www.sciencemag.org/cgi/content/full/science.1253799/DC1

Supplementary Materials for

Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation

Kosuke Funato, Tamara Major, Peter W. Lewis, C. David Allis, Viviane Tabar*

*Corresponding author. E-mail: tabarv@mskcc.org

Published 20 November 2014 on *Science* Express DOI: 10.1126/science.1253799

This PDF file includes

Materials and Methods Figs. S1 to S16 Tables S1 to S6 References

Supplementary Materials for

Use of Human Embryonic Stem Cells to Model Pediatric Gliomas with H3.3K27M Histone Mutation

Kosuke Funato¹, Tamara Major¹, Peter W. Lewis², C. David Allis³, Viviane Tabar¹

correspondence to: <u>tabarv@mskcc.org</u>

This PDF file includes:

Materials and Methods Figs. S1 to S16 Tables S1 to S6

Materials and Methods

Cell culture

hESCs (WA-09; passages 35-45) were maintained at undifferentiated state on irradiated mouse embryonic fibroblasts (MEFs, Globalstem Inc) in medium consisting of DMEM/F12 (Invitrogen) supplemented with 20% Knockout Serum Replacement (KSR, Invitrogen), 10 ng/ml basic fibroblast growth factor (bFGF, R&D Systems), 1 mM L-glutamine (Invitrogen), 100 μ M non essential amino acids and 0.1 mM β -mercaptoethanol (Sigma-Aldrich). The cells were fed daily and passaged weekly using 6 U/ml dispase. Human primary astrocytes (Sciencell) were maintained in Astrocyte Medium (Sciencell). MRC-5 lung fibroblasts (ATCC, CCL-171) were maintained in DMEM medium supplemented with 10% fetal bovine serum (FBS). Human patient-derived DIPG cells (DIPG-VI, kindly provided by Michelle Monje, Stanford University) were maintained in Neurobasal media (Invitrogen) supplemented with B27 without Vitamin A (Invitrogen), EGF (20ng/ml), bFGF (20 ng/ml, R&D Systems), PDGF-AA and -BB (20 ng/ml, Peprotech) and heparin (10 ng/ml).

Neural induction and neural subtype specification

For neural induction, a modified version of the dual-SMAD inhibition was used (7). Undifferentiated hES-cells were disaggregated using Accutase (Innovative Cell Technology) and plated on Matrigel (BD)-coated dishes at a density of 40,000 cells/cm² in MEF-conditioned ESC medium supplemented with 10 ng/ml of bFGF and ROCK inhibitor (Y-27632). When the cells reached the confluent state (2-3 days after plating), they were exposed for 9 days to LDN193189 (200 nM, Stemgent) and SB431542 (10 mM, Tocris) in KSR medium containing DMEM, 15% knockout serum replacement, 2 mM L-glutamine and 10 μ M β -mercaptoethanol. KSR medium was gradually replaced with N2 medium (25%, 50%, 75%) starting on day 4 of differentiation as described previously. On day 12, cells were dissociated using Accutase and replated in high density conditions (300,000 cells per cm²) on dishes pre-coated with polyornithine (PO; 15 μ g/ml), laminin (Lam; 1 μ g/ml) and fibronectin (FN; 2 μ g/ml) in N2 medium supplemented with BDNF (brain-derived neurotrophic factor, 20 ng/ml, R&D), ascorbic

acid (0.2 mM, Sigma), Purmorphamine (1 mM, Stemgent) and FGF8 (100 mg/ml, R&D). They were patterned at P1 stage for two weeks and thereafter passaged by mechanical picking of the CNS clusters and re-plated on PO/Lam/FN coated dishes. Neural precursor cells (NPCs) were maintained in N2 medium supplemented with EGF (20 ng/ml), bFGF (20 ng/ml, R&D Systems) and B-27 supplement without vitamin A (1:50, Invitrogen). Medium was changed every 2 days while the cultures were passaged every two weeks. For the differentiation to astrocytes, NPCs (day 65-135) were exposed to N2 medium containing 5% FBS for an additional 14 days. For the differentiation to neurons, NPCs were cultured in N2 medium supplemented with BDNF (20 ng/ml) and ascorbic acid (AA, 0.2 mM) for 14 days. For the differentiation to oligodendrocytes, NPCs were cultured in N2 media supplemented with cAMP, triiodothyronine (T3), BDNF (20 ng/ml) and ascorbic acid (AA, 0.2 mM) for 21 days.

Immunostaining

Cells were fixed by incubation in 4% paraformaldehyde for 15 minutes and incubated in blocking buffer (10% fetal bovine serum or goat serum; 0.1% BSA; 0.3% Triton-X100 in PBS) for 1 hour. Cells were stained with primary (or conjugated) antibodies in blocking buffer at 4°C overnight, washed and stained with secondary antibodies in PBS supplemented with 0.1% BSA for 30 minutes at room temperature, in the dark. Nestin (MAB5326; 1:400), SOX2 (AB5603; 1:200), TRA-1-81 (MAB4381; 1:100), Olig2 (AB9610; 1:100), O4 (MAB345; 1:50) and MBP (MAB386; 1:1000) antibodies were obtained from Milliopore, H3K27me3 (clone C36B11; 1:1500) and phospho-Histone H2A.X (Ser139; clone 20E3; 1:400) from Cell signaling, Tuj1 (PRB-435P; 1:500) from Covance, GFAP (1:5000) and Ki67 (clone MIB-1; 1:200) from Dako, Nanog (H-155; 1:200) from Santa Cruz, p75 (clone ME20.4; 1:50) from Advanced Targeting Systems. Nuclei were stained by DAPI (Invitrogen). Mice were perfused with 4% paraformaldehyde solution. The brains were extracted and fixed by incubation in 4% paraformaldehyde at 4°C overnight. Following cryopreservation by incubation in 15% and 30% sucrose solutions, brains were frozen into OCT compound and cut by cryostat into 10 mm sections. For immunohistochemistry, sections were air-dried, washed by PBS and incubated in blocking buffer (10% fetal bovine serum or goat serum, 0.1% BSA and 0.3% Triton-X100 in PBS) for 1 hour. Cells were stained with primary antibodies in blocking buffer at 4°C overnight, washed and stained with secondary antibodies in PBS supplemented with 0.1% BSA for 30 minutes at room temperature, in the dark, followed by nuclear staining by DAPI. Human specific GFAP antibody (STEM123; 1:1000) was obtained from StemCells Inc, HA-tag (clone 3F10; 1:200) from Roche, Ki67 (ab15580; 1:200) from Abcam, and human nuclear antigen (MAB1281; 1:200) from Millipore. Whole brain images are composed by stitching ~20 scan images. TUNEL assay was performed using TUNEL apoptosis detection kit from Millipore following manufacturer's instruction. Hematoxylin and Eosin (H&E) staining was performed according to standard procedures.

Gamma-radiation of cells

Cells were plated onto 48-well plates and irradiated at the dose of 5 Gy (3.45 Gy/minute) using X-RAD 225C Biological X-ray irradiator (Precision X-ray, Inc). Following incubation for the indicated time period, cells were fixed and immunostained for Ki67 and g-H2A.X (phosphorylated at Ser139). The number of Ki67-positive cells and g-H2A.X foci per cell was counted manually or using ImageJ software.

Sub-G1 assay

Cells were trypsinized, collected in PBS and fixed in cold 70% ethanol. Followed by RNase A (Ambion) treatment, cells were stained with propidium iodide (50 μ g/ml, Invitrogen) in PBS and subjected to FACS analysis according to standard procedures.

Migration and invasion assay

Cell migration was assessed by the Boyden chamber assay. Briefly, the bottom chamber was coated with Lam/FN at 37°C overnight and air-dried. 3,000 cells were plated on the top chamber and allowed to migrate for 4 hours. Following PBS wash, cells that migrated to the bottom chamber were fixed, stained with DAPI and counted by fluorescence microscopy. For invasion assay, spheres of RFP-labeled transduced NPCs (~1.5 mm in diameter) were embedded in Matrigel (BD). Following 12 days of incubation, invasion of cells into Matrigel was analyzed by measuring the distance travelled from the sphere edge. P-values were calculated by Chi-square test.

Low density culture

3,000 cells were evenly plated onto 24 well plates precoated with PO/Lam/FN and cultured in N2 medium supplemented with EGF (20 ng/ml), bFGF (20 ng/ml, R&D

Systems) and B-27 supplement without vitamin A (1:50, Invitrogen) for 4 weeks. Medium was changed every 2-3 days. Crystal violet staining was performed according to standard procedures.

In vitro limiting dilution assay

Sphere-forming capacity was assessed by limiting dilution assay. 10~100 cells were plated into 96-well low-attachment plates. Following 12 days of incubation, spheres with more than 5 cells were counted. P-values were calculated using Extreme Limiting Dilution Analysis (ELDA) software(22).

Animal surgery and transplantation

All animal experiments were done in accordance with protocols approved by our Institutional Animal Care and Use Committee and following NIH guidelines for animal welfare. 100,000 or 500,000 cells were injected intracranially into NOD-SCID mice (6-day-old pups, 3 mm posterior to lambda-suture and 3 mm deep). Hypothermia was used for anesthesia. Animals were monitored for 3-6 months with neurological assessments and MRI imaging. For evaluating *in vivo* growth of menin-knockdown cells, Luciferase-labeled P5K cells were transduced with control or sh-MEN1-expressing lentivirus. Following 6 days of incubation, cells were dissociated by Accutase and intracranially injected into immunocompromised mice as described above.

<u>In vivo imaging</u>

Animals were anesthetized with isoflurane gas and injected with D-luciferin (Invitrogen; Pierce), followed by bioluminescent imaging by the IVIS imaging system (PerkinElmer) with a 5-minute exposure time (described in detail in (23). For MRI imaging, the mice were anesthetized using 1.5-2 % isoflurane in a 70% N₂O + 30% O₂ mixture. Imaging was performed on a Bruker Biospec 4.7-Tesla (200 MHz) 40 cm horizontal bore magnet. The system is equipped with a 300 mT/m gradient system. Examinations were conducted using a 32-mm quadrature birdcage resonator for excitation and detection.

Drug screening

We performed a chemical screen using a limited small molecule library of compounds that target epigenetic regulators (80 compounds; Cayman Chemicals) along with DNA damage reagents (Camptothecin and Doxorubicin, Santa Cruz) and RTK inhibitors (Sunitinib and Imatinib, Selleck) as controls. GFP-labeled normal NPCs and RFP-labeled P5K cells were mixed and seeded onto 96-well plates pre-coated with PO/Lam/FN. 24 hours after plating, cells were then treated with each compound at 8 different concentrations (2-fold serial dilution, typically from 10 mM to 78.125 nM) in duplicate wells for 6 days. Following PBS wash, GFP and RFP fluorescence was quantified by a multi-wavelength automated plate reader (Tecan Infinite M1000 Pro). For calculating IC_{50} values, data were normalized by the values of vehicle-treated cells and fitted to Hill equation using the least squares method.

Microarray analysis

Total RNA was extracted with Trizol reagent (Invitrogen). The RNA was then processed by the MSKCC Genomic core facility and hybridized with Affymetrix U133 Plus2.0 arrays. Gene expression analysis was carried out within the GenePattern website (<u>http://www.broadinstitute.org/cancer/software/genepattern/</u>). Briefly, background correction and quantile normalization was done with the Robust Multi-array Average (RMA) algorithm(24). Probes that passed the variation filter were subjected to PCA and hierarchical clustering with average linkage and Pearson correlation distance. For identifying differentially expressed genes between conditions, probes were ranked by signal-to-noise ratio and statistical significance was determined by permutation test (Supplementary table 1 and 2). Microarray data of DIPG patients' samples was obtained from GSE34824/GSE36245 and early-stage NPCs was from GSE9921. Microarray data generated in this manuscript was deposited in GEO (GSE55541).

ChIP-seq

Native ChIP was performed as previously described(25). Briefly, ~10 million cells were washed, resuspended in digestion buffer (50 mM Tris-HCl, pH 7.6; 1 mM CaCl2; 0.2% Triton-X100) and treated with micrococcal nuclease from *Staphylococcus aureus* (MNase) for 5 min at 37°C. Nuclei were lysed by brief sonication and dialyzed into RIPA buffer (10 mM Tris-HCl, pH 7.6; 1 mM EDTA; 0.1% SDS; 0.1% Na-Deoxycholate; 1% Triton X-100) for 2 hours at 4°C. Soluble material was recovered and subjected to immunoprecipitation using antibody against H3K4me3 (Active Motif; Cell signaling) or H3K27me3 (Millipore; Cell signaling), and Dynabeads Protein A (Invitrogen). Following the final wash, chromatin was eluted with elution buffer (50 mM Tris-HCl, pH 8.0; 10 mM EDTA; 1% SDS) and digested by proteinase K (Roche). ChIP DNA and ChIP input

DNA were then isolated using QIAGEN Qiaquick PCR purification kit. ChIP-seq libraries were prepared according to the Illumina protocol and sequenced with either the Genome analyzer II or HiSeq 2000.

