### Mechanisms of Working Memory Impairment in Schizophrenia Supplemental Information

| Supplemental Methodsp 2 – 7 |
|-----------------------------|
| Table S1 p 8 – 9            |
| Table S2 p 10 – 11          |
| Table S3 p 12 – 13          |
| Table S4 p 14               |
| Table S5 p 15               |
| Table S6 p 16               |
| Table S7 p 17 – 18          |
| Table S8 p 19 – 21          |
| Figure S1 p 22              |
| Figure S2 p 23              |
| Figure S3 p 24              |
| Supplemental Referencesp 25 |
|                             |

#### **Supplemental Methods**

#### **Participants**

Twenty-four unmedicated patients with schizophrenia and 45 healthy control participants completed study procedures. Three unmedicated patients were removed from the final sample after quality control procedures were applied (see below). These data were collected with the primary aim of investigating the hypotheses outlined in the main text and the analyses presented here have never been reported previously, although a subset of the healthy control sample was used to characterize the neural correlates of self-ordered working memory task (SOT) performance in a prior report (1) and simple activation data in DLPFC was associated with positron emission tomography measures of cortical DA release in 16 patients and 18 controls in a separate report (2). We also included a sample of 30 demographically matched medicated patients who completed our experimental procedures during the baseline assessment of a randomized controlled trial; 20 of these patients will be included in a forthcoming report along with post-treatment data (3) not relevant to the hypotheses and aims of the present report. None of these reports include the primary analyses reported here, nor do they have any bearing on the hypotheses investigated here.

#### **Task Procedures**

#### Self-ordered Working Memory Task

The SOT consisted of 24 trials, with eight steps of gradually increasing working memory (WM) load in each trial. At the start of a trial, a three-by-three grid of eight simple line drawings of three-dimensional objects was presented, with the center position in the grid left blank. Stimuli were identical to those employed in prior work (1,4,5). Unique stimuli were used on each of the first 12 trials (96 total stimuli) and were each repeated once in the following 12 trials. Participants were given seven seconds in which to respond on each step. Responses consisted of using an fMRI compatible trackball to position a cursor over one of the objects and select it with a button press. Participants were instructed to select any object on each step that they had not already selected on a previous step (thus, on the first step all possible responses are correct). Once participants made a selection, a white square was displayed around the selected object until a total of nine seconds had elapsed since the beginning of the step, thus ensuring that each step remained the same length regardless of participants' reaction times. At the start of each subsequent step after the first, the objects were pseudo-randomly rearranged in the grid, but with the blank space placed at the location of the previously selected item (thus

preventing participants from simply selecting the same location on each step). If participants failed to make a response within seven seconds from the beginning of a step, a white square was displayed around a randomly selected object that would have been a correct response. Participants were instructed to remember this object as if they had selected it themselves, and to continue the trial. If an incorrect selection was made, a red square was displayed over top of the selected object in order to indicate that an error had been made, and the same procedure as in the case of no response was followed. Finally, participants also carried out three trials of a control task, in which one of the objects on each step was marked with an asterisk and participants were instructed to simply select the marked object. In all other respects the display and randomization of stimuli for the control task was identical to the SOT. Unique stimuli were used for each of the control trials, and each trial of either type was preceded by textual instructions indicating whether the upcoming trial was a task trial or a control trial.

#### Maximum-likelihood Estimation of WM Capacity

Performance data from the SOT was used to obtain an estimate of WM capacity using a simplistic model of WM that assumes that participants carry out the task by loading items into WM until their capacity is reached, and guessing randomly among items not maintained in WM at supra-capacity WM loads. This model is heavily based on maximum-likelihood models commonly used to estimate WM capacity from change detection tasks (6), and was developed in prior work (5). Briefly, the model first assumes that a participant making a response at step *S* of an SOT task with a display of *N* items (in this case, 8 items) will have *m* items maintained in WM, such that

 $m = \min(S - 1, k),$ 

where k is the participant's WM capacity. The probability, E, of the participant making an error can then be shown (under the assumptions outlined above) to be

$$E = \frac{s-1-m}{N-m}.$$

Next, it is assumed that participants will occasionally make errors for reasons other than limited WM capacity, for example due to a lapse in attention or motor response. Thus, an attention parameter is introduced to adjust the formula for *E* such that

$$E = a \frac{s-1-m}{N-m} + (1-a).$$

Finally, the two free parameters a and k can be estimated by using a brute-force search of the model space and selecting the value of each parameter that is maximally likely to have produced the observed performance data. For a more complete explanation and justification of the model, see (5).

#### **fMRI** Procedures

#### fMRI Acquisition

The fMRI data acquisition methodology was identical to that reported in Study 2 of our previous report (1). Data was acquired with a Philips 1.5 T Intera scanner equipped with an 8-channel sensitivity-encoding (SENSE) coil at the Columbia Radiology MRI Center at the Neurological Institute of New York. Participants viewed stimuli via a mirror mounted on the head coil, which reflected images projected onto a screen at the foot of the scanner bed. T1-weighted structural scans were acquired with an SPGR sequence using 256 mm FOV, 200 slices, and 1 mm isotropic voxels. Functional echo-planar imaging (EPI) scans were obtained with a SENSE factor of 1.5, 2 s TR, 28 ms TE, 77° flip angle, 192 mm field of view, 40 slices, and 3 mm isotropic voxels. EPI scans covered the entire brain excepting the ventral most portion of the cerebellum. The SOT was spread across 9 functional runs of 160 volumes, each of which included either three task trials or two task trials and one control trial positioned between the two task trials. Each trial was followed by thirty seconds of rest, and the first trial in each run was preceded by 32 seconds of rest.

#### fMRI Preprocessing

Preprocessing was carried out with SPM8 and custom MATLAB scripts. Data were first slicetiming corrected in SPM8 and then motion realigned with INRIAlign (7). Runs in which participants exhibited greater than 2.5 mm translation or 2.5° rotation from their median position were excluded. Each volume in each run was then evaluated for artifacts, such that any volume whose average in-brain voxel value, or Mahalanobis distance, departed from a sliding window by more than eight mean absolute deviations, was flagged as bad. Flagged volumes were then modeled out during first-level modeling via inclusion of a dummy regressor.

T1 and EPI images were manually aligned to the appropriate International Consortium for Brain Mapping (ICBM) template to provide better initial positioning for coregistration. Functional runs were coregistered to each other and to T1 images, and these were all coregistered to the ICBM template. T1 images were segmented and spatial normalization parameters from the segmentation algorithm were used to warp T1 and EPI images into ICBM standard space. Functional volumes were smoothed with an 8 mm full width at half-maximum (FWHM) Gaussian kernel. Finally, each voxel value in the full timeseries was divided by the mean value in that voxel throughout the run and multiplied by 100. This procedure scales the magnitude of the hemodynamic response function (HRF) estimates to percent signal change units and ensures that they are equivalently scaled across runs.

#### First-level Modeling

Preprocessed data was modeled in the SPM8 GLM framework using a three-parameter HRF model, which includes temporal and dispersion derivatives of the canonical HRF. The justification for employing this model rather than a standard one-parameter model is provided elsewhere (1). Automatic masking by SPM8 was disabled and an explicit mask was created from the conjunction of a smoothed gray matter segmentation (6 mm FWHM) and the mean EPI image for each subject, which effectively restricts analyses to gray matter and regions not suffering from excessive signal dropout due to susceptibility artifacts, respectively. Each step of the SOT and the control task was modeled with separate regressors as a nine second boxcar (resulting in 27 regressors in total, due to the three parameter HRF model). Error trials on any of the task steps and on the control task made up two additional sets of regressors, again modeled as a nine second boxcar. A two second boxcar was used to model instruction presentation before each trial, and button presses and error feedback were modeled as instantaneous events whenever they occurred. In addition, several nuisance regressors were included, which were not convolved with the HRF. These were the six motion parameters, the square of these motion parameters, their first derivative, their squared derivative, and dummy indicators for artifactual volumes as described above.

