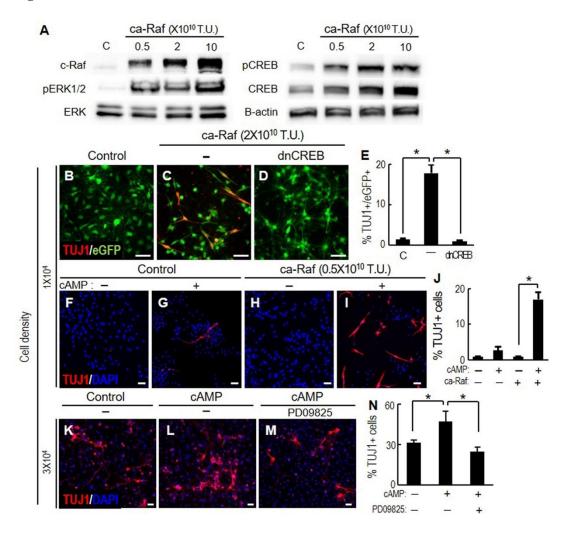
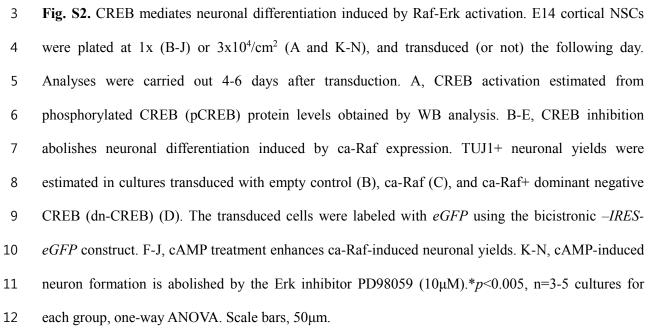

1	Supplementary data
2	
3	Neural stem cells secrete factors facilitating brain regeneration upon constitutive
4	Raf-Erk activation
5	
6	(Running title: Therapeutic use of Raf-Erk activation in NSCs)
7	
8	
9	Yong-Hee Rhee ^{1,2,8} , Sang-Hoon Yi ^{1,2,8} , Joo Yeon Kim ³ , Mi-Yoon Chang ^{1,2} , A-Young Jo ^{1,2} , Jinyoung
10	Kim ^{1,2} , Chang-Hwan Park ^{2,5} , Je-Yoel Cho ⁶ , Young-Jin Choi ⁷ , Woong Sun ³ , Sang-Hun Lee ^{1,2,5,§}
11	
12	
13	¹ Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University,
14	Seoul, Korea
15	² Hanyang Biomedical Research Institute, Hanyang University, Seoul, Korea
16	³ Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
17	⁴ Department of Microbiology, College of Medicine, Hanyang University, Seoul, Korea
18	⁵ Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
19	⁶ Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and
20	Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National
21	University, Seoul, South Korea
22	⁷ ProtAnBio, Co., Seoul, South Korea
23	⁸ Co-first author
24	
25	
26	§Author for correspondence
27	Department of Biochemistry and Molecular Biology
28	College of Medicine, Hanyang University
29	Seoul, KOREA
30	Phone: 82-2-2220-0625
31	Email: <u>leesh@hanyang.ac.kr</u>


1 Supplementary Figures and legends


2

3 Figure S1

- 4
- 5 Fig. S1. Expression of the mature neuron-specific markers MAP2 (A-C), NeuN (D-F) in Raf-
- 6 transduced eGFP+ cells. NSCs derived from rat embryonic cortices were plated at 5 $\times 10^3$ cells /cm²
- 7 and transduced with bicistronic *ca-Raf-IRES-eGFP* ($2x10^{10}TU$). The low density cultures were
- 8 differentiated for 10 days and then immunostained against eGFP/MAP2 and eGFP/NeuN. Scale bar,
- 9 30μm.