<u>Data analysis</u>

Analysis of ChIP-seq data was carried out within the Galaxy website (http://galaxyproject.org/). Briefly, reads that passed the quality filter were mapped to the human genome (hg19) using Bowtie algorithm (26) with default setting. Peak calling was done by Model-based Analysis of ChIP-Seq (MACS) algorithm (27) with 500-bp window size. For comparing the level of histone modifications in different groups of promoters, the total number of reads in individual promoters (between +1 kb and -500 bp from transcription start site) was computed and normalized by total read counts. The level at gene-body regions was further normalized by the length of individual transcripts.

Western Blot

Cells were lysed in RIPA Buffer (50mM Tris-HCl, pH 8.0; 120mM NaCl; 5mM EDTA; 0.5% NP-40). Following 30-minute centrifuge at 14000 rpm, supernatant was collected and protein concentration was measured by the Bradford Assay (Bio-Rad). Lysates were boiled for 5 minutes in Laemmli sample buffer and separated by electrophoresis on 4-12% Bis-Tris gel in SDS running buffer for 1.5-2 hours. Protein was transferred to nitrocellulose membrane using the iBlot gel transfer device (Invitrogen). Non-specific protein binding was prevented by blocking the membrane with 4% blocking reagent (Amersham) in TBS-T (0.1% Tween-20 in TBS buffer). Membrane was incubated at 4°C overnight in the blocking buffer with primary antibodies: PDGFRA (1:1000; Cell Signaling), Trimethylated-H3K27 (1:1000; Cell Signaling), b-tubulin (clone DM1A; 1:1000; SantaCruz), GAPDH (1:1000; Cell Signaling), HA-tag (clone 3F10; 1:1000; Roche), H3 (clone 96C10; 1:1000; Cell Signaling), Menin (1:1000; Bethyl Laboratories) and H3.3K27M (1:1000; Millipore). After four washes with TBS-T, the blot was incubated with respective secondary antibodies for Mouse (1:5000) or Rabbit (1:5000) at room temperature for 30 minutes. ECL prime Western Blotting Detection Kit was used for detection according to manufacturer's instruction (Amersham).

Quantitative real-time PCR

Total RNA was extracted using TRIzol (Invitrogen). For each sample, 1 mg of total RNA was reverse transcribed using the SuperScriptIII (Invitrogen). Amplified material was detected using Quantitect SYBR green probes and PCR kit (Qiagen) on a Mastercycler RealPlex2 (Eppendorf). All results were normalized to an Actin control. Sequences of primers are shown in supplementary table.

Vectors and mutagenesis

Human PDGFRA (Addgene #23892)(28) was cloned into pLenti PGK Neo DEST vector (Addgene #19067)(29). Mutagenesis was performed following the manufacturer's protocol (Promega). Cloning and mutagenesis of H3.3 transgenes were described previously(9). Luciferase-expressing vector (pLenti PGK Blast V5-LUC) was obtained from Addgene (#19166)(29), MEN1-expressing vector from Open Biosystems. For the construction of shRNA-expressing vectors, annealed oligos were cloned into H1 vector or pENTR-H1 vector. The shRNA expressing cassette in pENTR-H1 vector was transferred to lentiviral vectors by LR recombination according to manufacturer's instruction (Invitrogen). Target sequences of each shRNA are shown in supplementary table.

Lentivirus production

Lentiviruses were produced in 293T packaging cells, by a slightly modified version of a method described previously(*30*). Lentiviral vectors were transfected in 293T cells with packaging vectors (pCMV-dR8.2 and pCMV-VSV-G), in the presence of Polyethylenimine (Polysciences). Viral supernatants were collected 72 h after transfection and viral particles were concentrated by ultracentrifugation at 49,000g for 1.5 h at 4 °C.

Assessment of Senescence

Senescence-associated b-galactosidase activity was assessed using the staining kit from Invitrogen according to the manufacturer's instructions.

<u>Statistical analysis</u>

Student's t-test and ANOVA were performed for statistical analysis, unless indicated otherwise.

PDGFRA(D842V)+sh-p53(2)

Fig. S1.

(A,B) Quantification of cell viability (trypan bue) following incubation for 5 days *in vitro*. A second shRNA against p53 was used in B, leading to a similar results. (C) Quantification of proliferation via Ki67 upon transduction of oncogenes combinations and using the second shRNA-p53. (D) Immunohistochemistry for Ki67 in the different cell groups. Bars indicate mean \pm S.D. ($n = 4 \sim 5$). *, p < 0.05; **, p < 0.01.

(A) FACS-based cell cycle analysis of human ES cells transduced with WT or K27M mutant form of histone H3.3. (B) Human ES cells expressing WT histone H3.3 or K27M mutant were immunostained with the indicated antibodies, demonstrating absence of H3K27me3 marks, and unchanged expression of pluripotency markers Nanog and TRA1-81 as well as the early transcription factor SOX2. Sporadic expression of H3K27me3 is likely localized to the feeder layer. (C,D) Expression of K27M is associated with a decrease in proliferation and increased senescence in differentiated cells, such as astrocytes (C) and fibroblasts (D). Quantification of senescent cells was performed via analysis of senescence-associated β -galactosidase activity (SA β -gal). Bars indicate mean \pm S.D. (n = 4~5). Scales: 100 µm. *, p < 0.05; **, p < 0.01.

(A) NPCs transduced with the indicated lentiviruses were immunostained for Nestin and Olig2. (B) Quantification of immunostaining for Olig2. Bars indicate mean \pm S.D. ($n = 4 \sim 5$). *, p < 0.05; **, p < 0.01.

Figure S4

(A) Bright phase microscopy of transduced NPCs grown at very low density for 4 weeks. (B) FACS analysis for the sub-G1 fraction (apoptotic cells) in transduced NPCs under control conditions and 24 hours following growth factor withdrawal. Bars indicate mean \pm S.D. (n = 3). (C) Sphere-forming capacity was assessed by limiting dilution assay. 10~100 cells were plated into a 96-well low-attachment plate. After 12 days of incubation, spheres with more than 5 cells were counted. (D,E) Proliferation of normal and transformed NPCs was assessed following a single dose of radiation (5 Gy) at the indicated time point, by Ki67 staining. Bars in (E) indicate mean \pm S.D. ($n = 4 \sim 5$). (F.G) DNA repair kinetics following radiation. Cells were immunostained for phospho-y-H2A.X at 0, 3 hours and 18 hours following a dose of 5 Gy. The number of positive foci was counted. (H) Cell migration was assessed by the Boyden chamber assay. 3,000 cells were plated in the top chamber and the number of cells that migrated to the bottom chamber was counted by fluorescence microscopy of DAPI stained cells. Bars indicate mean \pm S.D. (n = 4). (I) Low magnification immunofluorescence microscopy of RFPlabeled transduced NPCs embedded as spheres in Matrigel. Cells migrating from the spheres were analyzed on day 12 and the distance travelled from the sphere edge was measured. *, p < 0.05; **, p < 0.01. NS, Not Significant.

(A-C) Transduced NPCs were differentiated under neuronal and oligodendrocyte (oligo) conditions. Immunohistochemistry and quantification for the neuronal (TUJ1, B) and oligodendrocyte (O4 and MBP, C) markers, respectively. Bars indicate mean \pm S.D. ($n = 4 \sim 5$). (D) Spontaneous differentiation to mesenchymal cells was analyzed by p75 immunostaining. *, p < 0.05; **, p < 0.01.

Representative images of mouse brains transplanted with P5K cells. Low magnification immunofluorescence images of representative sections labeled for human specific nuclear antigen (HNA) and counter-stained with DAPI (left). The consecutive sections were stained with H&E (right). Scale bar, 100 μ m (left), 50 μ m (right).Note the presence of hydrocephalus secondary to subarachnoidal disease, as well as intraventricular tumor (animal #2).

P5K

11.6 ± 5.9 %

P5W

OLIG2 HNA DAPI

20 µ m

5.2 ± 4.2 %

H4-tag (H3.3W1/K27M) human-specific GFAP DAPI Parenchyma Barenchyma Barenchym

HNA(+) (0.03%)

Triple positive (61.2%)

	% hGFAP(+) cells in total human cells	% hGFAP(+)/HA(-) in total hGFAP(+)
P5W	17.3 ± 2.2	18.5 ± 7.6
P5K	7.9 ± 1.0 **	42.5 ± 13.2

Immunophenotyping of transplanted cells. (A-D) Frozen sections of mouse brains transplanted with P5W or P5K cells were immunostained for the indicated antibodies. Expression of H3.3 WT or K27M was coupled to hemagglutinin (HA) epitope tag, while sh-p53 was associated with a RFP reporter. (A) Immunostaining for the HA-tag showed that the majority of the cells retained the histone transgenes. Numbers indicate the percentage of HA-stained cells relative to HNA-stained cells (mean \pm S.E.M., $n = 3 \sim 4$). (B) Silencing of the histone transgene and/or sh-p53 expression in transplanted P5K cells was evaluated by immunostaining for the HA-tag and RFP expression, respectively. (C) Immunohistochemistry for Olig2 demonstrates an increased percentage in the P5K tumors, compared to P5W. Numbers indicate the percentage of Olig2-stained cells relative to HNA-stained cells (mean \pm S.E.M., $n = 3 \sim 4$). (D) Astrocytic differentiation of transplanted cells was assessed by immunostaining for human-specific GFAP and the HA-tag. White arrows indicate astrocytes of human origin. Yellow arrowheads indicate transplanted cells that retain histone transgenes. Numbers indicate the percentage of GFAP-stained cells relative to the total number of cells of human origin (HA and/or GFAP-stained cells, mean \pm S.E.M., $n = 4 \sim 6$). **, p < 0.01.

(A) Hierarchical clustering of microarray data from P5K cells and patient tumor samples bearing the K27M or G34R/V mutations (GSE36245) obtained from (4). (B) Pearson's correlation between the two groups was analyzed. (C) Unsupervised hierarchical clustering of microarray data obtained from NPCs transduced with the different H3.3 and oncogene combinations. (D) Gene Set Enrichment Analysis (GSEA) indicates an enrichment of the gene sets that are up or down-regulated by K27M in the expression profile of early-stage (rosette-stage) NPCs compared with late-stage NPCs. (E) Overlap of indicated transcript sets are shown by Venn diagrams. Transcripts that are up or down-regulated for more than 3 folds by K27M ('K27M up' and 'K27M down') were compared with the transcripts that are upregulated in early-stage NPCs ('Rosette'), late-stage NPCs ('Late-NPCs') or shared between early-stage NPCs and undifferentiated ES cells ('ES/Rosette shared'), respectively. P-values were calculated by hyper-geometric test. (F) RT-qPCR demonstrates increased expression levels of LIN28B, PLAG1 and PLAGL1 in human ES cells and rosette-stage NPCs. Bars indicate mean \pm S.E.M. (n = 3 - 4).

В	K27M	G34R/V	WT	
	6518884997 6518885000 6518885001 6518885001 6518958493 6518958493 65189558493 65189558493 65188559493 65188559493 65188559493 65188559493 6518855947	Construction Const	CSI8855951 CSI8855951 CSI8855951 CSI88559555 CSI88559555 CSI88559555 CSI88559555 CSI88559555 CSI88559555 CSI88559555 CSI88559555 CSI88559565 CSI88559566	
				SampleName CHCHD7 PLAG1
				DITH2A 0DZ3 PLS1 PERP
				LIN28B BZW2 COCH TES SORBS2
				L0C642730 DPYD STRA6 CTSC
				KIAA1622 PLAGL1 RP6-213H19.1 RUNX2
				TPD52L1 RGS10 SLC35F2 NHU TTEA
				LPHN2 VGLL3 STXBP6 MAN1A1
				FAN7A1 FAN60A EFNA5 FLJ45187 KLF5
				CHRDL1 GPC4 GLI3 MAML3

(A,B) Gene Set Enrichment Analysis (GSEA) indicates an enrichment of the gene set that is upregulated by K27M in the gene expression profile of patient tumor samples with K27M mutation, compared to G34R/V mutations, and non-histone mutated GBMs.

Figure S10

(A) Knockdown of LIN28B and PLAGL1 reduced the number of viable cells in P5K cells. P5W and P5K cells were infected with the indicated shRNA-expressing lentiviruses. Viability was assayed by trypan-blue following 6 days *in vitro*. Values are normalized to control shRNA (shLuc) and log transformed. Bars indicate mean \pm S.E.M. ($n = 3 \sim 6$). (B) Confirmation of silencing by real-time RT-qPCR. (C) Knockdown of LIN28B decreased the proliferation of P5K cells. P5W and P5K cells were transduced with control (shLuc) or LIN28B-shRNA expressing (shLIN28B#3) lentiviruses, respectively, and immunostained for Ki67. Bars indicate mean \pm S.D. ($n = 4 \sim 5$).

Figure S11

(A,B) Chromatin landscape of selected genes. H3K4me3 (red) and H3K27me3 (blue) marks are shown for P5W and P5K cells. (C) Profiles of H3K4me3 and H3K27me3 marks over the upregulated (91 genes) or downregulated (80 genes) by K27M (Supplementary Table 3). Blue, P5W cells; red, P5K cells. Arrows indicate the peak of signal intensity. (D) Levels of H3K27me3 marks at the gene-body region of the genes upregulated or downregulated by K27M. P-values were calculated by the Wilcoxon rank-sum test. (E) Decreased expression of Nkx2-2 and MBP was confirmed by RT-qPCR. Bars indicate mean \pm S.E.M. ($n = 3 \sim 5$). *, p < 0.05; **, p < 0.01.