#### Second-level Modeling

Activation at each step of the SOT and during the control task was quantified as the area under the curve (AUC) in a temporal window ranging from 2 s to 9 s with respect to the three basic functions defining the canonical HRF. This AUC measure is more informative about the magnitude of activation than a standard beta estimate because we employed a three-parameter HRF model in which the estimated parameters (betas) cannot be interpreted as scaling factors of the HRF because they enter the HRF formula nonlinearly. The three-parameter HRF varies in width, timing and height, and the AUC measure employed here captures the information in these additional dimensions.

#### Corrections for Multiple Comparisons

All second-level analyses of fMRI data presented here were corrected for multiple comparisons using AlphaSim (a MATLAB implementation of the AFNI algorithm included in NeuroElf; www.neuroelf.net) with an activation threshold of P < .05, and with smoothness estimated empirically from the model residual maps for each subject. The number of voxels required for a

cluster to achieve significance was thus calculated separately for each analysis, as the correct value depends both on the estimated residual smoothness and on the search volume (e.g., ROI vs. whole-brain). While low *P* value thresholds such as that used here have been criticized for their lack of neuroanatomical specificity (8), these concerns are not especially relevant to the present report because at no point do the primary hypotheses tested here depend on activation having occurred at a given voxel (or set of voxels) rather than some other voxel within the same AlphaSim-identified cluster.

#### Region of Interest

The ROI was determined by taking the intersection of an anatomical mask obtained from the WFU PickAtlas Brodmann areas 9 and 46 and regions showing significant WM activation in a meta-analysis of healthy individuals (9), dilating the result by 1 voxel, and further masking the result with the set of voxels determined to be gray matter (via SPM segmentation) in every subject included in the study. Exploratory whole-brain analyses were also carried out for the contrast of Task-Control activation. Exploratory analyses for the inverted-U fit were restricted to voxels showing a significant positive fit to the inverted-U in at least one of the three groups, to exclude regions not demonstrating an inverted-U response in at least one group.

#### Multiple Regression Modeling

As described in the main text, a step-forward model selection was used in a multiple regression framework including diagnostic and medication status indicator variables, symptom measures (the three PANSS subscales), and fMRI outcome measures from four brain regions (inverted-U beta fit from two regions of left lateral prefrontal cortex, and task activation levels in bilateral medial prefrontal cortex and cuneus). Model selection began by evaluating all possible models including the diagnostic indicator variable and one additional variable (among those listed above). The variable with the smallest P value was selected and retained, and again all possible models including the diagnostic indicator and the previously selected variable were evaluated. This procedure continued until none of the evaluated models added a variable with P < .1. If at any time a variable added in a prior step had a P value > .1 it would have been removed, although this did not occur. This resulted in a model including (in the order in which they were added) medial PFC activation, precuneus activation, inverted-U fit in the smaller left DLPFC region, and medication status, in addition to the diagnostic status indicator variable included in all models. At this stage, all possible models with a single second-order (interaction) term were evaluated under the same criteria described above. This resulted in the inclusion of a term for the interaction of medial PFC activation and diagnosis, but no other second-order terms. Thirdorder terms including this interaction were also evaluated, but none were included. Inclusion of the interaction term caused the main effect of medial PFC activation to become non-significant (P = .30), but the main effect term was retained in the model because the interaction term is uninterpretable without it. Prior to modeling, activation and inverted-U fit measures were transformed to a standard normal deviate (mean subtraction and division by standard deviation), which resulted in the following beta parameters (which can be interpreted as the change in WM capacity with a 1-standard deviation increase in the imaging measure, or when going from controls to patients or from unmedicated patients to medicated patients, as appropriate): diagnostic status, B = -1.07, P = .0074; medication status, B = -.74, P = .053; precuneus activation, B = .84, P < .00001; left prefrontal cortex inverted-U fit, B = .40, P = .006; medial PFC activation, B = -.24, P = .300; medial PFC activation interaction with diagnostic status, B = -1.08, P = .0009.

|                                         |                   | Clu        | uster Cen   | ter        |        |         |
|-----------------------------------------|-------------------|------------|-------------|------------|--------|---------|
| Region                                  | BA                | х          | У           | Z          | Voxels | Max t   |
| Regions showing grea                    | ter activation in | the SOT th | han in the  | control t  | ask    |         |
| Bilateral Inferotemporal Cortex /       | 37                | -42        | -60         | -14        | 489    | 8.4748  |
| Fusiform Gyrus                          | 19, 37            | 45         | -63         | -11        | 416    | 7.8747  |
|                                         | 37, 20            | -36        | -42         | -17        | 218    | 3.9054  |
|                                         | 19                | -24        | -66         | -14        | 82     | 3.2551  |
|                                         | 19, 20            | 33         | -45         | -17        | 140    | 3.2478  |
| Bilateral Intraparietal Parietal Sulcus | 7                 | -27        | -63         | 43         | 581    | 8.1195  |
| / Posterior Parietal Cortex             | 39                | 30         | -63         | 43         | 528    | 7.7147  |
|                                         | 40                | 42         | -39         | 49         | 161    | 4.3171  |
|                                         | 40                | -42        | -39         | 43         | 158    | 4.2796  |
| Bilateral Occipital Lobe                | 19, 18            | -33        | -84         | 13         | 351    | 7.0128  |
|                                         | 19, 18            | 36         | -81         | 13         | 404    | 5.1529  |
|                                         | 18, 17            | -21        | -90         | 1          | 91     | 3.5938  |
| Medial Parietal Cortex                  | 7                 | 6          | -66         | 52         | 520    | 6.7218  |
| Midbrain                                | -                 | 3          | -27         | -17        | 86     | 3.9458  |
| Bilateral Dorsolateral Prefrontal       |                   |            |             |            |        |         |
| Cortex                                  | 46, 9             | -45        | 24          | 25         | 526    | 10.0605 |
|                                         | 46                | -39        | 33          | 10         | 139    | 3.2199  |
|                                         | 9, 46             | 48         | 21          | 28         | 86     | 4.6437  |
|                                         | 46, 9             | 42         | 39          | 25         | 95     | 3.8814  |
|                                         | 46                | 42         | 36          | 19         | 68     | 3.5234  |
| Bilateral Pre-supplementary Motor       |                   |            |             |            |        |         |
| Area                                    | 6, 8, 32          | -3         | 18          | 46         | 399    | 6.8998  |
| Bilateral Premotor Cortex               | 6                 | -33        | 3           | 52         | 284    | 4.7722  |
|                                         | 6                 | -51        | -3          | 40         | 131    | 3.7201  |
|                                         | 6, 9              | 48         | 9           | 28         | 118    | 4.571   |
|                                         | 6                 | 27         | 3           | 58         | 88     | 4.757   |
|                                         | 6                 | 30         | 6           | 49         | 76     | 4.6376  |
|                                         | 6, 8              | 30         | 15          | 55         | 44     | 4.3227  |
| Regions showing grea                    | ter activation in | the contro | I task thar | n in the S | от     |         |
| Bilateral Temporoparietal Cortex        | 39                | -48        | -63         | 22         | 442    | -8.5424 |
|                                         | 40                | -57        | -45         | 28         | 162    | -7.2119 |
|                                         | 22, 39, 40        | -60        | -54         | 16         | 55     | -4.6545 |
|                                         | 22, 39            | -57        | -54         | 7          | 110    | -4.3477 |
|                                         | 42, 40            | -60        | -30         | 19         | 88     | -3.606  |
|                                         | 39                | 54         | -54         | 22         | 666    | -7.3152 |
| Bilateral Superior and Middle           | 21, 22            | -60        | -18         | -14        | 148    | -6.6067 |
| Temporal Gyrus                          | 21, 20            | -51        | -9          | -26        | 55     | -5.3647 |
|                                         | 21, 20            | -42        | -3          | -32        | 40     | -3.9444 |
|                                         |                   |            |             |            |        |         |

