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MATERIALS AND METHODS  

Sample  

The sample was drawn from the Twins Early Development Study (TEDS), a multivariate 
longitudinal study that recruited over 16 000 twin pairs born in England and Wales in 1994, 
1995 and 1996 1,2. TEDS has been shown to be representative of the UK population 3. 

Supplementary Table 1 shows that the genotyped subsample of TEDS is representative of 
UK census data on key demographics from first contact through age 16 years. The project 
received approval from the Institute of Psychiatry ethics committee (05/Q0706/228) and 
parental consent was obtained before data collection.  

Genotyping and quality control  
 
SNP data were available for 3747 adolescents whose first language was English and who 
had no major medical or psychiatric problems. From that sample, 3665 DNA samples were 
successfully hybridized to Affymetrix GeneChip 6.0 SNP genotyping arrays (Affymetrix, Santa 
Clara, CA, USA) using standard experimental protocols as part of the WTCCC2 project (for 
details see Trzaskowski et al.) 4. The nearly 700 000 genotyped SNPs were imputed to the 
1000 Genomes reference panel (Phase I, v3, build 37 (hg19)) using IMPUTE v.2.3.0 software 
5,6. A total of 3152 DNA samples (1446 males and 1706 females) survived quality control 
criteria for ancestry, heterozygosity, relatedness and hybridization intensity outliers. For the 
present analyses we applied further quality control including: Minor allele frequencies > 0.01; 
Hardy-Weinberg equilibrium P<1x10-20; per-SNP missingness < 0.02; per-person 
missingness < 0.02. After quality control 4,285,205 SNPs remained that were entered into the 
polygenic score analyses. To control for ancestral stratification, we performed principal 
component analyses on a subset of 100,000 quality-controlled SNPs after removing SNPs in 
linkage disequilibrium (r2 > 0.2) 7. Using the Tracy–Widom test 8, we identified 8 axes with P < 
0.05 that were used as covariates in the polygenic score analyses.  
 
Summary Statistic Datasets 
 
We obtained summary statistics from twelve GWAS 9–19 (Supplementary Table 2), which 
provided signed summary statistics and were imputed to at least HapMap2.  
 
 
Summary-Summary Statistic Based Analysis 
 
We estimate the genetic correlation between the base GWAS using a new technique by 
Bulik-Sullivan et al., 20 based on LD Score regression 21, which uses only GWAS summary 
statistics. This method exploits the fact that each effect-size estimate for a given SNP is a 
function of this SNP’s linkage disequilibrium with other SNPs 21,22. By quantifying extent to 
which the observed effect sizes can be explained by LD, the method estimates genetic effect 
on a trait, while controlling for confounding such as cryptic relatedness or population 
stratification. Similarly, the product of effect size statistics from two GWA studies of traits will 
index the covariance between these genetic effects. Normalizing the genetic covariance by 
the heritabilities estimates the genetic correlation between two traits.  
 
 
Target phenotypes 

Individuals were assessed on a wide range of phenotypes at the age of 16 including 50 traits 
from the domains of psychopathology, personality, cognitive abilities and educational 
achievement. A detailed description of all the phenotypic measures can be found in 



Supplementary Methods 2. All measures were age- and sex-regressed and the z-score were 
used in the GPS analyses.  

Polygenic score creation 
 
We created polygenic scores from genome-wide SNP data of 3152 unrelated children using 
summary statistics from 12 published GWAS (Table 1). Strand-ambiguous SNPs were 
removed as well as the major histocompatibility complex region of the genome because of its 
complex linkage disequilibrium structure. Quality-controlled SNPs were pruned for linkage 
disequilibrium based on P-value informed clumping using r2 = 0.1 cutoff within a 250-kb 
window to create a SNP-set in linkage equilibrium. The scores were calculated as the sum 
across SNPs of the number of reference alleles for each SNP multiplied by the effect size (β-
coefficient) derived from the GWAS summary statistics. We employed two different methods 
of polygenic score creation: 
 

First, we took the conventional approach and created genome-wide polygenic scores (GPS) 
that included variants exceeding three predefined P-value thresholds (PT) in the base GWA 
summary statistics:  0.05, 0.10, 0.30.  

Second, we performed high-resolution polygenic score prediction using the option provided 
by recently published PRSise software 23. Specifically, for each individual, multiple polygenic 
scores were generated for all P-value thresholds (PT) between PT = 0.0001 and 0.50 at 
0.0005 increments (i.e. at 999 thresholds) to identify the best-fit P-value threshold (PT) for 
each pair of base and target phenotypes. PRSice defines ‘best-fit’ as the PT at which the GPS 
predicts the target phenotype with the smallest p-value.   

P-value thresholds and numbers of SNPs for the GPS for both methods are summarized in 
Supplementary Table 3-4. GPS were adjusted for 8 ancestry-informative dimensions (see 
above) for all analyses. Analyses were performed in R 24, PLINK 25,26, and PRSise software 23.  

Multiple comparison correction 

All phenotype-GPS association analyses, and the extremes analyses were performed in R, 
and the P-values obtained from each test were subsequently corrected for multiple testing 
using a “Nyholt-Šidák correction” based on the correlation matrix of variables; where the 
effective number of independent tests was calculated using the approach taken in Nyholt 27 
and then used to compute a Šidák-corrected P value 28,29. The basic idea of this approach is 
to “filter out” the correlations among the tests to arrive at the effective number of independent 
tests, which are then corrected for multiple testing. The multiple comparison adjustments 
were applied to an alpha of P = 0.05 for the conventional GPS analyses and extremes 
analyses; and of P = 0.001 for the high-resolution GPS analyses based on a simulation study 
by Euesden et al., 23 

 
Quantile analyses 
We grouped individuals into GPS septiles and estimated the mean standardised phenotypic 
value as a function of GPS quantile. As for all other analyses, the model included covariates 
of sex, and age of data collection in the standardized mean phenotypic values; and ancestry-
based PCs in the GPS quantiles.  
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