Figure S12

(A) Representative dose response curves in normal NPCs (Mock, blue), P5W (green) and P5K (red) cells treated with Sunitinib. Error bars indicate S.D. (n = 4). (B) Proliferation assay demonstrates a significant effect of MI-2 on P5K cells, with no impact on normal or P5W cells. Bars indicate mean \pm S.D. (n = 4). (C,D) MI-2 treatment induced cell death in P5K cells. After 6 days of treatment, the percentage of dead cells was measured by Sub-G1 assay (C) and TUNEL staining (D). (E) Knockdown of menin decreased the proliferation of P5K cells. The number of viable cells was counted by trypan-blue staining. Bars indicate mean \pm S.D. (n = 4). (F) Confirmation of menin knockdown and rescue by western blotting. The expression of menin was suppressed by the shRNA targeting 3' UTR of menin (shMEN1 #2) and rescued by the overexpression of menin ORF (MEN1 ORF) in P5K cells. (G and H) Proliferation of P5K cells was decreased by menin knockdown and rescued by the overexpression of menin ORF. Viability and proliferation were assessed by trypan-blue staining (G) and Ki67 staining (H). Bars indicate mean \pm S.D. ($n = 4 \sim 5$). (I,J) Suppression of menin restored astrocytic differentiation in P5K cells. P5K cells transduced with control or menin shRNAexpressing lentiviruses (shMEN #1 and shMEN #2), were cultured under the differentiation condition. Following 14 days in vitro, astrocytic differentiation was assessed by immunostaining for GFAP (I). Cells were cultured under the differentiation condition with or without MI-2 (0.5 μ M) for 14 days (J). Bars indicate mean \pm S.D. (n =4~5). Scale, 20 μm. *, p < 0.05; **, p < 0.01. NS, Not Significant.

(A,B) Increased expression of menin in P5K cells is shown by western blotting (A) and RT-qPCR (B). (C,D) Expression level of menin is upregulated in human ES cells and rosette-stage NPCs (R-NPCs), whereas downregulated in astrocytes. Bars in (B,D) indicate mean \pm S.E.M. ($n = 3 \sim 5$). (E,F) Chromatin landscape of *MEN1* locus in P5W and P5K cells. ChIP-seq data for H3K4me3 (red) and H3K27me3 (blue)(E), and validation by ChIP-PCR (F). Bars indicate mean \pm S.D. (n = 3).

Α

(20 mg/kg, i.p., every 2 days)
Fig. S14

(A) Knockdown of menin suppresses *in vivo* growth of P5K cells. Intracranial growth of Luciferase-labeled P5K cells, transduced with control or menin shRNA-expressing (shMEN1) lentiviruses, was measured by quantitative *in vivo* bioluminescence imaging (IVIS). (B) Schematic representation of the drug treatment experiment shown in Fig 4G. *, p < 0.05

Figure S15

Fig. S15

(A) Characterization of P5K cells sorted from mouse xenografts. Cells can be grown in both sphere (left panels) and adherent-culture (right panels). Immunohistochemistry demonstrates maintenance of SOX2 and Nestin expression as well as H3.3K27M transgene. (B) Western blotting of xenograft-derived P5K cells shows the expression of K27M and loss of H3K27 trimethylation mark (H3K27me3). Higher bands in the total H3 blot indicate hemagglutinin (HA)-tagged H3.3 transgene. (C,D) Sorted P5K cells were treated with MI-2 for 7 days and the number of viable cells was counted by trypanblue staining. Bars indicate mean \pm S.D. (n = 4). (E) MI-2 treatment suppressed the proliferation of sorted P5K cells. Cells were treated with MI-2 at various concentrations for 5 days and immunostained for Ki67. Bars indicate mean \pm S.D. ($n = 4 \sim 5$). (F,G) MI-2 treatment induced cell death in sorted P5K cells. Following 6 days of treatment, the percentage of dead cells was measured by Sub-G1 assay (F) and TUNEL staining (G). Bars indicate mean \pm S.D. (n = 4). (H) Knockdown of LIN28B and PLAGL1 reduced the number of viable cells in sorted P5K cells. Cells were infected with the indicated shRNAexpressing lentiviruses. Viability was assayed by trypan-blue following 6 days in vitro. Bars indicate mean \pm S.D. (n = 4). **, p < 0.01.

Figure S16

Fig. S16

(A) Bright phase microscopy of a patient-derived DIPG cell line. (B) Western blotting indicates the presence of H3.3K27M mutation and significant reduction of H3K27 trimethylation mark (H3K27me3) in the DIPG cell line (DIPG-VI). (C) MI-2 treatment suppressed the proliferation of DIPG cell line. Cells were treated with MI-2 for 7 days and the number of viable cells was counted by trypan-blue staining. Bars indicate mean \pm S.D. (n = 4). (D,E) Knockdown of menin suppressed the proliferation of DIPG cell line. Cells were transduced with control or menin shRNA-expressing (shMEN) lentiviruses. Following 7 days *in vitro*, knockdown of menin was confirmed by western blotting (D) and the number of viable cells was counted by trypan-blue staining (E). Bars indicate mean \pm S.D. (n = 4). (n = 4). *, p < 0.05; **, p < 0.01.

<u> Fable S1.</u>	Genes upregulated in	n cells expressing the H	3.3 K27M mutation	n (K27M + P5K vs a	all other conditions)
-------------------	----------------------	--------------------------	-------------------	--------------------	-----------------------

Rank	Gene ID (Affymetrix)	Gene Description	Score (Signal-to- noise ratio)
1	232231_at	runt-related transcription factor 2, RUNX2	9.73
2	205229_s_at	coagulation factor C homolog, cochlin (Limulus polyphemus), COCH	8.15
3	1554242_a_at	coagulation factor C homolog, cochlin (Limulus polyphemus), COCH	7.49
4	222392_x_at	PERP, TP53 apoptosis effector, PERP	6.70
5	218499_at	serine/threonine protein kinase MST4, MST4	6.63
6	243356_at		6.52
7	222701_s_at	coiled-coil-helix-coiled-coil-helix domain containing 7, CHCHD7	6.39
8	206023_at	neuromedin U, NMU	5.87
9	217744_s_at	PERP, TP53 apoptosis effector, PERP	5.74
10	204984_at	glypican 4, GPC4	5.73
11	205372_at	pleiomorphic adenoma gene 1, PLAG1	5.72
12	223038_s_at	family with sequence similarity 60, member A, FAM60A	5.66
13	219523_s_at	odz, odd Oz/ten-m homolog 3 (Drosophila), ODZ3	5.22
14	218872_at	tescalcin, TESC	4.95
15	229349_at	lin-28 homolog B (C. elegans), LIN28B	4.87
16	229385_s_at	placenta-specific 2 (non-protein coding), PLAC2	4.65
17	220147_s_at	family with sequence similarity 60, member A, FAM60A	4.60
18	233814_at	ephrin-A5, EFNA5	4.51
19	228107_at	hypothetical protein LOC100127983, LOC100127983	4.41
20	205190_at	plastin 1, PLS1	4.40
21	205201_at	GLI family zinc finger 3, GLI3	4.36
22	1559266_s_at	chromosome 10 open reading frame 140, C10orf140	4.26
23	209763_at	chordin-like 1, CHRDL1	4.25
24	227307_at	tetraspanin 18, TSPAN18	4.21
25	1559360_at		4.16
26	227623_at	calcium channel, voltage-dependent, alpha 2/delta subunit 1, CACNA2D1	4.15
27	238865_at	poly(A) binding protein, cytoplasmic 4-like, PABPC4L	4.13
28	227955_s_at	ephrin-A5, EFNA5	4.11
29	207943_x_at	pleiomorphic adenoma gene-like 1, PLAGL1	4.10
30	206953_s_at	latrophilin 2, LPHN2	4.06
31	231310_at		4.02
32	214785_at	vacuolar protein sorting 13 homolog A (S. cerevisiae), VPS13A	3.98
33	222900_at	nuclear receptor interacting protein 3, NRIP3	3.97
34	233257_at		3.94
35	217809_at	basic leucine zipper and W2 domains 2, BZW2	3.93
36	214036_at	ephrin-A5, EFNA5	3.92
37	209212_s_at	Kruppel-like factor 5 (intestinal), KLF5	3.92

38	207002_s_at	pleiomorphic adenoma gene-like 1, PLAGL1	3.83
39	209318_x_at	pleiomorphic adenoma gene-like 1, PLAGL1	3.83
40	1560652_at		3.80
41	1569652_at	mixed-lineage leukemia (trithorax homolog); translocated to, 3, MLLT3	3.79
42	219778_at	zinc finger protein, multitype 2, ZFPM2	3.79
43	221760_at	mannosidase, alpha, class 1A, member 1, MAN1A1	3.78
44	233002_at	protein phosphatase 4, regulatory subunit 4, PPP4R4	3.78
45	226117_at	TRAF-interacting protein with forkhead-associated domain, TIFA	3.76
46	220987_s_at	chromosome 11 open reading frame 17 /// NUAK2	3.72
47	225177_at	RAB11 family interacting protein 1 (class I), RAB11FIP1	3.71
48	204983_s_at	glypican 4, GPC4	3.68
49	225051_at	erythrocyte membrane protein band 4.1 (elliptocytosis 1, RH-linked), EPB41	3.68
50	227415_at	hypothetical protein LOC283508, LOC283508	3.67

Table S2. Genes downregulated in cells expressing the H3.3 K27M mutation (K27M + P5K vs all other conditions)

Rank	Gene ID (Affymetrix)	Gene Description	
1	235562_at	chromosome 3 open reading frame 70, C3orf70	-7.45276
2	242447_at	chromosome 3 open reading frame 70, C3orf70	-7.12643
3	227055_at	methyltransferase like 7B, METTL7B	-6.85883
4	240242_at		-6.79264
5	206306_at	ryanodine receptor 3, RYR3	-6.59394
6	207981_s_at	estrogen-related receptor gamma, ESRRG	-6.33449
7	204916_at	receptor (G protein-coupled) activity modifying protein 1, RAMP1	-6.06627
8	203908_at	solute carrier family 4, sodium bicarbonate cotransporter, member 4, SLC4A4	-6.05743
9	229382_at	chromosome 1 open reading frame 183, C1orf183	-6.01959
10	229266_at	shisa homolog 6 (Xenopus laevis), SHISA6	-5.9745
11	213543_at	sarcoglycan, delta (35kDa dystrophin-associated glycoprotein), SGCD	-5.82467
12	1552626_a_at	transmembrane protein 163, TMEM163	-5.65298
13	207093_s_at	oligodendrocyte myelin glycoprotein, OMG	-5.35129
14	227148_at	pleckstrin homology domain containing, family H member 2, PLEKHH2	-5.34979
15	200953_s_at	cyclin D2, CCND2	-5.31529
16	207789_s_at	dipeptidyl-peptidase 6, DPP6	-5.30983
17	231001_at	fin bud initiation factor homolog (zebrafish), FIBIN	-5.24142
18	226769_at	fin bud initiation factor homolog (zebrafish), FIBIN	-5.13636
19	228546_at	dipeptidyl-peptidase 6, DPP6	-5.1138
20	213832_at	potassium voltage-gated channel, Shal-related subfamily, member 3, KCND3	-5.0929
21	220761_s_at	TAO kinase 3, TAOK3	-5.06633
22	231098_at		-5.05854
23	241706_at	copine VIII, CPNE8	-5.04386
24	233129_at		-5.03761
25	232377_at	neurexophilin 1, NXPH1	-4.91254
26	218807_at	vav 3 guanine nucleotide exchange factor, VAV3	-4.91059
27	206462_s_at	neurotrophic tyrosine kinase, receptor, type 3, NTRK3	-4.89773
28	212098_at	mannosyl (α-1,6-)-glycoprotein beta-1,6-N-acetyl-glucosaminyltransferase, MGAT5	-4.88847
29	223923_at	chromosome 21 open reading frame 62, C21orf62	-4.84926
30	239221_at	G protein-coupled receptor 123, GPR123	-4.84522
31	206915_at	NK2 homeobox 2, NKX2-2	-4.84372
32	223503_at	transmembrane protein 163, TMEM163	-4.77141
33	212190_at	serpin peptidase inhibitor, clade E (nexin), member 2, SERPINE2	-4.75121
34	223468_s_at	RGM domain family, member A, RGMA	-4.70716

35	206243_at	TIMP metallopeptidase inhibitor 4, TIMP4	-4.68817
36	219564_at	potassium inwardly-rectifying channel, subfamily J, member 16, KCNJ16	-4.67798
37	219049_at	chondroitin sulfate N-acetylgalactosaminyltransferase 1, CSGALNACT1	-4.62745
38	229759_s_at	ventricular zone expressed PH domain homolog 1 (zebrafish), VEPH1	-4.62055
39	202242_at	tetraspanin 7, TSPAN7	-4.59022
40	205475_at	stimulator of chondrogenesis 1, SCRG1	-4.55727
41	238003_at	hepatocyte cell adhesion molecule, HEPACAM	-4.55185
42	220543_at	chromosome 21 open reading frame 62, C21orf62	-4.55149
43	215014_at	potassium voltage-gated channel, Shal-related subfamily, member 3, KCND3	-4.52529
44	217033_x_at	neurotrophic tyrosine kinase, receptor, type 3, NTRK3	-4.51016
45	232235_at	dermatan sulfate epimerase-like, DSEL	-4.46631
46	240458_at		-4.44163
47	236599_at		-4.4402
48	1557143_at	CUB and Sushi multiple domains 2, CSMD2	-4.42817
49	213618_at	ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 2, ARAP2	-4.39381
50	209356_x_at	EGF-containing fibulin-like extracellular matrix protein 2, EFEMP2	-4.38892

Table S3. Levels of H3K4me3 and H3K27me3 at promoter regions of genes that are upregulated or downregulated by K27M.