22, 21

-63

-42

1

52

# Table S1. Regions showing significant differences in activation between the SOT and a control task in healthy controls

-3.8553

|                                      |        | Cluster Center |     |     |        |         |  |
|--------------------------------------|--------|----------------|-----|-----|--------|---------|--|
| Region                               | BA     | x              | У   | z   | Voxels | Max t   |  |
|                                      | 21, 22 | -54            | -27 | -8  | 95     | -3.4391 |  |
|                                      | 22     | -57            | 0   | 1   | 48     | -2.7633 |  |
| Bilateral Temporal Pole              | 21, 38 | -54            | 0   | -23 | 127    | -6.0932 |  |
|                                      | 38, 21 | -42            | 9   | -32 | 52     | -5.5016 |  |
|                                      | 22     | -60            | -39 | 16  | 139    | -5.2096 |  |
|                                      | 38, 21 | -48            | 12  | -26 | 46     | -5.1984 |  |
|                                      | 21     | 48             | 3   | -26 | 183    | -5.2131 |  |
|                                      | 21     | 57             | -18 | -8  | 447    | -5.4363 |  |
| Bilateral Inferior Frontal Gyrus /   |        |                |     |     |        |         |  |
| Insula                               | 47, 13 | -33            | 15  | -17 | 112    | -4.9593 |  |
|                                      | 47, 45 | -48            | 30  | -8  | 44     | -2.9065 |  |
|                                      | 47, 45 | 45             | 30  | -5  | 281    | -5.6666 |  |
| Bilateral Medial Prefrontal Cortex   | 10, 32 | 3              | 54  | 4   | 1217   | -9.9032 |  |
| Bilateral Subgenual Cingulate        |        |                |     |     |        |         |  |
| Cortex                               | 32     | -3             | 33  | -11 | 418    | -5.3865 |  |
| Bilateral Anterior Prefrontal Cortex | 9      | -15            | 45  | 34  | 547    | -6.6294 |  |
|                                      | 8, 9   | 12             | 42  | 43  | 431    | -6.1482 |  |
| Bilateral Insula                     | 13     | 36             | -3  | 4   | 184    | -4.4785 |  |
|                                      | 13     | 57             | -30 | 16  | 484    | -4.1393 |  |
|                                      | 13     | -39            | -21 | 10  | 132    | -3.6335 |  |
|                                      | 13     | -36            | 3   | 4   | 103    | -4.2801 |  |
| Right Striatum                       | -      | 18             | 12  | -14 | 233    | -3.3256 |  |
| Left Cuneus / Posterior Cingulate    | 18, 30 | -9             | -60 | 1   | 313    | -6.5183 |  |
|                                      | 18, 17 | -6             | -78 | -2  | 87     | -3.1398 |  |
| Bilateral Precuneus                  |        | 0              | -63 | 28  | 700    | -5.7625 |  |
| Bilateral Dorsal Cingulate           | 24, 31 | 0              | -21 | 43  | 460    | -5.5837 |  |
| -                                    |        | 0              | 6   | 31  | 51     | -3.7745 |  |

Cluster center determined as the minimum weighted geometric distance from all voxels in a cluster, with weights determined by voxel *t* values. Clusters of 200 or more voxels were subjected to subclustering by a higher-values-first watershed searching algorithm, with a minimum distance of 8 mm between clusters, and identified subclusters were subsequently reported as separate peaks. Cluster coordinates are given in International Consortium for Brain Mapping (MNI) space.

BA, Brodmann area; SOT, self-ordered working memory task.

|                                            |                  | Clu        | _           |            |        |         |
|--------------------------------------------|------------------|------------|-------------|------------|--------|---------|
| Region                                     | BA               | x          | У           | z          | Voxels | Max t   |
| Regions showing greate                     | er activation in | the SOT t  | than in the | e control  | task   |         |
| Bilateral Fusiform Gyrus / Lateral         | 37, 19           | -39        | -63         | -11        | 485    | 10.5711 |
| Occipitotemporal Cortex                    | 37               | 33         | -42         | -17        | 255    | 6.9572  |
|                                            | 37, 20           | -30        | -42         | -23        | 246    | 6.5629  |
|                                            | 19, 37           | 42         | -63         | -11        | 426    | 5.9657  |
| Bilateral Occipital Cortex                 | 18, 19           | 30         | -84         | 7          | 393    | 9.1948  |
|                                            | 18, 19           | -24        | -87         | 1          | 300    | 7.0036  |
|                                            | 19               | -30        | -81         | 22         | 288    | 4.4758  |
|                                            | 18               | -3         | -90         | 16         | 47     | 3.0807  |
| Bilateral Intraparietal Sulcus / Posterior | 7                | -27        | -60         | 46         | 403    | 7.6512  |
| Parietal Cortex                            | 40               | 45         | -36         | 46         | 228    | 3.7787  |
|                                            | 40               | -45        | -24         | 43         | 165    | 3.7005  |
|                                            | 7                | 27         | -51         | 55         | 95     | 3.4677  |
| Bilateral Dorsolateral Prefrontal Cortex   | 46, 9            | -45        | 27          | 22         | 422    | 7.5895  |
|                                            | 46               | 42         | 33          | 22         | 257    | 10.1613 |
|                                            | 9, 6             | 45         | 12          | 28         | 129    | 5.9181  |
|                                            | 9, 8             | 48         | 27          | 34         | 57     | 4.8478  |
|                                            | 46, 9            | 39         | 42          | 25         | 48     | 3.5523  |
| Bilateral Premotor Cortex                  | 6                | -36        | 0           | 49         | 313    | 6.1501  |
|                                            | 6                | 30         | 3           | 55         | 393    | 6.3388  |
| Right Temporoparietal Cortex               | 19, 7            | 27         | -69         | 40         | 495    | 5.9835  |
| Bilateral Frontal Pole                     | 10               | -33        | 51          | 7          | 159    | 5.2219  |
|                                            | 10               | 30         | 57          | 7          | 92     | 5.8855  |
| Cerebellum                                 | -                | 0          | -63         | -17        | 89     | 4.0434  |
| Bilateral Medial Parietal Cortex           | 7                | -3         | -72         | 46         | 88     | 2.6405  |
| Bilateral Anterior Insula / Striatum       | 13, -            | -21        | 18          | -5         | 178    | 4.8832  |
|                                            | 13               | 36         | 24          | 1          | 66     | 3.9116  |
|                                            | -                | 21         | 9           | -5         | 92     | 4.4108  |
| Thalamus                                   | -                | 0          | -21         | 10         | 84     | 3.2316  |
| Bilateral Pre-Supplementary Motor          |                  |            |             |            |        |         |
| Area                                       | 6, 8, 32         | 0          | 21          | 43         | 253    | 4.7993  |
| Regions showing greate                     | er activation in | the contro | ol task tha | n in the S | SOT    |         |
| Right Anterior Middle Temporal Gyrus       | 21               | 51         | -12         | -23        | 101    | -7.222  |
| Bilateral Medial Prefrontal Cortex         | 11               | 0          | 54          | -14        | 89     | -5.1582 |
|                                            | 11, 10           | 6          | 45          | -11        | 46     | -4.755  |
|                                            | 10               | -9         | 54          | 19         | 94     | -3.8213 |
|                                            | 10               | -9         | 57          | 10         | 50     | -3.7296 |
|                                            | 9                | 6          | 48          | 22         | 44     | -3.2954 |
|                                            | 10               | -3         | 57          | -2         | 55     | -3.1932 |