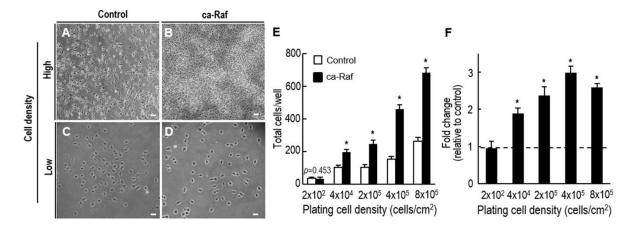
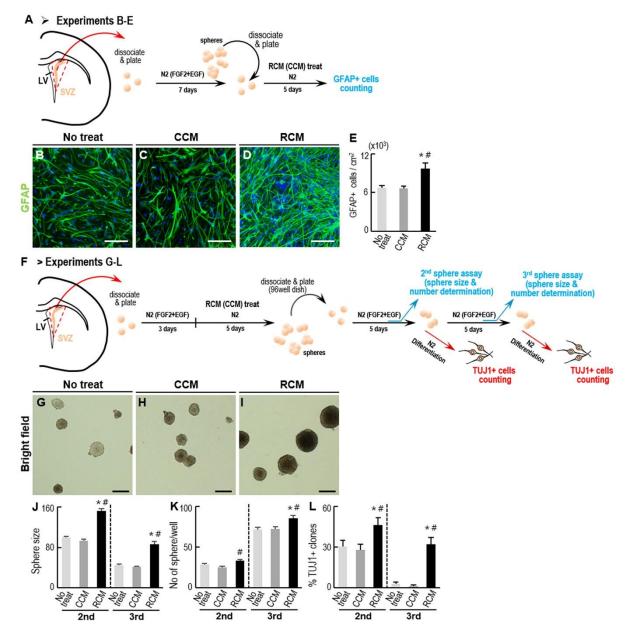


Fig. S3. Cell density-dependent effect of Raf-Erk activation on cell proliferation. Cortical NSCs were

4 plated at the cell densities indicated, and transduced with ca-Raf or mock control the following day.

5 The cultures were fixed and total viable cells were counted 4 days after transduction. A-D,

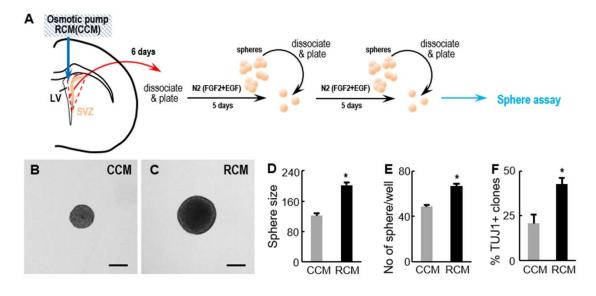
6 Representative phase contrast images 4 days after cell plating at 4×10^5 cells/cm² (high) and 2×10^2


7 cells/cm² (low). E and F, The data are total cells/well (E) and % cell numbers relative to the respective

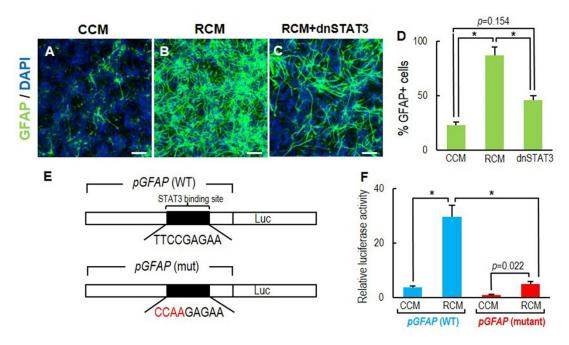
8 controls (F) at each cell density. p<0.01, n=3 culture wells for each datum, one-way ANOVA. Scale

9 bars, 50μm.

10


2

2


3 Fig. S4. The effect of RCM on adult brain-derived NSCs. A-E, RCM effect on GFAP+ adult NSC 4 number. A, schematic of the experimental procedure in B-E. Cells dissociated from the SVZs were 5 cultured in N2 supplemented with FGF2+EGF (20 ng/ml each) for 7 days. The spheres formed were 6 dissociated, plated on PLO/FN-coated dishes, and cultured in N2 medium in the presence of CM or 7 not. Five days later, GFAP+ cells were estimated (B-E). Significantly different from the untreated* 8 and from the CCM-treated# at p < 0.001, n=3 culture wells. F-L, Neurosphere-forming assays. 9 Schematic of the experimental procedure is shown in F. SVZ-derived neurospheres were treated with 10 CM for 5 days, then dissociated into single cells, and plated at 150 cells/well in 96-well plates. The