K4me3	K27me3
>1.0	>0.6
>2.0	>1.0
>3.0	>2.0

Genes upregulated by K27M					
Nama	P5W		P5K		
Inallie	K4me3	K27me3	K4me3	K27me3	
Runx2	0.87	0.34	0.93	0.14	
СОСН	1.32	0.48	1.02	0.34	
PERP	0.63	0.55	0.40	1.00	
CHCHD7	1.97	0.11	1.79	0.54	
NMU	0.58	0.70	0.77	0.37	
MST4	0.63	0.57	1.37	0.66	
GPC4	2.21	0.43	1.47	0.29	
PLAG1	1.97	0.11	1.88	0.51	
FAM60A	1.50	0.30	1.12	0.46	
TESC	0.34	0.39	0.56	0.37	
LIN28B	0.55	0.95	0.91	1.46	
EFNA5	0.97	0.30	1.00	0.66	
PLS1	1.74	0.52	0.93	0.29	
GLI3	2.13	0.27	0.88	0.20	
CHRDL1	1.11	0.43	0.93	0.29	
TSPAN18	0.63	0.61	0.53	0.20	
CACNA2D1	1.71	0.14	0.95	0.34	
PABPC4L	0.95	0.43	0.65	0.23	
PLAGL1	0.53	0.50	0.44	1.89	
LPHN2	1.39	0.32	1.00	0.31	
VPS13A	1.24	0.45	0.74	0.46	
BZW2	2.37	0.43	1.35	0.40	
KLF5	1.66	0.34	0.98	0.40	
MLLT3	1.79	0.20	0.74	0.14	
ZFPM2	1.03	0.27	0.63	0.54	
MAN1A1	3.11	0.18	1.88	0.80	
PPP4R4	0.82	0.27	0.88	0.37	
TIFA	0.68	0.43	0.79	0.20	
NUAK2	1.26	0.32	1.23	0.46	
CDH8	0.47	0.82	0.70	1.03	
BCL11A	1.32	0.14	0.58	0.57	
RBPMS	2.05	0.23	1.26	0.40	

NRIP3	0.87	0.41	0.49	0.57
DACH1	1.50	0.27	0.79	1.66
CDKN1C	0.39	0.18	0.63	0.20
RGS10	0.71	0.27	0.74	0.80
CTSC	1.89	0.41	1.51	0.31
PAK1	0.47	0.09	0.70	0.11
SNAI2	1.05	0.27	0.77	0.29
DPYD	2.47	0.45	1.02	0.49
MAML3	1.47	0.18	0.79	0.14
BSG	1.92	0.25	0.95	0.46
H1FX	1.87	0.43	0.74	0.43
CDH6	1.21	0.41	1.09	0.51
STXBP6	0.92	0.27	0.60	0.37
SSX2IP	1.61	0.20	0.98	0.37
SLC44A1	1.58	0.34	0.60	0.29
SMC4	4.50	0.34	2.09	0.80
H1F0	0.47	0.36	0.40	1.91
RUNX1T1	1.45	0.52	0.72	0.46
SLC35F2	0.84	0.45	1.02	0.26
NID1	1.18	0.25	1.12	0.43
GJA3	0.32	0.34	0.28	3.37
KLF10	2.05	0.16	1.07	0.51
VGLL3	1.74	0.34	1.42	0.69
DDIT4L	1.29	0.39	1.14	0.29
MEF2C	2.26	0.34	1.21	0.69
SLC6A15	1.03	0.82	0.93	0.60
PHIP	2.97	0.23	1.35	0.51
SFRP2	0.79	0.73	0.72	0.63
CALB1	0.71	0.57	0.88	0.43
RRAS2	0.89	0.55	1.23	0.83
NEK2	1.50	0.36	0.95	0.29
PHLDB2	0.45	0.36	0.56	0.63
PPL	0.03	0.32	0.30	0.83
SEMA3A	3.37	0.89	1.98	2.37
TIAM1	2.53	0.36	1.65	0.46
GABRA5	0.63	0.20	0.42	0.31
SNCA	0.53	0.57	1.12	0.54
KLHL14	0.18	0.61	0.42	0.80
CDC14B	1.00	0.23	0.51	0.29
ARL4C	1.00	0.16	0.53	0.26
TMEM38B	1.21	0.48	0.86	1.74
TLE4	1.11	0.23	0.65	0.26
ADAMTS3	2.50	0.16	1.60	0.23
STX3	0.74	0.41	1.02	0.49

•				
PRTG	2.82	0.23	1.40	0.20
SHB	0.74	0.16	0.72	0.66
MSI2	0.50	0.23	0.44	0.34
TXNIP	2.55	0.18	1.42	0.31
HDAC9	0.89	0.50	0.93	0.09
SCEL	0.37	0.41	0.47	0.37
CPS1	1.39	0.25	0.84	0.29
TRIM36	1.45	0.16	0.88	1.94
PDK4	1.34	0.27	1.05	0.23
TPBG	0.79	0.75	0.44	1.29
EMB	0.87	0.45	0.86	0.40
FOXG1	0.11	0.16	0.28	0.54
OTX2	0.71	0.64	1.12	1.97
LIN7A	1.42	0.32	0.95	0.31
HSPB1	1.13	0.45	0.60	0.74

Genes downregulated by K27M					
Nome	P5W		P5K		
Inallie	K4me3	K27me3	K4me3	K27me3	
AQP4	1.16	0.23	0.47	0.43	
RYR3	1.39	0.25	1.02	0.49	
NKX2-2	0.92	0.18	0.40	3.97	
CCND2	1.66	0.43	0.67	4.40	
ESRRG-P1	1.03	0.80	0.37	1.91	
ESRRG-P2	0.53	0.70	0.28	8.43	
DPP6	0.71	0.18	0.33	1.31	
VAV3	1.39	0.18	0.56	0.43	
PI3KR1	2.42	0.27	1.60	0.66	
KAT7	2.63	0.39	1.44	0.54	
TMEM163	0.71	0.25	0.44	1.89	
CSMD2	1.18	0.39	0.72	1.09	
SNRPN	0.34	0.48	0.33	0.71	
TRAF4	1.39	0.14	0.67	0.34	
FEZ1	1.34	0.34	0.49	0.40	
GSTT1	0.87	0.18	0.33	0.26	
KAT2B	1.05	0.02	1.26	0.29	
BAI3	1.97	0.11	1.40	0.20	
IQSEC1	0.39	0.05	0.33	0.14	
SLC4A4	2.42	0.20	1.53	0.37	
MAPK10	1.58	0.45	0.53	0.34	
SLC6A1	1.03	0.23	0.30	1.63	

INPP4B	1.79	0.41	1.28	0.23
BLM	3.05	0.43	1.37	0.31
C3orf70	0.71	0.14	0.63	0.34
SHISA6	0.63	0.09	0.05	0.83
SGCD	0.63	0.45	0.19	0.51
PLEKHH2	2.08	0.27	0.93	0.54
FIBIN	0.45	0.34	0.95	0.23
KCND3	1.37	0.16	0.58	0.29
TAOK3	3.76	0.20	1.51	0.29
CPNE8	2.68	0.43	0.91	0.80
NXPH1	1.45	0.36	0.49	1.60
NTRK3	2.34	0.23	0.56	0.37
GPR123	0.55	0.39	0.44	0.40
SERPINE2	2.08	0.25	1.40	0.17
RGMA	1.24	0.39	0.63	0.83
VEPH1	0.21	0.41	0.81	0.20
SCRG1	1.21	0.50	0.53	0.80
DSEL	2.95	0.39	1.72	0.51
ARAP2	2.08	0.32	1.40	0.46
RASSF2	1.66	0.20	0.74	0.43
NLGN3	0.97	0.39	0.53	0.37
CDH10	2.39	0.16	1.12	0.14
LRRK2	0.68	0.30	0.49	0.43
DOCK10	1.26	0.48	0.65	0.60
SRI	2.08	0.25	1.05	0.31
SLC6A11	1.05	0.25	0.40	1.63
SLC6A1	1.03	0.23	0.30	1.63
ITPR2	2.26	0.48	0.56	0.46
DLC1	0.66	0.45	0.53	0.66
GRIA1	2.82	0.55	0.84	0.37
NPAS3	1.79	0.77	1.21	1.34
MYO5C	0.97	0.20	0.72	0.26
DMD	0.82	0.39	0.47	0.40
TRIL	0.84	0.32	0.77	0.66
ZEB1	3.16	0.11	1.70	0.31
ZCCHC24	0.66	0.27	0.30	0.23
TCF12-P1	1.53	0.23	1.07	0.31
TCF12-P2	1.29	0.25	0.53	0.17
PCYT1B	1.24	0.27	0.56	0.31
SALL1	2.47	0.32	0.79	4.31
VSTM2A	0.84	0.27	0.56	0.83
SNTB1	1.18	0.45	0.58	1.29
CST3	1.08	0.25	0.67	0.29
PLD5	1.05	0.27	0.74	1.09

СТН	2.63	0.41	1.53	0.31
SMOC1	1.21	0.30	0.58	0.46
SLC15A2	1.29	0.23	0.72	0.34
RGS6	1.32	0.30	0.47	0.66
PLA2G16	1.37	0.18	0.74	0.09
IGSF11	2.66	0.30	1.07	0.83
SPOCK2	0.82	0.25	0.26	0.31
RIT2	1.32	0.34	0.51	0.37
TRIM9	1.13	0.45	0.77	0.29
ZMAT4	1.08	0.45	0.40	0.34
PHEX	0.16	0.57	0.56	0.74
STAMBPL1	1.32	0.61	1.14	0.54
PTPRE	1.50	0.20	0.77	0.17
SYNE1	0.61	0.55	0.86	1.23
CNKSR2	2.45	0.27	0.98	0.46
ZNF93	2.03	0.16	0.95	0.34

Table S4. List of target genes by H3K27me3 marks or by PRC2 complex

(A) P5W H3K27me3 target	(B) P5K H3K27me3 target	(C) P5K- sepecific H3K27me3 target	(D) Benporath_ESC H3K27me3 target	(E) Benporath_ESC PRC2 target	(C) AND (D) shared	(C) AND (E) shared
AATF	A4GALT	A4GALT	AATF	ABCC8	ACAN	ADAMTS18
ACCSL	AARS2	AARS2	ABCC3	ABTB2	ACTL6B	ADAP2
ACSM4	AATF	ABCE1	ABCC8	ADAMTS15	ADAMTS18	ADARB2
ACTBL2	ABCE1	ACAD9	ABCG4	ADAMTS18	ADAP2	ADCY8
ADCY4	ACAD9	ACAN	ABTB2	ADAP2	ADARB2	ADCYAP1
ADORA3	ACAN	ACHE	ACADL	ADARB2	ADCY8	ADRA1A
AGBL5	ACHE	ACIN1	ACAN	ADCY4	ADCYAP1	ADRB1
AGPAT5	ACIN1	ACOT13	ACCN2	ADCY8	ADRA1A	ADRB3
AHCYL1	ACOT13	ACOXL	ACTL6B	ADCYAP1	ADRB1	AGPAT9
AHCYL2	ACOXL	ACRV1	ADAM15	ADRA1A	ADRB3	ALOX15
ALDH1A2	ACRV1	ACSL1	ADAM22	ADRA2A	AGPAT9	ALX3
AMER3	ACSL1	ACSL5	ADAMTS15	ADRB1	AIM1	ALX4
AMPD1	ACSL5	ACSM1	ADAMTS17	ADRB3	ALOX15	ANKRD18A
ANKRD1	ACSM1	ACSS1	ADAMTS18	AGPAT9	ALX3	ANKRD18B
ANO2	ACSS1	ACTA1	ADAP2	ALOX15	ALX4	ANKRD19P
ANO6	ACTA1	ACTL6A	ADARB2	ALX3	ANKRD18A	ANKRD27
ANXA2P1	ACTL6A	ACTL6B	ADC	ALX4	ANKRD18B	ASCL2
ARSF	ACTL6B	ACVR1C	ADCY4	ANKRD18A	ANKRD19P	ASTN2
ARSH	ACVR1C	ADAM8	ADCY8	ANKRD18B	ANKRD27	ATF3
ASB17	ADAM8	ADAMTS18	ADCYAP1	ANKRD19P	ARID3C	ATOH8
ASCL5	ADAMTS18	ADAMTS2	ADRA1A	ANKRD20A1	ARNTL	BARHL1
ASTL	ADAMTS2	ADAMTS20	ADRA2A	ANKRD20A2	ASCL2	BARHL2
ATOH1	ADAMTS20	ADAMTS8	ADRB1	ANKRD20A3	ASCL4	BARX2
ATP8B4	ADAMTS8	ADAMTSL3	ADRB3	ANKRD20A5P	ASTN2	BATF3
ATXN7L2	ADAMTSL3	ADAP2	ADRBK2	ANKRD20A8P	ATF3	BHLHE23
B4GALNT2	ADAP2	ADARB2	AGAP2	ANKRD27	ATOH8	C17orf102
BARX1	ADARB2	ADCY8	AGPAT9	AQP5	BARHL1	C17orf82
BASP1	ADCY4	ADCYAP1	AIM1	ARHGAP20	BARHL2	C1orf194
BCL6	ADCY8	ADM	ALOX15	ARL9	BARX2	C1orf213
BCL9	ADCYAP1	ADORA2A-AS1	ALOXE3	ASCL1	BATF3	C2CD4A
BHLHE22	ADM	ADPGK	ALX3	ASCL2	BHLHE23	CA10
BMF	ADORA2A-AS1	ADRA1A	ALX4	ASTN1	BMP6	CACNA1B
BMP4	ADPGK	ADRB1	AMELX	ASTN2	C14orf132	CACNA1D
BNC1	ADRA1A	ADRB3	AMN	ATF3	C17orf102	CACNA1E
BPIFA1	ADRB1	AFAP1L2	AMPH	ATOH1	C17orf82	CACNA1G
BPIFA4P	ADRB3	AFF3	ANKRD18A	ATOH8	C1orf194	CAMK2N1
BPIFB4	AFAP1L2	AFM	ANKRD18B	B4GALNT1	C1orf213	CBLN1
BSND	AFF3	AGBL4	ANKRD19P	B4GALNT2	C1orf94	CD34
BTAF1	AFM	AGPAT9	ANKRD20A1	BARHL1	C1QL1	CD70
BTBD11	AGBL4	AHSA2	ANKRD20A2	BARHL2	C2CD4A	CD8A

