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FIG. 1. Second osmotic virial for the patchy model and MFT.
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FIG. 2. Difference between the renormalized and unrenor-
malized isotropic interaction strength as a function of the un-
renormalized value.
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A plot of the difference between the renormalized val-
ues of the isotropic interaction strength and the unrenor-
malized isotropic strength is shown in Fig. 2. Note that
the percentage change becomes large for large εi.

II. ESTIMATING THE CRITICAL TEMPERATURE

Rather than using a scaling law combined with rec-
tilinear diameters and simulation coexistence curves to
estimate the location of the critical point,1 we use a scal-
ing analysis in the one phase region. Given our limited
phase coexistence data, this method produces indepen-
dent results, which are roughly consistent with the use
of the scaling law. Specifically, we analyze the scaling of
the correlation length determined from structure factor
in the one phase region at densities that were close to the
expected critical density. Since the presence of percolat-
ing clusters would effect our results, we limit ourselves
to densities above the percolation transition; this means
using ρ = 0.2 for εi = 0, ρ = 0.3 for εi = 0.1 and ρ = 0.4
otherwise.

The structure factor S(k) was computed for a wide
range of temperatures with the correlation length ξ de-
termined using

S(k) =
S(0)

1 + k2ξ2
. (1)

In particular, we plot 1/S(k) as a function of k2 requir-
ing at least four points for the fit and adding additional
points until the root mean squared error was minimized.
The resulting correlation lengths are plotted in Fig. 3b.
These are then fitted using2

ξ = ξ0

(
T − Tc
Tc

)−0.638

(2)

where ξ0 and Tc are fitting parameters dependent on
εi. Physically, Tc is the critical temperature and the
exponent of 0.638 is the Ising model correlation length
exponent.3 Unlike Ref. 2, we used Tc rather than T in the
denominator, since our data is close to the critical point.
These fits are plotted along with the data in Fig. 3a.
The goodness of the fit can be seen when Eq. 2 is ma-
nipulated into power law form and plotted along with
the data as can be seen in Fig. 3b. The critical density
was determined using the critical temperature, the phase
coexistence data and rectilinear diameters.
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FIG. 3. (a) The correlation length ξ as a function of temper-
ature for various relative interaction strengths. (b) The fit of
the correlation length ξ for all data after manipulation into
power law form. (c) The fitting parameter ξ0 as a function of
εi. Uncertainties correspond to 95 % confidence intervals.

III. PHASE COEXISTENCE AND TRANSITION LINES:
AN ISOTROPIC REFERENCE

The general trends such as the size of the clustering re-
gion, are invariant to the reference used for the tempera-
ture. For completeness Fig. 4, which contains the RMFT
phase separation curves and the TΦ=1/2 transition lines,
uses an isotropic reference for the temperature. As can
be seen, the region in which clustering occurs is still much
larger for εi = 0.1 (orange) than εi = 0.4 (purple).

IV. TESTING THE FLORY-STOCKMAYER
PREDICTION FOR 〈M〉

The relationship between 〈M〉 and X using Flory-
Stockmayer theory is

〈M〉 =
2

5X − 3
(3)

with X determined from Φ = 1−X5. In the manuscript,
we combine these relations and show that they held for
the expected range. However, a linear relationship can be
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FIG. 4. Phase separation curves (solid) and the clustering
transition lines (dashed) for TΦ=1/2 for mean-field theory. The
curves correspond to εi = 0.1, 0.2, 0.3, and 0.4 from top to
bottom.

deduced by plotting 1/〈M〉 as a function of X from the
simulations. This linear relationship is plotted in Fig. 5.
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FIG. 5. The linear relationship between 1/〈M〉 and X with
solid line given by 5/2X − 3/2. The line in gray denotes an
extension of the line beyond its range of validity.

V. QUANTIFICATION OF FINITE SIZE EFFECTS

In order to quantify the magnitude of the finite size
effects on our calculations involving self-assembly, we de-
termine both the order parameter Φ and the probabil-
ity of percolation pperc for a box whose length is halved
in every direction, i.e., a box length of 5 instead of 10.
These results are compared with those from the paper in
Fig. 6. As can be seen in Fig. 6a, the simulation data for
the smaller box perfectly overlaps with the fits from the
larger box. Thus, the effect of finite size effects on the
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FIG. 6. (a) The order parameter for a box length of 5 super-
imposed with fits to data generated using a box length of 10.
(b) The percolation probability with a box size of 5 (points)
with fits (dashed lines) along with fits from data generated
with a box length of 10.

order parameter is negligible. The probability of percola-
tion is more sensitive, as can be seen in Fig. 6b. The fits
from the smaller box clearly do not overlap with those
from the larger box; however, the temperature at which
the probability of percolation is one half is only mini-
mally effected. From percolation theory,4 the probability
is known to be a Heaviside function in the thermody-
namic limit, with rounding observed as finite size effects
become more predominant. Together, this suggests that
the location of the cluster transition line generated us-
ing the probability of percolation is only slightly affected
by finite size effects. Phase coexistence curves are likely
more sensitive to finite size effects. However, predictions
of the difference between mean-field theory and simula-
tion data suggest the critical temperature should not be
significantly effected. Therefore, the same box size is
used for both self-assembly and phase separation.
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