- 1 sizes and numbers of spheres (secondary) formed after 5 days were assessed (G-J). The secondary
- 2 spheres were collected and subjected to tertiary sphere forming assays in the same way. The
- 3 secondary and tertiary spheres were attached to PLO/FN-coated dishes and induced to differentiate in
- 4 N2 medium. % TUJ1+ colonies were counted after 7 days (L). 120 spheres (J), 40 wells (K), 6 dishes
- 5 (L) were analyzed. Significantly different from the untreated* and from the CCM-treated# at p < 0.001,
- 6 one-way ANOVA. Scale bar, 100μm.
- 7

3 Fig. S5. Sphere forming assays using RCM (or CCM)-infused SVZs. A, RCM (or CCM) were infused 4 into the right LV of adult mice (without TBI) as described in Fig. 5A. Six days after infusion, the 5 ipsilateral SVZs were dissociated and cultured in FGF2 + EGF-supplemented N2 for 5 days. Spheres 6 formed were dissociated into single cells and neurosphere-forming assays were carried out as 7 described in Supplementary Fig. S4. B-F, Sizes (D) and numbers (E) of the spheres were assessed 5 8 days after plating on 96-well plates. Shown in B and C are representative spheres derived from CCM-9 and RCM-infused SVZ tissues, respectively. The spheres were plated on PLO/FN-coated dishes and 10 induced to differentiate in N2 medium. TUJ1+ neuron-containing clones were counted 7 days after differentiation (F). 40 spheres (D), 30-40 wells (E), and 200-300 clones (F) were analyzed per animal, 11 and the data are expressed as mean ± SEM of 3 mice. *Significantly different from CCM-infused 12 mice at p<0.001, Student's t-test, n=3 mice for each RCM- and CCM-infused group. Scale bar, 13 14 200µm.

15

2

3 Fig. S6. Jak-STAT signal activation is responsible for astrocytic differentiation induced by RCM 4 treatment. A-D, Enhanced astrocyte yields in RCM-treated cultures are abolished by STAT signal 5 inhibition using a dominant negative STAT3 (dn-STAT3). NSCs cultured from cortices of rat embryos 6 (at E14) were transduced with retroviruses expressing dn-STAT3 (C) or mock vector (A, B). Two days 7 after transduction, the NSCs were treated with CCM or RCM for 4 days. GFAP+ cells were counted 4 8 days after CM treatment (D). *p<0.001, n=3 cultures, one way-ANOVA. scale bar, 50µm. E and F, 9 GFAP promoter assay. Schematic drawing of the STAT binding sequences in the luciferase reporters 10 driven by the wild-type (WT) and mutant (mut) GFAP promoters (pGFAP) (E). The cortical NSCs 11 were transfected with the reporter vectors and luciferase activities were determined in (F). p < 0.001, 12 n=4 replicates, one way-ANOVA.

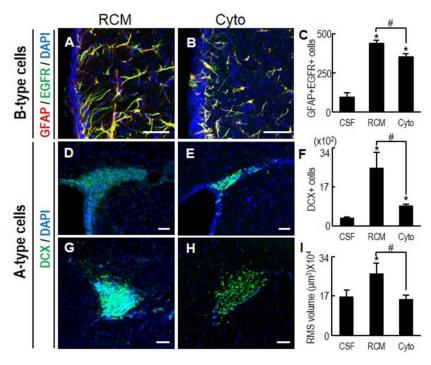


Fig. S7. Effect of the combined cytokines LIF+FGF2+VEGF on in vivo neurogenesis by SVZ-NSCs.
The levels of the cytokines LIF, FGF2, and VEGF were determined as described in Fig.7P and they
were infused as described in Fig.5A. Cell populations of activated B-type cells (GFAP/EGFR- double
positive, A-C) in the SVZ and A cells (DCX+) in the SVZ (D-F) and RMS (G-I) of the cytokineinfused (Cyto) brains were comapared with those of the mice infused with CSF (control) and RCM.
Significantly different from the CSF-infused control* and from the RCM-infused# at *p*<0.005, one-
way ANOVA, n= 4 (CSF), 7 (RCM), and 4 (Cyto). Scale bar, 50μm.