C10orf11	AGBL5	AHSP	ANKRD20A3	BARX1	CA10	CDH7
C10orf126	AGPAT5	AIFM1	ANKRD20A5P	BARX2	CA7	CDK5R2
C12orf57	AGPAT9	AIM1	ANKRD20A8P	BATF3	CACNA1A	CDKN2C
C14orf23	AHSA2	AJAP1	ANKRD27	BCL2	CACNA1B	CDX2
C14orf39	AHSP	AK5	ANKRD35	BHLHE22	CACNA1D	CH25H
C16orf95	AIFM1	ALDH1A3	ANKRD43	BHLHE23	CACNA1E	CHRDL2
C17orf47	AIM1	ALOX15	APBA1	BHLHE41	CACNA1G	CHST8
C1orf185	AJAP1	ALOX15P1	AQP5	BMP8A	CACNG3	CLSTN2
C1QTNF1-AS1	AK5	ALOX5	ARHGAP20	BNC1	CALCR	COL27A1
C1QTNF6	ALDH1A2	ALPL	ARHGEF38	BTG2	CAMK2N1	COL2A1
C21orf49	ALDH1A3	ALX1	ARHGEF7	C13orf15	CBLN1	COLEC12
C21orf90	ALOX15	ALX3	ARID3C	C17orf102	CBX4	COMP
C2CD4B	ALOX15P1	ALX4	ARID5B	C17orf82	CCNA1	CRLF1
C2orf71	ALOX5	AMZ1	ARL10	C1orf194	CD34	CRTAC1
C2orf78	ALPL	ANAPC10	ARL5C	C1orf213	CD38	CRYBA2
C3	ALX1	ANAPC15	ARL9	C20orf103	CD70	CSMD1
C4BPA	ALX3	ANAPC1P1	ARNTL	C21orf63	CD8A	CSMD3
C7orf50	ALX4	ANG	ASCL1	C2CD4A	CDC20B	CXCL16
C7orf71	AMER3	ANGEL1	ASCL2	C3orf15	CDH7	CYP26A1
C9orf53	AMZ1	ANK1	ASCL4	C4orf49	CDK5R2	CYP26B1
CACNG2	ANAPC10	ANKH	ASTN1	C5orf39	CDKN2C	CYP27B1
CALCA	ANAPC15	ANKRD18A	ASTN2	C8orf47	CDX2	DACH1
CALHM2	ANAPC1P1	ANKRD18B	ATF3	CA10	CERKL	DACH2
CAMK4	ANG	ANKRD18DP	ATOH1	CACNA1B	CH25H	DCC
CAPN14	ANGEL1	ANKRD19P	ATOH8	CACNA1D	CHD5	DGKG
CASC4	ANK1	ANKRD27	ATP1A3	CACNA1E	CHN2	DIO3
CASP8	ANKH	ANKRD29	AVPR1B	CACNA1G	CHRDL2	DKK1
CCDC112	ANKRD18A	ANKRD34B	B4GALNT1	CALCA	CHST8	DKK2
CCDC140	ANKRD18B	ANKRD34C	B4GALNT2	CAMK2N1	CLIC5	DLL4
CCL11	ANKRD18DP	ANKRD6	BAI2	CASZ1	CLSTN2	DLX1
CCL20	ANKRD19P	ANKS1B	BARHL1	CBLN1	CNTNAP5	DLX2
CCL27	ANKRD27	ANP32A-IT1	BARHL2	CBLN4	COL12A1	DLX3
CCR6	ANKRD29	ANP32E	BARX1	CBR3	COL27A1	DLX4
CD160	ANKRD34B	ANXA2	BARX2	CBX8	COL2A1	DMRT1
CD300LB	ANKRD34C	ANXA2R	BATF3	CCDC140	COLEC12	DMRT2
CELF2	ANKRD6	AP1M2	BCAN	CD34	COMP	DMRT3
CEP85	ANKS1B	AP2B1	BCL2	CD70	CR2	DPF3
CES3	ANO2	AP3B1	BHLHE22	CD8A	CRLF1	DRD5
CHRNA3	ANP32A-IT1	APCDD1L	BHLHE23	CDH23	CRTAC1	DSC3
CHRNB3	ANP32E	APCDD1L-AS1	BHLHE41	CDH7	CRYBA2	DSCAML1
CLDN5	ANXA2	APOBEC3G	BLVRB	CDK5R2	CSMD1	DUOX1
CLEC1B	ANXA2R	ARC	BMP6	CDKN2C	CSMD2	DUOXA1
CNIH3	AP1M2	ARHGAP12	BMP8A	CDX2	CSMD3	ECEL1
COL20A1	AP2B1	ARHGAP22	BMX	CGB7	CWH43	EGFL6
COL25A1	AP3B1	ARHGAP27	BNC1	CGB8	CXCL16	EGR4

COL4A3	APCDD1L	ARHGAP30	BTG2	CH25H	CYP26A1	ELMOD1
COL4A4	APCDD1L-AS1	ARHGAP6	C11orf45	CHODL	CYP26B1	EN1
COL6A5	APOBEC3G	ARHGAP9	C13orf15	CHRD	CYP27B1	EN2
COX16	ARC	ARHGEF15	C14orf132	CHRDL2	CYP2A13	EPAS1
СРО	ARHGAP12	ARID3C	C17orf100	CHST8	DACH1	EPHA5
CRH	ARHGAP22	ARIH1	C17orf102	CIDEA	DACH2	ESPN
CRHR2	ARHGAP27	ARL15	C17orf82	CITED1	DCC	ESX1
CRISP3	ARHGAP30	ARNTL	C1orf115	CLCN5	DCX	FAM163A
CSH1	ARHGAP6	ARPP21	C1orf194	CLEC14A	DGKG	FAM19A4
CSTA	ARHGAP9	ARSG	C1orf213	CLSTN2	DIO3	FAM43B
CTRB2	ARHGEF15	ARX	C1orf51	CMTM2	DKK1	FAM89A
CWC25	ARID3C	ASCL2	C1orf94	CNNM1	DKK2	FBLN7
CXorf28	ARIH1	ASCL3	C1QL1	CNRIP1	DLK1	FBXL8
CXXC4	ARL15	ASCL4	C1QTNF5	CNTFR	DLL4	FEZF2
CYMP	ARNTL	ASIC2	C20orf103	COL24A1	DLX1	FGF3
CYP1B1	ARPP21	ASTN2	C21orf63	COL25A1	DLX2	FGF5
CYP24A1	ARSG	ATF2	C2CD4A	COL27A1	DLX3	FGF9
CYP2A6	ARX	ATF3	C3orf15	COL2A1	DLX4	FIGLA
CYP2C9	ASCL2	ATG5	C3orf54	COL4A5	DLX5	FLI1
CYP2F1	ASCL3	ATG9B	C4orf49	COL4A6	DMRT1	FLRT2
CYP2S1	ASCL4	ATN1	C5orf39	COL9A2	DMRT2	FOXB1
DCAKD	ASIC2	ATOH8	C8orf47	COLEC12	DMRT3	FOXD3
DDC	ASTN2	ATP12A	CA10	COMP	DPF3	FOXD4L3
DDX4	ATF2	ATP2A3	CA7	CORO6	DPP6	FOXD4L4
DEFA1	ATF3	ATP2B1	CACNA1A	CRHR1	DRD5	FOXE1
DEFA1B	ATG5	ATP2C2	CACNA1B	CRLF1	DSC3	FOXF1
DEFA3	ATG9B	ATP5G3	CACNA1D	CRTAC1	DSCAML1	FOXG1
DEFB104A	ATN1	ATP5J	CACNA1E	CRYBA2	DUOX1	FOXL1
DEFB104B	ATOH1	ATP6V1C2	CACNA1G	CSMD1	DUOXA1	FOXL2
DEFB107A	ATOH8	ATP8B1	CACNB3	CSMD3	EBF1	FRMD3
DEFB107B	ATP12A	ATPIF1	CACNB4	CTNND2	EBF3	FZD10
DEFB124	ATP2A3	AVPR1A	CACNG3	CXCL14	ECEL1	GABRA2
DEFB136	ATP2B1	AVPR2	CACNG8	CXCL16	EGFL6	GABRA4
DISC2	ATP2C2	B3GNT1	CADM4	CYP24A1	EGFLAM	GAD2
DLX6-AS1	ATP5G3	B3GNT3	CALCA	CYP26A1	EGR4	GALR2
DMKN	ATP5J	B3GNT4	CALCR	CYP26B1	EIF4E3	GATA3
DNM1P35	ATP6V1C2	B3GNT7	CAMK2B	CYP26C1	ELAVL2	GATA4
DNMT3L	ATP8B1	BAG3	CAMK2N1	CYP27B1	ELMOD1	GATA6
DOCK2	ATPIF1	BAG4	CAMK2N2	DACH1	ELOVL3	GBX2
DRP2	ATXN7L2	BAIAP3	CASZ1	DACH2	EN1	GDF6
DUOX2	AVPR1A	BAMBI	CBLN1	DCC	EN2	GDF7
DUOXA2	AVPR2	BANCR	CBLN4	DCHS2	EPAS1	GHR
DYSF	B3GNT1	BARHL1	CBR3	DCLK2	EPHA10	GHSR
ECRP	B3GNT3	BARHL2	CBX4	DDAH1	EPHA3	GJB2
EDIL3	B3GNT4	BARX2	CBX8	DGKG	EPHA5	GJD2