# Table S2. Regions showing significant differences in activation between the SOT and a control task in unmedicated patients

|                                      |        | Cl  | ter |    |        |         |
|--------------------------------------|--------|-----|-----|----|--------|---------|
| Region                               | BA     | x   | у   | z  | Voxels | Max t   |
| Bilateral Precuneus / Posterior      |        |     |     |    |        |         |
| Cingulate                            | 31, 23 | -6  | -48 | 31 | 79     | -4.9964 |
|                                      | 23, 31 | -3  | -54 | 22 | 102    | -3.832  |
| Bilateral Medial Posterior Cingulate | 31     | 3   | -24 | 49 | 62     | -4.5678 |
|                                      | 31     | -12 | -33 | 43 | 51     | -4.481  |
|                                      | 31     | 9   | -27 | 46 | 56     | -4.1109 |
| Right Supplementary Motor Area       | 6      | 9   | -9  | 58 | 44     | -4.0389 |
| Bilateral Angular and Supramarginal  |        |     |     |    |        |         |
| Gyrus                                | 40     | -57 | -39 | 34 | 115    | -7.1387 |
|                                      | 39     | -51 | -60 | 37 | 83     | -3.4267 |
|                                      | 40, 39 | 57  | -57 | 34 | 82     | -3.8651 |

Cluster center determined as the minimum weighted geometric distance from all voxels in a cluster, with weights determined by voxel *t* values. Clusters of 200 or more voxels were subjected to subclustering by a higher-values-first watershed searching algorithm, with a minimum distance of 8 mm between clusters, and identified subclusters were subsequently reported as separate peaks. Cluster coordinates are given in International Consortium for Brain Mapping (MNI) space.

BA, Brodmann area; SOT, self-ordered working memory task.

| Cluster Center                                      |                |           |          |          |        |         |  |  |
|-----------------------------------------------------|----------------|-----------|----------|----------|--------|---------|--|--|
| Region                                              | BA             | x         | у        | z        | Voxels | Max t   |  |  |
| Regions showing greater activat                     | ion in the SO  | T than ir | n the co | ntrol ta | sk     |         |  |  |
| Bilateral Fusiform Gyrus / Inferotemporal           | 37, 19         | -42       | -60      | -14      | 458    | 7.5982  |  |  |
| Cortex                                              | 19, 37         | -33       | -45      | -14      | 103    | 3.021   |  |  |
|                                                     | 37             | 33        | -42      | -17      | 70     | 3.0931  |  |  |
| Bilateral Occipital Cortex                          | 18, 19         | -27       | -84      | -2       | 553    | 7.419   |  |  |
|                                                     | 18, 19         | -21       | -87      | 19       | 157    | 3.817   |  |  |
|                                                     | 18, 19         | 33        | -72      | -8       | 576    | 7.5101  |  |  |
|                                                     | 19             | 30        | -75      | 31       | 330    | 7.4692  |  |  |
| Bilateral Intraparietal Sulcus / Posterior Parietal | 40, 7          | 36        | -51      | 49       | 281    | 3.65    |  |  |
| Cortex                                              | 7              | -18       | -69      | 40       | 65     | 6.2522  |  |  |
|                                                     | 7              | -21       | -60      | 46       | 101    | 5.3297  |  |  |
|                                                     | 40, 39, 7      | -36       | -54      | 43       | 188    | 4.4107  |  |  |
|                                                     | 7              | -24       | -72      | 46       | 121    | 4.3632  |  |  |
| Bilateral Premotor Cortex                           | 6              | -48       | 0        | 34       | 109    | 6.7003  |  |  |
|                                                     | 6              | -45       | 3        | 46       | 86     | 6.2985  |  |  |
|                                                     | 6              | -30       | 6        | 52       | 51     | 3.6001  |  |  |
|                                                     | 6              | 42        | 6        | 34       | 72     | 3.4882  |  |  |
| Bilateral Dorsolateral Prefrontal Cortex            | 9              | -45       | 12       | 31       | 123    | 5.8164  |  |  |
|                                                     | 9, 46          | -51       | 24       | 22       | 70     | 5.4085  |  |  |
|                                                     | 46             | -42       | 33       | 16       | 86     | 3.9664  |  |  |
|                                                     | 9, 46          | -45       | 30       | 31       | 46     | 3.1144  |  |  |
|                                                     | 46, 9          | 45        | 30       | 25       | 178    | 7.7915  |  |  |
|                                                     | 9              | 42        | 36       | 34       | 51     | 4.5154  |  |  |
| Left Anterior Prefrontal Cortex                     | 10, 46         | -36       | 51       | 13       | 69     | 4.2934  |  |  |
| Bilateral Pre-Supplementary Motor Area              | 8, 6, 32       | -3        | 21       | 46       | 145    | 4.5437  |  |  |
| Regions showing greater activat                     | ion in the con | trol task | than in  | the SO   | TC     |         |  |  |
| Bilateral Temporal Pole                             | 21, 20         | -51       | -3       | -26      | 89     | -3.9539 |  |  |
|                                                     | 21             | 48        | 9        | -29      | 56     | -4.259  |  |  |
|                                                     | 21, 20         | 48        | -3       | -29      | 43     | -3.4281 |  |  |
| Right Middle Temporal Gyrus                         | 21, 22         | 63        | -21      | -8       | 121    | -5.1319 |  |  |
| Right Ventrolateral Prefrontal Cortex / Insula      | 47, 13         | 33        | 24       | -17      | 128    | -3.83   |  |  |
|                                                     | 45, 47         | 48        | 36       | -2       | 48     | -3.3419 |  |  |
| Bilateral Subgenual Cingulate                       | 32, 24         | -3        | 36       | -8       | 452    | -6.1474 |  |  |
| Bilateral Anterior Prefrontal Cortex                | 9              | 9         | 51       | 22       | 367    | -5.555  |  |  |
|                                                     | 10             | -15       | 54       | 22       | 119    | -3.3189 |  |  |
| Left Globus Pallidus / Thalamus                     | -              | -12       | -3       | -14      | 189    | -4.3801 |  |  |
| Right Anterior / Ventral Striatum                   | -              | 18        | 12       | -5       | 87     | -4.2551 |  |  |
| Bilateral Medial Prefrontal Cortex                  | 10, 11         | 3         | 57       | -5       | 213    | -3.8633 |  |  |
| Left Temporoparietal Cortex                         | 39             | -51       | -60      | 22       | 128    | -3.4772 |  |  |

# Table S3. Regions showing significant differences in activation between the SOT and a control task in medicated patients

Cluster center determined as the minimum weighted geometric distance from all voxels in a cluster, with weights determined by voxel *t* values. Clusters of 200 or more voxels were subjected to subclustering by a higher-values-first watershed searching algorithm, with a minimum distance of 8 mm between clusters, and identified subclusters were subsequently reported as separate peaks. Cluster coordinates are given in International Consortium for Brain Mapping (MNI) space.

BA, Brodmann area; SOT, self-ordered working memory task.