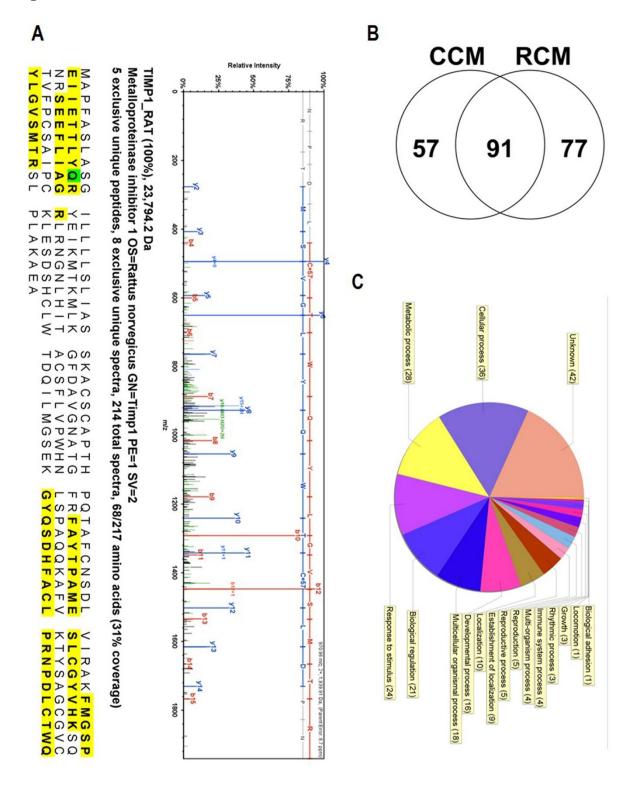
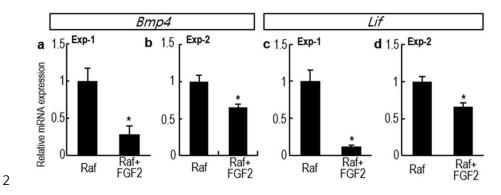
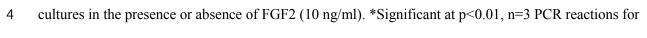




Fig. S8. Identification of proteins in CM by LC-MS/MS. Proteins (100µg) in RCM and CCM were
separated by 12% SDS-PAGE and stained with Coomassie Brilliant Blue. The stained proteins were
cut into 20 pieces for in-gel trypsin digestion and analyzed. A, Representative LC/MS spectrum of the
metalloproteinase inhibitor 1 (TIMP1) identified in RCM. B, Band-diagram exhibiting numbers of the

- proteins detected in RCM and CCM. A total 225 proteins were identified, of which 57 and 77 proteins 1 were detected only in the CCM and RCM, respectively, and 91 proteins were detected in both the 2 CCM and RCM. C, Ontologic analysis of the 77 proteins present only in RCM and 6 proteins that 3 were >5 fold higher in RCM than CCM (listed in Table S2). The proteins are classified according to 4 5 the gene ontology term: "Biological process". 6

3 **Fig. S9.** Real-time PCR analysis of *Bmp4* and *Lif* mRNA expression in ca-Raf-trasnduced NSC

5 each datum, Student's t-test.

1 Table. S1. Primers for PCR analyses, Related to Figure 4.

Gene symbol	Sequence
1 1	F: TTG CTT TGG ACT CAG CAT TG
Aqp4	R: GGG AGG TGT GAC CAG GTA GA
D 2	F: TGA GGC TGC TCA CCA TGT TTG
Bmp2	R: GTG ACA TCA AAG CTC TCC CAC T
D (F: ATT GGC TCC CAA CTT CTT CCT TT
Bmp4	R: CGT GAT GGA AAC TCC TCA CAG T
D	F: CGC TCC AAG ACT CCA AAG AAC C
Bmp7	R: CGG TGT CTG GGT TGATGA AGT G
E.C.	F: ACC GTG GAG AGA ATC CCT TT
Egfr	R: TTG TTG CTA AAT CGC ACA GC
$\Gamma = 1 = 7$	F: CCA GCT GGG AGA AGA GTT TG
Fabp7	R: TAA CAG CGA ACA GCA ACG AC
$\Gamma = C1$	F: CGC AGA CAC CAA ATG AAG AA
Fgfl	R: TTT CTG GCC GTA GTG AGT CC
E O	F: GAA CCG GTA CCT GGC TAT GA
Fgf2	R: CCG TTT TGG ATC CGA GTT TA
C 11	F: GGC ATT GCT CTC ATT GAC AA
Gapdh	R: AGG GCC TCT CTC TTG CTC TC
Class	F: GCA GAC CTC ACA GAC GTT GCT
Gfap	R: AGG CTG GTT TCT CGG ATC TGG
Slc1a3	F: GGA TGG AAA GA TTC CAG CAA
Sicius	R: ACC TCC CGG TAG CTC ATT TT
Glt1	F: CCA AAA GCA ACG GAG AAG AG
6111	R: ACC TCC CGG TAG CTC ATT TT
Lif	F: GGC AAC CTC ATG AAC CAG AT
Lij	R: ACC ATC CGA TAC AGC TCG AC
Nestin	F: GGA GTG TCG CTT AGA GGT
Ivestin	R: TCC AGA AAG CCA AGA GAA
Notch	F: GGT GCG AGC GCA GTG AAG GA
Noich	R: CCC GCT GCT GCC CTC TTT CC
Sow?	F: TCA CAA CAA TCG CGG CGG CCC
Sox2	R: GCG CGG AGA TCT GGC GGA GAA T
Pax6	F: TGT CCA ACG GAT GTG TGA GT
1 020	R: TTT CCC AAG CAA AGA TGG AC
Veaf	F: GTG CAC TGG ACC CTG GCT TTA CT
Vegf	R: CGC CTT GCA ACG CGA A
Vimentin	F: AGA TCG ATG TGG ACG TTT CC
vimentin	R: CAC ACT GTC TCC GGT ATT CGT