EOMES	B3GNT7	BATF3	CCDC140	DGKI	ESPN	GPR101
ERICH1-AS1	B4GALNT2	BAZ2A	CCDC50	DHH	ESR1	GPR88
ESRRG	BAG3	BCL2L11	CCDC96	DIO3	ESX1	GRIA2
EVA1A	BAG4	BCL7A	CCNA1	DKK1	FAM163A	GRID1
EVX1	BAIAP3	BDNF	CD34	DKK2	FAM19A4	GRIK3
EXOC3L2	BAMBI	BEAN1	CD38	DLL4	FAM43B	GRM7
FABP4	BANCR	BEGAIN	CD47	DLX1	FAM89A	GSC
FAHD1	BARHL1	BEND4	CD70	DLX2	FBLN7	GSC2
FAIM	BARHL2	BEST2	CD8A	DLX3	FBXL8	GSX1
FAM138A	BARX1	BHLHE23	CDC20B	DLX4	FERD3L	HAND2
FAM138B	BARX2	BHMT	CDH23	DMRT1	FEZF2	HES2
FAM138C	BASP1	BLACE	CDH4	DMRT2	FGF3	HHEX
FAM138F	BATF3	BLK	CDH6	DMRT3	FGF5	HLX
FAM150A	BAZ2A	BLOC1S1	CDH7	DNAJC22	FGF8	HMX2
FAM159B	BCL2L11	BLOC1S1- RDH5	CDK5R2	DOK6	FGF9	HMX3
FAM172BP	BCL7A	BMP2	CDKN2C	DPF3	FIGLA	HOXB3
FAM177B	BCL9	BMP3	CDX1	DPY19L2	FLI1	HOXB7
FAM180A	BDNF	BMP6	CDX2	DPY19L2P2	FLRT2	HOXB8
FAM194B	BEAN1	BMP8B	CERKL	DRD5	FNDC1	HOXC6
FAM72D	BEGAIN	BMPER	CGB7	DSC3	FOXB1	HOXD13
FAM99B	BEND4	BNC2	CGB8	DSCAML1	FOXC1	HOXD8
FBXL21	BEST2	BNIP2	CH25H	DUOX1	FOXD3	HOXD9
FBXO31	BHLHE22	BOD1L1	CHAD	DUOX2	FOXD4L3	HPSE2
FCGR1C	BHLHE23	BRDT	CHD5	DUOXA1	FOXD4L4	HRK
FCGR2A	BHMT	BRE	CHDH	DUOXA2	FOXE1	HS3ST3B1
FCGR3A	BLACE	BRINP2	CHN2	DUSP4	FOXE3	HS6ST3
FEV	BLK	BRINP3	CHODL	ECEL1	FOXF1	HSF4
FFAR1	BLOC1S1	BRIX1	CHRD	EFNA1	FOXF2	HTR1A
FGF4	BLOC1S1- RDH5	BRWD3	CHRDL1	EFNA3	FOXG1	ICAM5
FLI1-AS1	BMP2	BSPRY	CHRDL2	EGFL6	FOXL1	IGF2-AS
FLJ23867	BMP3	BSX	CHST8	EGR3	FOXL2	IKZF3
FLJ36000	BMP4	BTBD1	CIDEA	EGR4	FOXQ1	IL1RAPL2
FMO5	BMP6	BTG4	CITED1	ELMOD1	FRMD3	IL7
FOLR1	BMP8B	BTN1A1	CLCN5	EN1	FRMPD1	INSRR
FOXA2	BMPER	BTNL9	CLEC14A	EN2	FXYD7	IRX3
FOXD2	BNC1	BUB3	CLEC4G	EOMES	FZD10	IRX5
FOXD4L1	BNC2	C10orf131	CLIC5	EPAS1	GAB3	ISL1
GABRA1	BNIP2	C10orf32	CLIP4	EPB41L4A	GABRA2	ITGA4
GAL3ST1	BOD1L1	C10orf32- AS3MT	CLSTN2	EPHA5	GABRA4	ІТРКА
GALNTL6	BRDT	C10orf55	CMTM2	EPHB1	GABRB2	KCNA1
GATA2	BRE	C10orf67	CNNM1	EPHB3	GAD2	KCNAB1
GBA	BRINP2	C10orf88	CNNM2	ERBB4	GALR2	KCNC4
GBA3	BRINP3	C11orf44	CNRIP1	ESAM	GATA3	KCNK12
GDNF	BRIX1	C11orf70	CNTFR	ESPN	GATA4	KCNK13

GDNF-AS1	BRWD3	C11orf74	CNTN2	ESX1	GATA6	KCNK2
GFI1	BSND	C11orf88	CNTNAP5	F2R	GBX2	KCNK4
GFOD1	BSPRY	C14orf119	COL12A1	FAM150A	GCM2	KCNMA1
GIPC2	BSX	C14orf132	COL24A1	FAM163A	GDF6	KCNQ3
GJA4	BTAF1	C16orf11	COL25A1	FAM19A4	GDF7	KCNV1
GKN2	BTBD1	C16orf13	COL27A1	FAM43B	GHR	KIAA1324
GLIS1	BTBD11	C17orf102	COL2A1	FAM5B	GHSR	KIRREL3
GLOD5	BTG4	C17orf82	COL4A5	FAM5C	GJB2	KL
GLUD2	BTN1A1	C18orf42	COL4A6	FAM81A	GJD2	KLF4
GPR4	BTNL9	C19orf33	COL8A1	FAM84A	GPR101	KLHL35
GPR68	BUB3	C19orf59	COL9A2	FAM89A	GPR26	LBX1
GPR83	C10orf131	C1orf110	COLEC12	FBLN7	GPR88	LGR5
GPRIN2	C10orf32	C1orf170	COMMD3	FBN2	GRIA2	LHX2
GRHL3	C10orf32- AS3MT	C1orf172	COMP	FBP1	GRID1	LHX4
GRIN3A	C10orf55	C1orf194	CORO6	FBXL8	GRIK3	LHX5
GRM4	C10orf67	C1orf200	COX6B2	FBXO3	GRIN1	LMX1B
GSN	C10orf88	Clorf210	CPM	FEV	GRM6	LOC153684
GSN-AS1	C11orf44	Clorf213	CR2	FEZ1	GRM7	LONRF3
GSX2	C11orf70	Clorf27	CRH	FEZF2	GSC	LPL
GUCY1A3	C11orf74	Clorf53	CRHR1	FGF20	GSC2	LRRC71
GZMA	C11orf88	Clorf61	CRIP1	FGF3	GSX1	LTBP2
H1FOO	C14orf119	Clorf74	CRLF1	FGF5	HAND1	LTK
H2AFX	C14orf132	Clorf94	CRMP1	FGF9	HAND2	LYSMD2
HAGH	C14orf23	C1QC	CRTAC1	FIGLA	HCN4	MAB21L1
HBA1	C14orf39	C1QL1	CRYBA2	FLI1	HES2	MAB21L2
HBA2	C16orf11	C1QL2	CRYL1	FLJ11235	HES3	MAFB
HCG11	C16orf13	C1QL3	CSF1	FLJ32063	HHEX	MAL
HCK	C16orf95	C1QL4	CSMD1	FLJ45983	HLX	MCOLN3
HEMGN	C17orf102	C1QTNF1	CSMD2	FLJ46347	HMX2	MESP1
HEPHL1	C17orf82	C20orf166	CSMD3	FLRT2	HMX3	MKX
HES5	C18orf42	C20orf166-AS1	CTNND2	FOXA2	HOXA1	MSC
HHIPL1	C19orf33	C20orf201	CWH43	FOXB1	HOXA2	MSX1
HIGD1B	C19orf59	C2CD4A	CXCL14	FOXD2	HOXA4	MT1A
HIST1H1A	C1orf110	C3orf58	CXCL16	FOXD3	HOXA6	MT1B
HIST1H1D	C1orf170	C3orf72	CYP24A1	FOXD4L1	HOXB3	MT1DP
HIST1H4H	Clorf172	C3orf80	CYP26A1	FOXD4L3	HOXB7	MT1H
HIST2H2AA3	C1orf194	C3orf84	CYP26B1	FOXD4L4	HOXB8	MT1M
HIST2H2AA4	C1orf200	C4orf19	CYP26C1	FOXE1	HOXC6	MYO5B
HIST2H2BC	C1orf210	C4orf32	CYP27B1	FOXF1	HOXD13	MYOD1
HMBOX1	Clorf213	C5orf38	CYP2A13	FOXG1	HOXD8	NAGS
HMGCLL1	C1orf27	C7orf43	CYP2A6	FOXJ1	HOXD9	NEFL
HNF1B	C1orf53	C8orf31	CYP2A7	FOXL1	HPSE	NELL1
HNRNPCP5	C1orf61	C8orf37	CYP2J2	FOXL2	HPSE2	NEUROD2
HOMER1	Clorf74	C9orf3	CYP39A1	FRMD3	HR	NEUROG1
HOTAIR	C1orf94	C9orf66	DACH1	FRMPD4	HRK	NEUROG2

HOTTIP	C1QC	CA1	DACH2	FUT4	HS3ST2	NEUROG3
HOXA10	C1QL1	CA10	DCC	FZD10	HS3ST3B1	NKX2-1
HOXA10- HOXA9	C1QL2	CA14	DCHS2	FZD2	HS3ST4	NKX2-2
HOXA11	C1QL3	CA4	DCLK1	GABRA2	HS6ST3	NKX2-3
HOXA13	C1QL4	CA7	DCLK2	GABRA4	HSF4	NKX2-8
HOXA3	C1QTNF1	CA8	DCX	GAD2	HTR1A	NKX3-1
HOXA7	C20orf166	CABLES1	DDAH1	GALNTL4	HTR6	NKX3-2
HOXA9	C20orf166-AS1	CABP7	DDX25	GALR2	ICAM5	NKX6-1
HOXA-AS3	C20orf201	CACNA1A	DGKG	GATA2	IGF2-AS	NKX6-2
HOXA-AS4	C21orf49	CACNA1B	DGKI	GATA3	IGFBP3	NPAS1
HOXB1	C2CD4A	CACNA1D	DHH	GATA4	IHH	NPAS4
HOXB13	C2CD4B	CACNA1E	DIO3	GATA6	IKZF3	NPNT
HOXB2	C2orf78	CACNA1G	DKK1	GBX2	IL10RA	NPR3
HOXB4	C3orf58	CACNA1G-AS1	DKK2	GDF6	IL1RAPL2	NPTX1
HOXB5	C3orf72	CACNA2D3	DLK1	GDF7	IL7	NR2F2
HOXB6	C3orf80	CACNG3	DLK2	GDNF	INSRR	NRG2
HOXB-AS1	C3orf84	CACNG6	DLL4	GHR	IRX1	NTNG2
HOXB-AS3	C4orf19	CALCR	DLX1	GHSR	IRX3	NTRK1
HOXC11	C4orf32	CALM1	DLX2	GIMAP5	IRX5	OLIG2
HOXC12	C5orf38	CALN1	DLX3	GJB2	ISL1	ONECUT1
HOXC13	C7orf43	CALY	DLX4	GJD2	ITGA4	ONECUT2
HOXC4	C8orf31	CAMK2N1	DLX5	GLT25D2	ITIH5	OPRD1
HOXC5	C8orf37	CAMP	DMRT1	GNA14	ITPKA	OSR1
HOXC8	C9orf3	CAMTA1	DMRT2	GPC5	KCNA1	OTOP1
HOXC-AS2	C9orf53	CAND1.11	DMRT3	GPM6B	KCNA5	OTOP2
HOXC-AS5	C9orf66	CARTPT	DNAJC22	GPR101	KCNAB1	OTOP3
HOXD1	CA1	CASR	DNER	GPR12	KCNC4	OTP
HOXD10	CA10	CAST	DOK6	GPR88	KCNIP4	OTX1
HOXD12	CA14	CBLN1	DPF3	GRIA2	KCNK12	OTX2
HOXD3	CA4	CBWD1	DPP6	GRID1	KCNK13	PABPC1L2A
HOXD4	CA7	CBWD2	DPY19L2	GRIK1	KCNK17	PAPPA
HPGDS	CA8	CBWD3	DPY19L2P2	GRIK3	KCNK2	PAX1
HS3ST1	CABLES1	CBWD5	DPYSL5	GRIN3A	KCNK4	PAX2
HSPA5	CABP7	CBWD6	DRD4	GRM7	KCNMA1	PAX8
HSPA6	CACNA1A	CBX4	DRD5	GSC	KCNQ1	PAX9
HTR2C	CACNA1B	CCBE1	DSC3	GSC2	KCNQ3	PCDH8
HYLS1	CACNA1D	CCDC108	DSCAML1	GSX1	KCNS2	PDGFRA
ICAM2	CACNA1E	CCDC129	DTNB	GSX2	KCNS3	PDX1
ICAM4	CACNA1G	CCDC17	DUOX1	GUCY1A3	KCNV1	PENK
IFNK	CACNA1G-AS1	CCDC3	DUOX2	GUCY2D	KIAA1324	PGM5
IGF2	CACNA2D3	CCDC59	DUOXA1	HAND2	KIRREL3	PGR
IGFN1	CACNG2	CCDC64B	DUOXA2	HBA1	KIRREL3-AS3	PHOX2A
IGLL5	CACNG3	CCDC68	DUSP15	HBA2	KISS1R	PITX3
IGSF21	CACNG6	CCDC71	DUSP4	HES2	KL	PMP22
IL21R	CALCA	CCDC84	DUSP6	HES7	KLF4	POU3F4