### Table S4. Regions showing significant positive fit to an inverted-U pattern of activation in healthy controls

|                                            | _        | Cl  | uster Cen | ter |        |        |
|--------------------------------------------|----------|-----|-----------|-----|--------|--------|
| Region                                     | BA       | x   | У         | z   | Voxels | Max t  |
| Bilateral Occipital Cortex                 | 19       | 33  | -75       | 22  | 521    | 8.2434 |
|                                            | 19       | -33 | -81       | 22  | 271    | 5.6942 |
|                                            | 19, 18   | -42 | -81       | -5  | 88     | 3.5443 |
| Bilateral Inferotemporal Cortex / Fusiform |          |     |           |     |        |        |
| Gyrus                                      | 37       | -36 | -51       | -17 | 789    | 7.7762 |
|                                            | 37       | 39  | -45       | -17 | 559    | 6.4654 |
|                                            | 37, 19   | 42  | -66       | -5  | 282    | 3.9052 |
| Bilateral Intraparietal Sulcus / Posterior | 7        | 21  | -63       | 52  | 426    | 6.5356 |
| Parietal Cortex                            | 40, 7    | -36 | -51       | 43  | 265    | 4.6368 |
|                                            | 40       | 45  | -36       | 52  | 150    | 3.6036 |
| Left Medial Parietal Cortex                | 7        | -15 | -69       | 49  | 372    | 6.4    |
| Bilateral Medial Temporal Lobe /           | -        | 30  | -9        | -26 | 172    | 5.1236 |
| Hippocampus / Parahippocampal Gyrus        | -        | -21 | -33       | -5  | 102    | 3.4256 |
| Left Middle Temporal Gyrus                 | 22, 21   | -54 | -42       | -8  | 323    | 4.6408 |
| Bilateral Putamen                          | -        | 27  | 0         | -5  | 159    | 4.2749 |
|                                            | -        | -27 | 0         | -2  | 72     | 6.3296 |
|                                            | -        | -24 | 9         | 1   | 80     | 5.1099 |
|                                            | -        | -27 | -6        | -14 | 48     | 3.0056 |
| Right Posterior Thalamus                   | -        | 18  | -27       | -11 | 67     | 3.13   |
| Bilateral Cerebellum                       | -        | 6   | -48       | -23 | 47     | 2.8318 |
| Left Insula                                | 13       | -33 | -9        | 10  | 46     | 4.7503 |
| Bilateral Dorsolateral Prefrontal Cortex   | 9, 6     | -48 | 12        | 25  | 691    | 9.062  |
|                                            | 46       | -42 | 39        | 7   | 390    | 7.5752 |
|                                            | 9        | 39  | 36        | 28  | 106    | 4.8424 |
|                                            | 46       | 42  | 39        | 13  | 78     | 4.5837 |
|                                            | 46       | 48  | 36        | 19  | 47     | 4.279  |
| Bilateral Premotor Cortex                  | 6        | -27 | 6         | 55  | 433    | 7.5416 |
|                                            | 6, 9     | 57  | 9         | 25  | 53     | 4.119  |
|                                            | 6        | 27  | -3        | 55  | 130    | 6.411  |
|                                            | 6        | 27  | 12        | 55  | 98     | 5.0441 |
| Bilateral Pre-Supplementary Motor Area     | 6, 8, 32 | -6  | 18        | 46  | 152    | 5.2928 |
|                                            | 6, 32    | 6   | 3         | 55  | 54     | 2.5964 |
| Left Ventrolateral Prefrontal Cortex       | 44, 45   | -54 | 18        | 1   | 78     | 2.9275 |

Cluster center determined as the minimum weighted geometric distance from all voxels in a cluster, with weights determined by voxel *t* values. Clusters of 200 or more voxels were subjected to subclustering by a higher-values-first watershed searching algorithm, with a minimum distance of 8 mm between clusters, and identified subclusters were subsequently reported as separate peaks. Cluster coordinates are given in International Consortium for Brain Mapping (MNI) space.

BA, Brodmann area.

|                                          |        | Clu | uster Cen | ter | _      |        |
|------------------------------------------|--------|-----|-----------|-----|--------|--------|
| Region                                   | BA     | x   | У         | z   | Voxels | Max t  |
| Bilateral Fusiform Gyrus                 | 37     | 33  | -51       | -14 | 107    | 4.0926 |
|                                          | 37     | -36 | -51       | -14 | 120    | 4.166  |
| Bilateral Dorsolateral Prefrontal Cortex | 9, 46  | -45 | 24        | 28  | 149    | 3.8526 |
|                                          | 9, 46  | 39  | 39        | 28  | 81     | 3.9992 |
| Bilateral Posterior Parietal /           | 7      | 18  | -69       | 52  | 104    | 4.7802 |
| Occipitotemporal Cortex                  | 7, 19  | 30  | -63       | 49  | 55     | 3.5673 |
|                                          | 7, 19  | -24 | -69       | 40  | 181    | 7.3087 |
|                                          | 40     | -36 | -42       | 40  | 43     | 4.6142 |
|                                          | 19, 39 | -30 | -78       | 28  | 57     | 3.2016 |
|                                          | 40     | 39  | -42       | 52  | 78     | 3.6381 |
| Right Occipital Cortex                   | 19     | 30  | -78       | 31  | 80     | 4.601  |
| Left Medial Parietal Cortex              | 7      | -9  | -63       | 52  | 49     | 3.4692 |
| Bilateral Premotor Cortex                | 6      | 27  | 9         | 55  | 88     | 4.9204 |
|                                          | 6      | -30 | 6         | 58  | 149    | 4.2058 |
| Left Pre-Supplementary Motor Area        | 6, 32  | -3  | 9         | 55  | 62     | 4.117  |
| Right Superior Parietal                  | 5, 4   | 9   | -39       | 70  | 66     | 4.6848 |

#### Table S5. Regions showing significant positive fit to an inverted-U pattern of activation in unmedicated patients

Cluster center determined as the minimum weighted geometric distance from all voxels in a cluster, with weights determined by voxel t values. Clusters of 200 or more voxels were subjected to subclustering by a higher-values-first watershed searching algorithm, with a minimum distance of 8 mm between clusters, and identified subclusters were subsequently reported as separate peaks. Cluster coordinates are given in International Consortium for Brain Mapping (MNI) space. BA, Brodmann area.

|                                           |          | Clu | uster Cen | ter |        |        |
|-------------------------------------------|----------|-----|-----------|-----|--------|--------|
| Region                                    | BA       | x   | У         | z   | Voxels | Max t  |
| Left Middle Temporal Gyrus                | 22, 21   | -57 | -48       | -5  | 362    | 4.9323 |
| Bilateral Posterior Parietal Cortex       | 7        | 30  | -57       | 58  | 108    | 4.3884 |
|                                           | 39, 7    | -36 | -63       | 43  | 368    | 4.1267 |
|                                           | 40       | -42 | -42       | 40  | 95     | 3.2808 |
| Left Medial Temporal Lobe                 | - , 30   | -21 | -42       | 4   | 116    | 4.2703 |
| Left Occipital Cortex                     | 18, 17   | -15 | -96       | 7   | 48     | 4.1371 |
|                                           | 19       | -30 | -81       | 25  | 149    | 3.0578 |
| Bilateral Posterior Thalamus              | -        | -15 | -24       | -8  | 78     | 3.6602 |
|                                           | -        | 12  | -33       | -2  | 72     | 4.4167 |
| Left Motor Cortex                         | 5, 4, 6  | -3  | -39       | 64  | 42     | 3.0552 |
|                                           | 4, 3     | -21 | -27       | 61  | 69     | 5.0073 |
| Right Occipitotemporal Cortex             | 19, 39   | 39  | -72       | 7   | 292    | 4.0171 |
| Bilateral Anterior Prefrontal Cortex /    | 10, 46   | -36 | 45        | 7   | 319    | 5.4102 |
| Frontal Pole                              | 10, 9    | -24 | 51        | 25  | 51     | 2.6333 |
|                                           | 10       | 24  | 57        | 7   | 56     | 3.4902 |
| Bilateral Dorsolateral Prefrontal Cortex  | 9, 8     | -42 | 27        | 34  | 274    | 5.3588 |
|                                           | 9, 46    | 39  | 39        | 28  | 141    | 5.4691 |
| Bilateral Premotor Cortex                 | 6        | -39 | 3         | 49  | 298    | 4.6855 |
|                                           | 6        | 30  | 0         | 58  | 146    | 4.5178 |
| Bilateral Medial Prefrontal Cortex        | 11       | 6   | 51        | -17 | 97     | 4.5108 |
| Left Ventrolateral Prefrontal Cortex      | 45, 44   | -51 | 24        | 1   | 152    | 4.3944 |
| Left Orbitofrontal Cortex                 | 11       | -33 | 39        | -14 | 94     | 4.2546 |
| Bilateral Pre-Supplementary Motor<br>Area | 8, 6, 32 | -3  | 15        | 46  | 121    | 3.4422 |