Table. S2. Proteins abundantly detected in the RCM,	Related to Figure S8.
---	-----------------------

#	Identified Proteins	Accession Number	Fold change by	Normalized Spectral counts	
			sample	CCM	RCM
1	Vimentin OS	G3V8C3_RAT (+1)	RCM only		125
2	Metalloproteinase inhibitor 1	TIMP1 RAT	RCM only		160
3	Alpha-2-macroglobulin	A2MG_RAT	RCM only		114
4	Moesin	A0A096MK30_RAT(+1)	RCM only		51
5	Peptidyl-prolyl cis-trans isomerase	Q6AYQ9_RAT	RCM only		93
6	Sulfated glycoprotein 1	F7EPE0_RAT (+1)	RCM only		49
7	Mannan-binding lectin serine protease 1	MASP1_RAT	RCM only		56
8	Carbonic anhydrase 2	CAH2_RAT	RCM only		65
9	Uncharacterized protein	D3ZJE2_RAT (+1)	RCM only		57
10	Gelsolin	GELS_RAT	RCM only		37
11	Myosin-6	MYH6_RAT	RCM only		1
12	Histone H3	D3ZJ08_RAT (+6)	RCM only		13
13	Uncharacterized protein (Fragment)	F1M9P7_RAT (+1)	RCM only		43
14	Chloride intracellular channel protein 1	CLIC1_RAT	RCM only		47
15	Heat shock protein HSP 90-alpha	HS90A_RAT	RCM only		43
16	Nucleolin	NUCL_RAT (+1)	RCM only		19
17	Latexin	LXN_RAT	RCM only		16
18	Elongation factor 1-gamma	EF1G_RAT	RCM only		13
19	Heterogeneous nuclear ribonucleoprotein K	HNRPK_RAT (+2)	RCM only		14
20	Coactosin-like protein	COTL1_RAT	RCM only		6
21	Insulin-like growth factor-binding protein 3	IBP3_RAT	RCM only		21
22	Destrin	DEST_RAT	RCM only		78
23	Amyloid beta A4 protein	A4_RAT	RCM only		6
24	Eukaryotic translation initiation factor 5A2 (Predicted)	G3V7J7_RAT (+1)	RCM only		4
25	Elongation factor 1-alpha 1	EF1A1_RAT	RCM only		17
26	Glutathione S-transferase alpha-4	GSTA4_RAT	RCM only		5
27	Proteasome subunit beta type	G3V8U9_RAT (+1)	RCM only		10
28	Proteasome subunit beta type-2	PSB2_RAT	RCM only		2
29	60S acidic ribosomal protein P0	RLA0_RAT	RCM only		25
30	Ubiquitin-conjugating enzyme E2 N	UBE2N_RAT	RCM only		12
31	Poly(RC) binding protein 2	Q6AYU5_RAT	RCM only		25
32	Pyruvate kinase PKM	KPYM_RAT	RCM only		18
33	Protein LOC100362142	D3ZFY8_RAT	RCM only		25
34	Protein Snrpd3	M0R907_RAT	RCM only		4
35	Prothymosin alpha	PTMA_RAT	RCM only		19
36	Actin related protein 2/3 complex, subunit 4 (Predicted), isoform CRA_a	B2RZ72_RAT	RCM only		13
37	Carbonyl reductase [NADPH] 1	CBR1_RAT (+1)	RCM only		7
38	Thioredoxin (Fragment)	R4GNK3_RAT (+1)	RCM only		9