IL23A	CALCR	CCK	DUSP8	HEY1	KLHL35	POU4F1
IL32	CALM1	CCL4	DYNC1I1	HHAT	KLK4	POU4F2
INTS9	CALN1	CCNA1	EBF1	HHEX	LAMB1	POU4F3
IQCF4	CALY	CCND2	EBF3	HHIP	LBX1	PRDM12
IRF4	CAMK2N1	CCNO	ECEL1	HLX	LEF1	PRLHR
IRX4	CAMP	CCNYL1	EFCAB1	HMX2	LGI3	PROK2
ISL2	CAMTA1	CCT6B	EFNA1	HMX3	LGR5	PTF1A
ITGB2	CAND1.11	CCZ1B	EFNA3	HNF1B	LHFPL3	PTGDR
KDR	CARTPT	CD1D	EGFL6	HOXB1	LHX2	PTGER2
KIAA1217	CASC4	CD200R1L	EGFLAM	HOXB13	LHX3	PTGER3
KIAA1239	CASR	CD24	EGR2	HOXB2	LHX4	PTGER4
KIR3DX1	CAST	CD300LF	EGR3	HOXB3	LHX5	PTH2
KISS1	CBLN1	CD302	EGR4	HOXB6	LMX1B	PTHLH
KLF14	CBWD1	CD34	EIF4E3	HOXB7	LOC153684	PTPRT
KNCN	CBWD2	CD38	ELAVL2	HOXB8	LONRF3	PYY
KPNA2	CBWD3	CD4	ELAVL3	HOXC11	LPL	RAB6C
KRT12	CBWD5	CD44	ELMOD1	HOXC12	LRRC71	RASGRF1
KRT34	CBWD6	CD70	ELOVL2	HOXC4	LTBP2	RASSF5
KRT76	CBX4	CD8A	ELOVL3	HOXC5	LTK	RAX
KRTAP13-2	CCBE1	CD8B	EN1	HOXC6	LYSMD2	RBP4
KRTAP4-2	CCDC108	CDA	EN2	HOXC8	MAB21L1	RGS10
L1TD1	CCDC129	CDC20B	ENTPD2	HOXD1	MAB21L2	RGS9BP
LAMA3	CCDC140	CDC5L	ENTPD3	HOXD12	MAFB	RIPK3
LBX2	CCDC17	CDCA5	EOMES	HOXD13	MAL	RSPO2
LEUTX	CCDC3	CDCP1	EPAS1	HOXD3	MCOLN3	SCTR
LHX6	CCDC59	CDH13	EPB41L4A	HOXD4	MECOM	SFRP1
LHX8	CCDC64B	CDH15	EPHA10	HOXD8	MEIS1	SFRP5
LILRA5	CCDC68	CDH22	EPHA3	HOXD9	MEOX2	SGPP2
LILRB2	CCDC71	CDH7	EPHA4	HPCAL4	MESP1	SHH
LINC00111	CCDC84	CDK5R2	EPHA5	HPSE2	MFSD4	SHISA6
LINC00489	CCK	CDKN2A	EPHB1	HRK	MICB	SHOX
LINC00554	CCL11	CDKN2B	EPHB3	HS3ST3B1	MKX	SHOX2
LINC00861	CCL4	CDKN2B-AS1	ERBB4	HS6ST1P1	MLPH	SIDT1
LINC00900	CCNA1	CDKN2C	ERO1LB	HS6ST3	MLXIPL	SIM2
LINC00910	CCND2	CDX2	ESAM	HSF4	MSC	SIX1
LINC00942	CCNO	CEACAM19	ESPN	HSPA6	MSX1	SIX2
LINC01020	CCNYL1	CEP192	ESR1	HTR1A	MSX2	SIX3
LINC01056	CCT6B	CEP85L	ESX1	HTR2C	MT1A	SLC1A2
LIPC	CCZ1B	CERKL	ETV7	HTR7	MT1B	SLC24A4
LMF1	CD1D	CFTR	EVX1	ICAM5	MT1DP	SLC30A2
LOC100128239	CD200R1L	CH25H	EXOC3L2	IGF2-AS	MT1H	SLC30A3
LOC100132174	CD24	CHAT	EYA4	IGSF21	MT1M	SLC32A1
LOC100289473	CD300LF	CHD5	F2R	IKZF3	MYO5B	SLC35F3
LOC100506178	CD302	CHN2	FAM115C	IL1RAPL2	MYOD1	SLC6A1
LOC100506241	CD34	CHRDL2	FAM123A	IL7	NAGS	SLC6A3

LOC100506730	CD38	CHRM2	FAM129A	ILDR2	NCCRP1	SLC6A5
LOC100507003	CD4	CHST13	FAM150A	INA	NDRG1	SLC9A2
LOC100507489	CD44	CHST8	FAM159A	INSM2	NEFH	SLC9A3
LOC100652768	CD70	CISTR-ACT	FAM163A	INSRR	NEFL	SLCO5A1
LOC100996758	CD8A	CKMT1A	FAM167A	IRX3	NELL1	SLFN11
LOC148696	CD8B	CLDN14	FAM19A4	IRX4	NEUROD2	SLITRK3
LOC150622	CDA	CLDN7	FAM43B	IRX5	NEUROG1	SORCS1
LOC152586	CDC20B	CLEC2L	FAM5B	ISL1	NEUROG2	SORCS3
LOC284757	CDC5L	CLEC4GP1	FAM5C	ISL2	NEUROG3	SOX14
LOC285696	CDCA5	CLIC5	FAM70B	ITGA4	NGF	SOX17
LOC286094	CDCP1	CLIC6	FAM78A	ITPKA	NGFR	SOX7
LOC286297	CDH13	CLNS1A	FAM81A	JUN	NKX2-1	SPAG6
LOC286437	CDH15	CLOCK	FAM84A	KAZALD1	NKX2-2	SPON1
LOC339240	CDH22	CLSTN2	FAM89A	KCNA1	NKX2-3	SRD5A2
LOC340073	CDH7	CLTC	FBLN5	KCNA3	NKX2-5	SSTR2
LOC389033	CDK5R2	CLVS2	FBLN7	KCNAB1	NKX2-8	STMN2
LOC641515	CDKN2A	CMA1	FBN1	KCNC2	NKX3-1	SUSD4
LOC643802	CDKN2B	CMTM7	FBN2	KCNC4	NKX3-2	SV2B
LOC727924	CDKN2B-AS1	CMTR1	FBP1	KCND3	NKX6-1	TBR1
LOC729218	CDKN2C	CNGA3	FBXL14	KCNH1	NKX6-2	TBX1
LOC729737	CDX2	CNOT2	FBXL8	KCNH3	NOTUM	TBX2
LPAR3	CEACAM19	CNPY1	FBXO25	KCNK12	NPAS1	TBX3
LRRC26	CELF2	CNTNAP5	FBXO3	KCNK13	NPAS4	THBD
LRRC72	CEP192	COL12A1	FERD3L	KCNK2	NPNT	TLL1
LRTM1	CEP85	COL14A1	FEV	KCNK4	NPR1	TLX1
LRTM2	CEP85L	COL15A1	FEZ1	KCNMA1	NPR3	TLX2
LTBP1	CERKL	COL21A1	FEZF2	KCNQ3	NPTX1	TMEM132E
LTF	CFTR	COL27A1	FGF11	KCNV1	NPY5R	TMEM30B
LYZL6	CH25H	COL2A1	FGF20	KIAA1199	NR2E1	TMEM59L
LZTS1-AS1	CHAT	COL5A3	FGF3	KIAA1324	NR2F2	TMOD2
MALL	CHD5	COLEC12	FGF5	KIRREL3	NRG2	TP73
MAPRE3	CHN2	COMMD4	FGF8	KL	NRIP3	TRADD
MAST4	CHRDL2	COMP	FGF9	KLF4	NRN1	TRH
MEP1A	CHRM2	COPS7A	FIGLA	KLHL35	NRXN1	TRIM36
MIR10A	CHRNA3	CPAMD8	FLI1	KY	NTNG2	TRIM67
MIR10B	CHST13	CPLX2	FLJ11235	LAYN	NTRK1	TRPC5
MIR1-1	CHST8	CPNE1	FLJ32063	LBX1	NXPH4	TSLP
MIR1252	CISTR-ACT	CPNE7	FLJ39739	LGALS3	OLIG2	UCN
MIR1258	CKMT1A	CPT1A	FLJ45983	LGR5	OLIG3	UCP1
MIR196A1	CLDN14	CPXM2	FLJ46347	LHX2	ONECUT1	UNC5C
MIR196A2	CLDN7	CPZ	FLRT2	LHX4	ONECUT2	USH1G
MIR196B	CLEC2L	CR1	FNDC1	LHX5	OPRD1	VAX1
MIR200B	CLEC4GP1	CR2	FNDC5	LHX6	OSR1	VAX2
MIR206	CLIC5	CRABP1	FOXA2	LHX8	OSR2	VDR
MIR3131	CLIC6	CRB3	FOXB1	LINC00268	OTOP1	WNT1

MIR3185	CLNS1A	CREB3L2	FOXC1	LMX1B	OTOP2	WNT10A
MIR3646	CLOCK	CREG2	FOXD2	LOC153684	ОТОР3	WNT11
MIR3907	CLSTN2	CRHBP	FOXD3	LONRF3	OTP	WNT2
MIR4276	CLTC	CRIM1	FOXD4L1	LPHN3	OTX1	WNT3A
MIR4420	CLVS2	CRLF1	FOXD4L3	LPL	OTX2	WNT6
MIR4423	CMA1	CRNDE	FOXD4L4	LPPR1	OVOL1	WNT7A
MIR4461	CMTM7	CRTAC1	FOXE1	LRCH2	PABPC1L2A	WRAP73
MIR4493	CMTR1	CRYBA2	FOXE3	LRFN5	PADI2	ZCCHC16
MIR4713	CNGA3	CRYM	FOXF1	LRP2	PAPPA	ZFHX3
MIR4727	CNIH3	CSE1L	FOXF2	LRRC71	PAX1	ZFYVE28
MIR4730	CNOT2	CSGALNACT1	FOXG1	LRRTM1	PAX2	ZIC1
MIR4778	CNPY1	CSMD1	FOXJ1	LTBP2	PAX8	ZIC4
MIR4801	CNTNAP5	CSMD2	FOXL1	LTK	PAX9	ZMYND15
MIR5092	COL12A1	CSMD3	FOXL2	LYSMD2	PCDH8	ZNF436
MIR5093	COL14A1	CSRNP2	FOXQ1	MAB21L1	PCSK2	ZNF503
MIR5188	COL15A1	CSRP2	FRAT1	MAB21L2	PDGFRA	
MIR518B	COL21A1	CTAGE11P	FRMD3	MAFB	PDX1	
MIR520C	COL25A1	CTDSP1	FRMPD1	MAL	PENK	
MIR520G	COL27A1	CTSE	FRMPD4	MAPK4	PGM5	
MIR520H	COL2A1	CUX2	FUCA1	MAPT	PGR	
MIR663A	COL4A3	CWC15	FUT4	MCOLN3	PHOX2A	
MIR888	COL4A4	CWH43	FUT9	MESP1	PITX3	
MIR890	COL5A3	CXCL12	FXYD7	METRNL	PMP22	
MIR891A	COL6A5	CXCL16	FZD1	MGC39545	POMC	
MNX1	COLEC12	CXCL6	FZD10	MIR137HG	POU3F4	
MRGPRX4	COMMD4	CYB5R2	FZD2	MKX	POU4F1	
MROH5	COMP	CYP11B1	GAB3	MLLT3	POU4F2	
MS4A10	COPS7A	CYP26A1	GABBR2	MNX1	POU4F3	
MSGN1	COX16	CYP26B1	GABRA2	MSC	PPP1R14C	
MSX2P1	CPAMD8	CYP27B1	GABRA4	MSX1	PRDM12	
MT1G	CPLX2	CYP2A13	GABRB2	MT1A	PRDM13	
MT1L	CPNE1	CYP4F2	GABRG3	MT1B	PRKCB	
MTFR1	CPNE7	CYP4X1	GAD2	MT1DP	PRKCH	
MTHFSD	CPT1A	CYS1	GALNTL1	MT1H	PRLHR	
MTRNR2L7	CPXM2	DACH1	GALNTL4	MT1M	PROK2	
MUC12	CPZ	DACH2	GALR2	MYF6	PRUNE2	
MUC13	CR1	DACT1	GAST	MYO5B	PSD2	
MYH4	CR2	DBX1	GATA2	MYOD1	PTF1A	
MYL3	CRABP1	DBX2	GATA3	NAGS	PTGDR	
MYOM2	CRB3	DCC	GATA4	NAV2	PTGER2	
МҮОТ	CREB3L2	DCX	GATA6	NBPF11	PTGER3	
NAA30	CREG2	DDX17	GBX2	NCAM1	PTGER4	
NASP	CRHBP	DDX51	GCC1	NDUFA4L2	PTH2	
NDRG4	CRHR2	DEFB119	GCM2	NEFL	PTHLH	
NEBL	CRIM1	DEGS2	GDF6	NEFM	PTPRT	