### Table S6. Regions showing significant positive fit to an inverted-U pattern of activation in medicated patients

Cluster center determined as the minimum weighted geometric distance from all voxels in a cluster, with weights determined by voxel *t* values. Clusters of 200 or more voxels were subjected to subclustering by a higher-values-first watershed searching algorithm, with a minimum distance of 8 mm between clusters, and identified subclusters were subsequently reported as separate peaks. Cluster coordinates are given in International Consortium for Brain Mapping (MNI) space.

BA, Brodmann area.

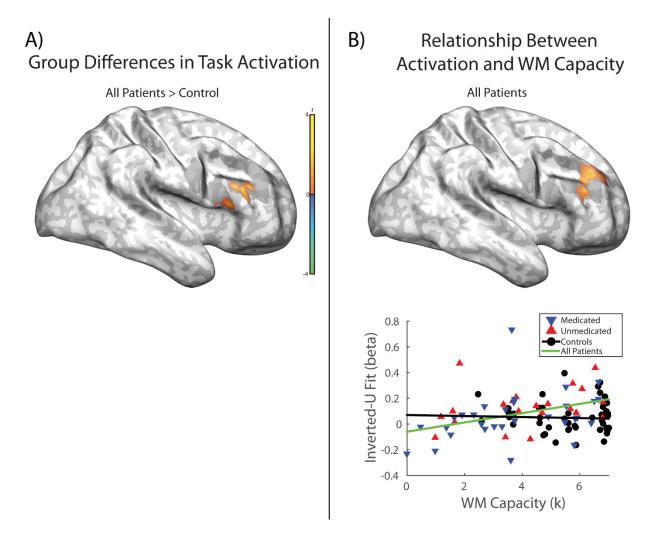
|                                          |                  | Clu         | uster Cen   | _          |             |          |
|------------------------------------------|------------------|-------------|-------------|------------|-------------|----------|
| Region                                   | BA               | x           | У           | z          | Voxels      | Max t    |
| Regions Showing a Be                     | tter Inverted-U  | Fit in Co   | ntrols than | n in Patie | nts         |          |
| Right Amygdala                           | -                | 24          | -6          | -26        | 42          | 4.1407   |
| Bilateral Fusiform / Inferotemporal      | -                | -33         | -24         | -23        | 35          | 4.0297   |
| Cortex / Medial Temporal Lobe            | 19, 37           | -27         | -54         | -17        | 120         | 4.0948   |
|                                          | 20, -            | 36          | -36         | -20        | 115         | 3.7546   |
| Bilateral Putamen                        | -                | -24         | -3          | -5         | 70          | 3.076    |
|                                          | -                | 27          | 3           | -2         | 43          | 2.7186   |
| Left Inferior Frontal Gyrus              | 46, 45           | -45         | 45          | 4          | 62          | 4.6128   |
| Right Cuneus                             | 18               | 27          | -69         | 22         | 62          | 3.7693   |
| Left Dorsolateral Prefrontal Cortex      | 9, 6             | -48         | 12          | 28         | 155         | 3.6816   |
| Left Premotor Cortex                     | 6                | -18         | 9           | 61         | 116         | 4.7103   |
| Regions Showing a Better Inv             | erted-U Fit in I | Medicated   | l than Unn  | nedicated  | d Patients  |          |
| Left Amygdala                            | -                | -24         | -6          | -26        | 66          | 5.2188   |
| Left Middle Temporal Gyrus               | 22               | -60         | -39         | -2         | 95          | 3.1034   |
| Left Occipitotemporal Cortex             | 37, 19           | 48          | -63         | 1          | 98          | 3.4339   |
| Left Cuneus                              | 18               | -9          | -93         | 16         | 36          | 3.5884   |
| Left Anterior Prefrontal Cortex          | 9, 10            | -27         | 51          | 28         | 99          | 3.5886   |
| Left Angular Gyrus                       | 39               | -48         | -63         | 40         | 54          | 3.3876   |
| Bilateral Medial Parietal Cortex         | 7                | 0           | -57         | 46         | 119         | 4.3901   |
| Regions Showing a Relationship           | between Inve     | erted-U Fit | t and WM    | Capacity   | in Controls | ;        |
| Left Inferior Prefrontal Cortex          | 46, 45, 47       | -45         | 42          | -2         | 84          | 3.301    |
| Left Dorsolateral Prefrontal Cortex      | 9                | -51         | 15          | 28         | 148         | 3.1719   |
| Left Posterior Parietal Cortex           | 7                | -21         | -63         | 49         | 81          | 2.9121   |
|                                          | 40               | -42         | -42         | 46         | 133         | 4.2347   |
| Regions Showing a Relationship           | o between Inve   | erted-U Fi  | t and WM    | Capacity   | in Patients |          |
| Left Dorsolateral Prefrontal Cortex      | 46               | -42         | 33          | 16         | 81          | 3.2439   |
|                                          | 9, 6             | -45         | 9           | 28         | 55          | 3.4153   |
| Regions Showing a Relationship betwee    | en Inverted-U    | Fit and W   | /M Capac    | ity in Unr | nedicated F | Patients |
| Left Inferior Frontal Gyrus              | 46, 45           | -48         | 33          | 10         | 35          | 3.4185   |
| Left Temporoparietal Cortex              | 19, 39           | -39         | -81         | 19         | 56          | 3.5694   |
| Left Premotor Cortex                     | 6                | -24         | 9           | 58         | 59          | 3.6064   |
| Left Fusiform Gyrus                      | 19, 37           | -36         | -66         | -14        | 40          | -3.1745  |
| Left Insula                              | 13               | -30         | -3          | 7          | 69          | -3.1302  |
| Regions Showing a Relationship betw      | veen Inverted-   | U Fit and   | WM Capa     | city in M  | edicated Pa | itients  |
| Left Fusiform Gyrus                      | 37               | -36         | -48         | -23        | 50          | 3.2771   |
| Bilateral Dorsolateral Prefrontal Cortex | 9, 46            | 39          | 39          | 28         | 74          | 3.3801   |
|                                          | 9, 6             | -42         | 9           | 31         | 33          | 3.0064   |

## Table S7. Regions showing group differences in inverted-U fit, or a relationship between inverted-U fit and working memory capacity

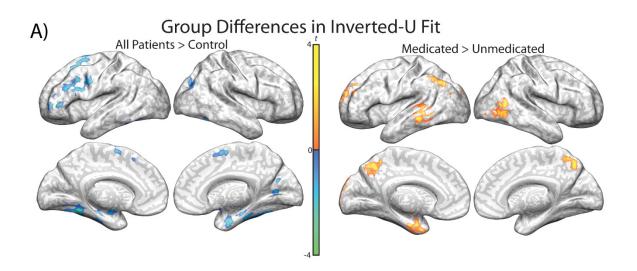
Cluster center determined as the minimum weighted geometric distance from all voxels in a cluster, with weights determined by voxel *t* values. Clusters of 200 or more voxels were subjected to subclustering by a higher-values-first watershed searching algorithm, with a minimum distance of 8 mm between clusters, and identified subclusters were