39	14-3-3 protein eta	1433F RAT	RCM only	90
40	Adenylate kinase 2	KAD2 RAT	RCM only	13
41	Heterogeneous nuclear ribonucleoprotein F	HNRPF_RAT	RCM only	16
42	Prostaglandin E synthase 3 (Fragment)	R9PXR7_RAT (+1)	RCM only	5
43	Protein Eea1 (Fragment)	F1LUA1 RAT	RCM only	1
44	Protein LOC100910754		RCM only	2
45	Plastin 3 (T-isoform), isoform CRA a	F1LPK7_RAT (+1)	RCM only	12
46	Protein Hectd4 (Fragment)	F1LZX5 RAT	RCM only	4
47	NudC domain-containing protein 2	NUDC2_RAT (+1)	RCM only	7
48	Protein Dag1	F1M8K0_RAT	RCM only	4
49	Protein Tln1	G3V852_RAT	RCM only	1
50	RCG50226, isoform CRA_a	G3V8P4_RAT	RCM only	4
51	Actin-related protein 2/3 complex subunit 3	B2GV73_RAT	RCM only	7
52	6-phosphogluconolactonase	6PGL_RAT (+1)	RCM only	8
53	Proteasome subunit beta type	F1LNN1_RAT (+1)	RCM only	2
54	Clathrin heavy chain 1	CLH1_RAT (+1)	RCM only	1
55	Cullin-associated NEDD8- dissociated protein 1	CAND1_RAT	RCM only	4
56	Keratin, type II cytoskeletal 1	K2C1 RAT	RCM only	7
57	Protein Sh3bgrl3	B2RZ27 RAT	RCM only	2
58	Protein Ppp2r1a	Q5XI34 RAT	RCM only	1
59	Heterogeneous nuclear ribonucleoprotein C	G3V9R8_RAT	RCM only	10
60	Alpha-actinin-4	ACTN4_RAT	RCM only	2
61	Peptidyl-prolyl cis-trans isomerase D	PPID_RAT	RCM only	8
62	UMP-CMP kinase	KCY_RAT	RCM only	1
63	Uncharacterized protein (Fragment)	F1LYE1_RAT	RCM only	1
64	72 kDa type IV collagenase	E9PSM5_RAT (+1)	RCM only	7
65	Protein LOC102547754	D4ADL2_RAT	RCM only	2
66	Thimet oligopeptidase	THOP1_RAT	RCM only	2
67	Protein LOC100360057 (Fragment)	F7FLF2_RAT (+1)	RCM only	4
68	Importin subunit beta-1	F2Z3Q8_RAT (+1)	RCM only	4
69	Nidogen-1	F1LM84_RAT	RCM only	2
70	Clusterin	CLUS_RAT (+1)	RCM only	4
71	Serine/threonine-protein phosphatase PP1-alpha catalytic subunit	PP1A_RAT	RCM only	2
72	Protein Chd4	E9PU01 RAT	RCM only	1
73	Heterogeneous nuclear ribonucleoprotein D, isoform CRA b	G3V6A4_RAT (+3)	RCM only	2
74	Glutathione S-transferase omega-1	GSTO1 RAT (+1)	RCM only	2
	-	/		
75	Ubiquitin-conjugating enzyme E2 variant 2	UB2V2_RAT	RCM only	3

77	Protein LOC100362339	D4A6G6_RAT (+1)	RCM only		1
78	Carboxypeptidase E	CBPE_RAT	9.1	20	179
79	Glia-derived nexin	G3V7Z4_RAT	8.6	55	469
80	SPARC-like 1 (Mast9, hevin), isoform CRA_a	G3V7X5_RAT (+1)	7.2	64	457
81	Transketolase	G3V826_RAT (+1)	6.9	9	63
82	Insulin-like growth factor-binding protein 2	IBP2_RAT	6.5	41	264
83	Heat shock cognate 71 kDa protein	HSP7C_RAT	6.4	21	136