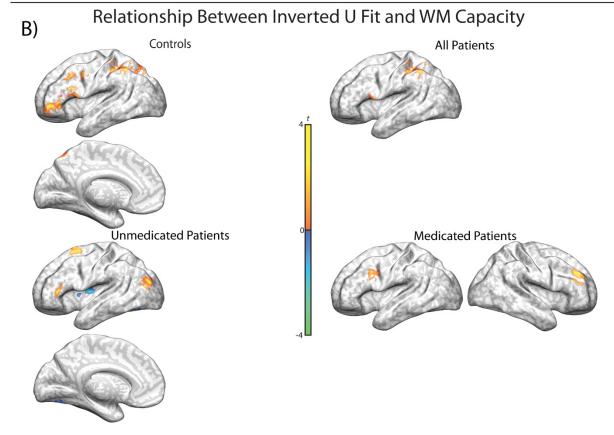
subsequently reported as separate peaks. Cluster coordinates are given in International Consortium for Brain Mapping (MNI) space. BA, Brodmann area; WM, working memory.

# Table S8. Regions showing group differences in activation, or a relationship between activation and working memory capacity

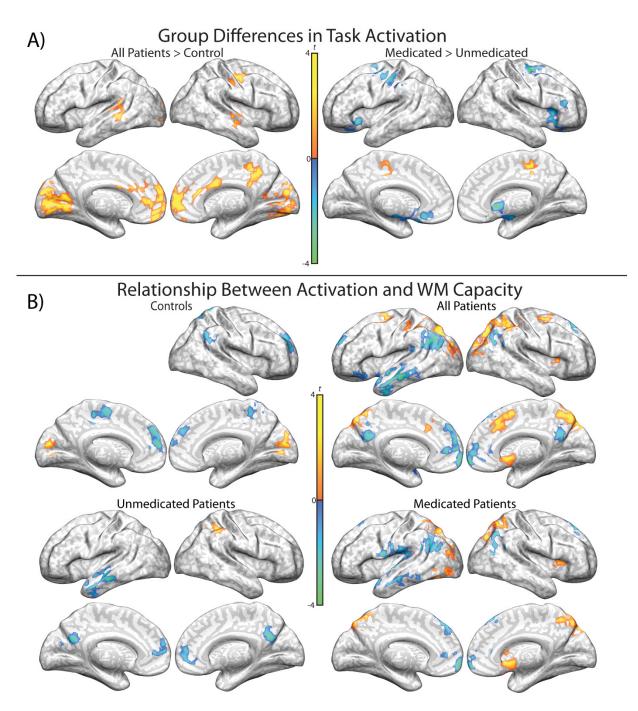

|                                      |                  | CI           | uster Cen   | ter        |             |         |
|--------------------------------------|------------------|--------------|-------------|------------|-------------|---------|
| Region                               | BA               | x            | У           | z          | Voxels      | Max t   |
| Regions Showing Differe              | ences in Activat | tion Betwe   | en Patients | s and Cor  | ntrols      |         |
| Bilateral Cuneus                     | 19, 18           | -12          | -63         | -2         | 300         | -4.3912 |
|                                      | 18, 19           | 15           | -72         | -5         | 171         | -3.9904 |
|                                      | 17, 18           | -9           | -84         | 7          | 314         | -3.4464 |
|                                      | 18               | 6            | -81         | 22         | 59          | -2.8304 |
| Bilateral Medial Prefrontal Cortex   | 10, 32           | 3            | 51          | 4          | 242         | -4.1545 |
|                                      | 11,10            | -6           | 48          | -11        | 71          | -3.5461 |
|                                      | 9, 10            | 0            | 54          | 22         | 86          | -3.1764 |
|                                      | 10               | -6           | 57          | -2         | 56          | -2.9398 |
| Bilateral Dorsal Anterior Cingulate  | 24, 32           | 3            | 27          | 22         | 101         | -3.6686 |
| Bilateral Middle / Superior Temporal |                  |              |             |            |             |         |
| Gyrus                                | 22, 41           | 54           | -12         | 1          | 73          | -3.1168 |
|                                      | 22, 21           | -60          | -39         | 7          | 78          | -2.9026 |
| Bilateral Posterior Cingulate        | 31               | 6            | -42         | 40         | 108         | -3.7559 |
| Right Motor / Somatosensory Cortex   | 4, 3, 2          | 42           | -15         | 43         | 91          | -3.5692 |
| Regions Showing Differences in       | Activation Bety  | ween Unm     | edicated a  | nd Medic   | ated Patien | ts      |
| Bilateral Posterior Parietal Cortex  | 31               | 6            | -27         | 49         | 72          | 3.9258  |
| Bilateral Putamen / Insula           | - , 13           | -21          | 15          | -11        | 183         | -3.3482 |
|                                      | 13               | 36           | 24          | -2         | 189         | -3.5852 |
|                                      | -                | 18           | 9           | -5         | 164         | -4.8298 |
| Left Motor / Somatosensory Cortex    | 4, 3             | -39          | -12         | 52         | 182         | -4.1482 |
| Right Premotor                       | 6                | 33           | 0           | 58         | 152         | -4.4009 |
| Regions Showing a Relation           | ship between A   | Activation a | and WM Ca   | apacity in | Controls    |         |
| Bilateral Cuneus                     | 18, 17           | 3            | -78         | 13         | 140         | 3.569   |
| Bilateral Medial Dorsal Prefrontal   |                  |              |             |            |             |         |
| Cortex                               | 9                | -3           | 45          | 28         | 62          | -3.4177 |
|                                      | 9, 10            | -9           | 51          | 16         | 58          | -3.1192 |
| Right Anterior Prefrontal Cortex     | 10               | 21           | 51          | 22         | 95          | -3.1229 |
|                                      | 9, 10            | 15           | 45          | 31         | 46          | -2.9146 |
| Right Supramarginal Gyrus            | 40               | 57           | -48         | 31         | 76          | -3.6287 |
| Left Supplementary Motor Cortex /    |                  |              | 4.0         | 10         |             |         |
| Cingulate                            | 6, 31            | -6           | -18         | 49         | 78          | -3.353  |
| Right Medial Parietal Cortex         | 7                | 15           | -48         | 58         | 81          | -3.2859 |
| Regions Showing a Relation           | •                |              |             |            |             |         |
| Right Putamen                        | -                | 18           | 12          | -5         | 100         | 4.2068  |
| Bilateral Occipital Cortex           | 19               | -30          | -84         | 19         | 83          | 3.1025  |
|                                      | 19               | 33           | -78         | 25         | 162         | 3.398   |
| Bilateral Posterior Parietal Cortex  | 40               | 39           | -45         | 49         | 192         | 3.4934  |
|                                      | 7                | 15           | -69         | 46         | 399         | 3.4745  |
|                                      | 7                | -18          | -66         | 43         | 257         | 3.3254  |

|                                       |               | CI        | uster Cen  |           |             |         |
|---------------------------------------|---------------|-----------|------------|-----------|-------------|---------|
| Region                                | BA            | x         | У          | z         | Voxels      | Max t   |
|                                       | 40            | -42       | -39        | 46        | 82          | 3.1454  |
| Bilateral Pre-supplementary Motor     |               |           |            |           |             |         |
| Area                                  | 6, 8, 32      | 6         | 18         | 43        | 116         | 3.5655  |
| Bilateral Premotor Cortex             | 6             | 30        | 0          | 58        | 71          | 2.657   |
|                                       | 6             | -30       | 0          | 58        | 79          | 3.6486  |
| Left Middle / Superior Temporal Gyrus | 21, 22        | -60       | -21        | -11       | 120         | -4.7789 |
|                                       | 21, 38        | -51       | 3          | -26       | 82          | -3.6485 |
|                                       | 21, 22        | -57       | -6         | -20       | 96          | -3.5807 |
| Left Ventrolateral Prefrontal Cortex  | 47            | -33       | 21         | -17       | 53          | -3.3406 |
| Bilateral Medial Prefrontal Cortex    | 10            | 0         | 60         | -5        | 109         | -3.979  |
|                                       | 10            | -3        | 51         | 10        | 129         | -3.9777 |
|                                       | 10, 32        | 6         | 51         | 4         | 40          | -3.3739 |
|                                       | 9             | -6        | 48         | 37        | 41          | -3.1633 |
| Left Anterior Prefrontal Cortex       | 10            | -18       | 54         | 28        | 46          | -3.4759 |
| Bilateral Posterior Cingulate /       |               |           |            |           |             |         |
| Precuneus                             | 31, 23        | 0         | -54        | 25        | 157         | -3.2187 |
| Bilateral Supramarginal / Angular     |               |           |            |           |             |         |
| Gyrus                                 | 39, 40        | -51       | -54        | 25        | 107         | -3.472  |
|                                       | 39            | -45       | -66        | 34        | 75          | -3.2928 |
|                                       | 39            | -51       | -69        | 25        | 38          | -3.2557 |
|                                       | 39            | 51        | -63        | 31        | 98          | -3.8142 |
| Right Dorsal Prefrontal Cortex        | 8             | 12        | 36         | 49        | 78          | -3.6691 |
| Regions Showing a Relationship bet    | ween Activati | on and WN | I Capacity | in Unme   | dicated Pat | ients   |
| Right Inferior Parietal Lobule        | 40            | 42        | -45        | 46        | 85          | 3.2314  |
| Left Middle Temporal Gyrus            | 21, 22        | -57       | -9         | -17       | 190         | -3.4073 |
| Bilateral Medial Prefrontal Cortex    | 10            | 0         | 51         | 7         | 106         | -3.6035 |
| Bilateral Posterior Cingulate /       |               |           |            |           |             |         |
| Precuneus                             | 23, 31        | 0         | -57        | 25        | 147         | -3.4562 |
| Regions Showing a Relationship be     | etween Activa |           |            | y in Medi |             |         |
| Left Occipitotemporal Cortex          | 19, 37        | -39       | -69        | -8        | 96          | 3.8918  |
| Right Putamen                         | -             | 21        | 15         | -2        | 143         | 3.7409  |
| Left Occipital Cortex                 | 19            | -30       | -78        | 22        | 88          | 2.9129  |
| Bilateral Posterior Parietal Cortex   | 7             | -24       | -60        | 49        | 81          | 3.8587  |
|                                       | 7             | 21        | -60        | 55        | 99          | 3.8179  |
|                                       | 7, 40         | 33        | -54        | 52        | 53          | 2.9436  |
| Bilateral Medial Parietal Cortex      | 7             | 12        | -69        | 46        | 87          | 3.0955  |
|                                       |               | -6        | -60        | 55        | 46          | 3.0377  |
|                                       | 7             | -12       | -72        | 46        | 85          | 2.9958  |
| Right Occipitoparietal Cortex         | 19, 7         | 21        | -78        | 40        | 40          | 3.0861  |
|                                       | 19, 39        | 30        | -69        | 34        | 49          | 2.892   |
| Right Middle Temporal Gyrus           | 21, 22        | -57       | -9         | -17       | 116         | -3.8075 |
| Bilateral Medial Prefrontal Cortex    | 10            | ••        | 57         | ••        |             | -4.4054 |


| Region                                |        | Cluster Center |     |    |        |         |
|---------------------------------------|--------|----------------|-----|----|--------|---------|
|                                       | BA     | х              | у   | z  | Voxels | Max t   |
| Left Inferior Motor / Somatosensory / | 43, 4  | -57            | -6  | 13 | 94     | -3.6852 |
| Superior Temporal Cortex              | 41, 40 | -51            | -24 | 16 | 98     | -3.2756 |
| Bilateral Angular Gyrus               | 39     | 51             | -63 | 31 | 107    | -3.5856 |
|                                       | 39     | -51            | -60 | 28 | 145    | -3.1299 |
| Medial Dorsal Prefrontal Cortex       | 8      | 3              | 36  | 52 | 177    | -3.5925 |


Cluster center determined as the minimum weighted geometric distance from all voxels in a cluster, with weights determined by voxel *t* values. Clusters of 200 or more voxels were subjected to subclustering by a higher-values-first watershed searching algorithm, with a minimum distance of 8 mm between clusters, and identified subclusters were subsequently reported as separate peaks. Cluster coordinates are given in International Consortium for Brain Mapping (MNI) space.

BA, Brodmann area; WM, working memory.




**Figure S1.** Regions in the dorsolateral prefrontal cortex region of interest showing (**A**) group differences in task activation (61 voxels; MNI coordinates 48, 27, 19; max *t*-value 3.4), and (**B**) a relationship between activation and working memory capacity (60 voxels; MNI coordinates 36, 39, 28; max *t*-value 3.4). The scatter plot shows the average activation within the voxels shown in (**B**) plotted against working memory capacity. Shaded regions show the extent of the region interest of interest.





**Figure S2.** Brain regions showing (**A**) group differences or (**B**) a relationship with working memory capacity in the fit of an inverted-U shape to activation over seven working memory loads.



**Figure S3.** Brain regions showing (**A**) group differences or (**B**) a relationship with working memory capacity in activation to the self-ordered working memory task.

#### **Supplemental References**

- 1. Van Snellenberg JX, Slifstein M, Read C, et al. Dynamic shifts in brain network activation during supracapacity working memory task performance. *Human brain mapping.* 2015;36:1245-1264.
- 2. Slifstein M, van de Geissen E, Van Snellenberg J, et al. Deficits in prefrontal cortical and extra-striatal dopamine release in schizophrenia: A Positron Emission Tomographic Functional Magnetic Resonance Imaging Study. *JAMA psychiatry*. 2015;72:316-324.
- 3. Girgis RR, Van Snellenberg JX, Glass A, et al. A proof of concept, randomized controlled trial of DAR-0100A, a dopamine-1 receptor agonist, for cognitive enhancement in schizophrenia. submitted.
- 4. Curtis CE, Zald DH, Pardo JV. Organization of working memory within the human prefrontal cortex: a PET study of self-ordered object working memory. *Neuropsychologia*. 2000;38(11):1503-1510.
- 5. Van Snellenberg JX, Conway AR, Spicer J, Read C, Smith EE. Capacity estimates in working memory: Reliability and interrelationships among tasks. *Cognitive, affective & behavioral neuroscience.* Mar 2014;14(1):106-116.
- Rouder JN, Morey RD, Cowan N, Zwilling CE, Morey CC, Pratte MS. An assessment of fixed-capacity models of visual working memory. *Proceedings of the National Academy of Sciences of the United States of America*. 2008;105:5975-5979.
- 7. Freire L, Roche A, Mangin J-F. What is the best similarity measure for motion correction in fMRI? *IEEE Transactions in Medical Imaging.* 2002;21:470-484.
- 8. Woo CW, Krishnan A, Wager TD. Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. *NeuroImage*. May 1 2014;91:412-419.
- 9. Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. *Cognitive, Affective, and Behavioral Neuroscience.* Dec 2003;3(4):255-274.