NEUROD1	CRLF1	DENND6A	GDF7	NELL1	PYY
NEUROD4	CRNDE	DGKG	GDNF	NEUROD1	RAB6C
NFIX	CRTAC1	DGKK	GHR	NEUROD2	RASGRF1
NFS1	CRYBA2	DHDDS	GHSR	NEUROG1	RASSF5
NMT1	CRYM	DHDH	GIMAP5	NEUROG2	RAX
NOTO	CSE1L	DIO3	GJB2	NEUROG3	RBP4
NPAS3	CSGALNACT1	DKFZP434I071 4	GJD2	NFIX	RBP7
NPFFR1	CSMD1	DKFZp686K168 4	GKAP1	NKX2-1	REEP1
NPY4R	CSMD2	DKK1	GLB1L2	NKX2-2	RFX6
NR2F1	CSMD3	DKK2	GLIPR2	NKX2-3	RGS10
NR2F1-AS1	CSRNP2	DLK1	GLT25D2	NKX2-8	RGS9BP
NSG1	CSRP2	DLL1	GNA14	NKX3-1	RIPK3
NUBPL	CTAGE11P	DLL4	GNAO1	NKX3-2	RSPO2
NXPE2	CTDSP1	DLX1	GPC3	NKX6-1	RSPO3
OAZ3	CTSE	DLX2	GPC5	NKX6-2	RTBDN
OCA2	CUX2	DLX3	GPD1L	NOL4	SAMD11
OLFM3	CWC15	DLX4	GPM6B	NPAS1	SCTR
OLFM4	CWC25	DLX5	GPR101	NPAS4	SEZ6
OPALIN	CWH43	DLX6	GPR12	NPNT	SFRP1
OR10J1	CXCL12	DMBT1	GPR124	NPR3	SFRP5
OR11H6	CXCL16	DMRT1	GPR150	NPTX1	SFTPC
OR13C8	CXCL6	DMRT2	GPR174	NPY1R	SGPP2
OR1I1	CXXC4	DMRT3	GPR26	NR2F2	SH3GL2
OR1J4	CYB5R2	DMRTA2	GPR6	NR4A3	SHH
OR1L3	CYP11B1	DNAH11	GPR62	NRG1	SHISA6
OR1N1	CYP1B1	DNAJB11	GPR88	NRG2	SHOX
OR2A5	CYP24A1	DNTT	GRB10	NT5C1A	SHOX2
OR4B1	CYP26A1	DOC2B	GRHL3	NTN1	SIDT1
OR4C3	CYP26B1	DOCK10	GRIA2	NTNG2	SIM2
OR4C6	CYP27B1	DOCK3	GRID1	NTRK1	SIX1
OR4F16	CYP2A13	DOCK8	GRIK1	NTRK2	SIX2
OR4F29	CYP2S1	DPF3	GRIK3	O3FAR1	SIX3
OR4F3	CYP4F2	DPP10	GRIN1	OAF	SKAP1
OR4F5	CYP4X1	DPP6	GRIN2D	OCA2	SLC17A6
OR4L1	CYS1	DPP9	GRIN3A	OLFML2B	SLC17A7
OR4N3P	DACH1	DPRX	GRK5	OLIG2	SLC1A2
OR51E1	DACH2	DPY19L2P1	GRM6	ONECUT1	SLC24A4
OR52E6	DACT1	DPYSL2	GRM7	ONECUT2	SLC26A5
OR52W1	DBX1	DRD1	GSC	OPRD1	SLC30A2
OR56B1	DBX2	DRD2	GSC2	OSR1	SLC30A3
OR5B17	DCC	DRD5	GSN	OTOP1	SLC32A1
OR5H14	DCX	DRGX	GSX1	OTOP2	SLC35D3
OR6P1	DDC	DSC3	GSX2	OTOP3	SLC35F3
OR6X1	DDX17	DSCAM-IT1	GUCY1A3	OTP	SLC6A1

OR8D1	DDX51	DSCAML1	GUCY2D	OTX1	SLC6A11
OR8G1	DEFB119	DSP	HAND1	OTX2	SLC6A3
OR8G2	DEGS2	DTL	HAND2	OXCT2	SLC6A5
OR8G5	DENND6A	DUOX1	HBA1	PABPC1L2A	SLC9A2
OR9Q2	DGKG	DUOXA1	HBA2	PAPPA	SLC9A3
ΟΤΟΑ	DGKK	DUSP1	HCG9	PARM1	SLCO5A1
OTX2-AS1	DHDDS	DUSP5P1	HCN4	PAX1	SLFN11
OVOL2	DHDH	DUX2	HES2	PAX2	SLIT3
PABPC4L	DIO3	DUX4	HES3	PAX3	SLITRK3
PADI6	DKFZP434I071 4	DUX4L2	HES5	PAX6	SMOC2
PAK7	DKFZp686K168 4	DUX4L3	HES7	PAX7	SNTB1
PALLD	DKK1	DUX4L5	HEY1	PAX8	SORCS1
PAMR1	DKK2	DUX4L6	HEYL	PAX9	SORCS3
PAPL	DLK1	DUX4L7	HHAT	PCDH17	SOX14
PAPPA-AS1	DLL1	EBF1	HHEX	PCDH8	SOX17
PATL2	DLL4	EBF2	HHIP	PDE4DIP	SOX7
PAX3	DLX1	EBF3	HIC1	PDGFRA	SPAG6
PAX5	DLX2	ECEL1	HLA-A	PDX1	SPON1
PAX6	DLX3	ECEL1P2	HLA-B	PDZD2	SPON2
PAX7	DLX4	EDA	HLA-C	PENK	SRD5A2
PAXBP1	DLX5	EDN3	HLA-F	PGM5	SSTR2
PDCL	DLX6	EEF1A1	HLX	PGR	ST8SIA5
PDCL2	DLX6-AS1	EEF2	HMX2	PHOX2A	STC2
PDE1B	DMBT1	EFCAB6	HMX3	PHOX2B	STMN2
PDE4A	DMKN	EFCC1	HNF1B	PIGZ	SUSD4
PDE4DIP	DMRT1	EFNA5	HOXA1	PIP5K1B	SV2B
PDIA4	DMRT2	EGFL6	HOXA10	PIR	SYNE1
PDPR	DMRT3	EGFLAM	HOXA13	PITX1	SYT6
PEG3-AS1	DMRTA2	EGR4	HOXA2	PITX2	Т
PER4	DNAH11	EHD1	HOXA3	PITX3	TACR1
PF4V1	DNAJB11	EIF3E	HOXA4	PKNOX2	TBR1
PGLYRP4	DNTT	EIF3M	HOXA6	PKP1	TBX1
PGM5-AS1	DOC2B	EIF4E3	HOXA7	PLEC	TBX2
PGPEP1L	DOCK10	ELAVL2	HOXA9	PLXNA2	TBX20
PGRMC2	DOCK3	ELMOD1	HOXB1	PMP22	TBX3
PHACTR3	DOCK8	ELOVL3	HOXB13	PODN	TGFA
PHLDA1	DPF3	ELOVL7	HOXB2	POLE	THBD
PHOX2B	DPP10	ELP3	HOXB3	POU3F1	TLL1
PI16	DPP6	EMC1	HOXB6	POU3F4	TLX1
PIK3IP1	DPP9	EMILIN2	HOXB7	POU4F1	TLX2
PITX1	DPRX	EMX1	HOXB8	POU4F2	TLX3
PITX2	DPY19L2P1	EMX2	HOXC11	POU4F3	TMEM132E
PKD2L1	DPYSL2	EMX2OS	HOXC12	PPM1E	TMEM163
PLA2G7	DRD1	EN1	HOXC4	PRAC	TMEM30B

PLXNC1	DRD2	EN2	HOXC5	PRDM12	TMEM59L
PNLIP	DRD5	ENTHD1	HOXC6	PRKCE	TMOD2
PNPLA8	DRGX	ENTPD6	HOXC8	PRKG1	TNFSF9
PPEF2	DSC3	EPAS1	HOXD1	PRLHR	TP73
PPIP5K1	DSCAM-IT1	EPB41L3	HOXD12	PROK2	TRADD
PPP1R26-AS1	DSCAML1	EPB42	HOXD13	PTF1A	TRH
PPP2R2C	DSP	EPHA10	HOXD3	PTGDR	TRIM36
PRAC2	DTL	EPHA2	HOXD4	PTGER2	TRIM67
PRAMEF10	DUOX1	EPHA3	HOXD8	PTGER3	TRPC5
PRAMEF2	DUOX2	EPHA5	HOXD9	PTGER4	TSLP
PRDM14	DUOXA1	EPHA8	HPCAL4	PTGFR	TWIST1
PRG3	DUOXA2	EPO	HPSE	PTH2	UCN
PRICKLE2-AS2	DUSP1	EPPIN	HPSE2	PTHLH	UCP1
PRKCZ	DUSP5P1	EPPIN-WFDC6	HR	PTPRT	ULBP1
PRR9	DUX2	ERAP1	HRK	PTPRU	ULBP2
PRSS16	DUX4	ERG	HS3ST2	PXMP2	UNC5C
PRSS22	DUX4L2	ERVMER34-1	HS3ST3B1	PYY	USH1G
PRSS3	DUX4L3	ESPN	HS3ST4	RAB6C	VAX1
PRSS30P	DUX4L5	ESPNL	HS6ST1P1	RASGRF1	VAX2
PTPRD	DUX4L6	ESR1	HS6ST3	RASL10A	VDR
PVALB	DUX4L7	ESRP1	HSF4	RASSF5	WNT1
RAB7L1	DYSF	ESX1	HSPA1A	RAX	WNT10A
RAPGEF5	EBF1	ESYT3	HSPA1B	RBP4	WNT11
RBP2	EBF2	ETS1	HSPA1L	REPS2	WNT2
REXO1L1	EBF3	EVX2	HSPA6	RGS10	WNT3A
REXO1L2P	ECEL1	EXOSC9	HTR1A	RGS20	WNT6
RGS3	ECEL1P2	EYA2	HTR2C	RGS9BP	WNT7A
RNASE7	EDA	F11R	HTR6	RIMBP3	WRAP73
RNF128	EDIL3	F13A1	HTR7	RIMBP3B	ZACN
RNPS1	EDN3	FADS6	HTRA3	RIMBP3C	ZCCHC16
ROBO1	EEF1A1	FAM118B	ICAM4	RIMKLA	ZFHX3
ROBO3	EEF2	FAM135B	ICAM5	RIPK3	ZFYVE28
ROMO1	EFCAB6	FAM150B	IGF2-AS	RNF128	ZIC1
RPL24	EFCC1	FAM155B	IGFBP1	ROBO3	ZIC4
RPSAP52	EFNA5	FAM161A	IGFBP3	RPRML	ZMYND15
RRAD	EGFL6	FAM163A	IGSF21	RPS6KA6	ZNF436
RSPO1	EGFLAM	FAM189A2	IHH	RSPO1	ZNF503
RSPO4	EGR4	FAM196A	IKZF3	RSPO2	
S100A6	EHD1	FAM19A4	IL10RA	RTN4RL2	
SAMD7	EIF3E	FAM201A	IL11	RYR3	
SATB2	EIF3M	FAM210A	IL17D	SCD5	
SCARNA6	EIF4E3	FAM212A	IL17RB	SCN4B	
SELL	ELAVL2	FAM21A	IL1RAPL2	SCNN1G	
SEMA3A	ELMOD1	FAM21C	IL7	SCTR	
SERPINB13	ELOVL3	FAM32A	ILDR2	SEMA6D	

SERTAD1	ELOVL7	FAM43B	IMPDH1	SERTM1
SIM1	ELP3	FAM69C	INA	SFRP1
SIRPB1	EMC1	FAM78B	INSM2	SFRP5
SIX6	EMILIN2	FAM83F	INSRR	SGPP2
SKOR2	EMX1	FAM83H	INTS4L1	SHC4
SLC13A4	EMX2	FAM89A	IRF4	SHH
SLC14A2	EMX2OS	FAM95C	IRX1	SHISA6
SLC18A2	EN1	FASTK	IRX3	SHOX
SLC22A9	EN2	FBLN7	IRX4	SHOX2
SLC26A4	ENTHD1	FBXL16	IRX5	SIDT1
SLC27A6	ENTPD6	FBXL20	ISL1	SIM2
SLC28A3	EOMES	FBXL8	ISL2	SIX1
SLC4A11	EPAS1	FBXW2	ITGA4	SIX2
SLC5A7	EPB41L3	FBXW7	ITIH5	SIX3
SLC6A12	EPB42	FCER1G	ITPKA	SIX6
SLC6A2	EPHA10	FCER2	JUN	SLC10A4
SLC6A20	EPHA2	FCHSD2	KAZALD1	SLC1A2
SLC6A7	EPHA3	FCRL6	KCNA1	SLC1A4
SLPI	EPHA5	FCRLB	KCNA3	SLC24A4
SMC5	EPHA8	FENDRR	KCNA5	SLC26A4
SMC5-AS1	EPO	FERD3L	KCNAB1	SLC27A2
SMUG1	EPPIN	FEZF1	KCNC2	SLC30A2
SNAR-A1	EPPIN-WFDC6	FEZF1-AS1	KCNC4	SLC30A3
SNAR-A10	ERAP1	FEZF2	KCND3	SLC30A4
SNAR-A11	ERG	FFAR4	KCNF1	SLC32A1
SNAR-A12	ERICH1-AS1	FGD2	KCNH1	SLC35F3
SNAR-A13	ERVMER34-1	FGF1	KCNH3	SLC6A1
SNAR-A14	ESPN	FGF10	KCNH7	SLC6A3
SNAR-A2	ESPNL	FGF14	KCNIP2	SLC6A5
SNAR-A3	ESR1	FGF17	KCNIP4	SLC9A2
SNAR-A4	ESRP1	FGF19	KCNJ10	SLC9A3
SNAR-A5	ESRRG	FGF23	KCNJ3	SLCO2A1
SNAR-A6	ESX1	FGF3	KCNJ4	SLCO5A1
SNAR-A7	ESYT3	FGF5	KCNJ9	SLFN11
SNAR-A8	ETS1	FGF7	KCNK12	SLIT1
SNAR-A9	EVA1A	FGF8	KCNK13	SLIT2
SNAR-C1	EVX1	FGF9	KCNK17	SLITRK1
SNAR-C2	EVX2	FGFR2	KCNK2	SLITRK3
SNAR-C4	EXOC3L2	FGL2	KCNK3	SORCS1
SNAR-C5	EXOSC9	FIBCD1	KCNK4	SORCS3
SNHG7	EYA2	FIGLA	KCNMA1	SOX14
SNORA45	F11R	FLI1	KCNQ1	SOX17
SNORD113-6	F13A1	FLJ12825	KCNQ3	SOX7
SNRPA1	FADS6	FLJ20518	KCNQ5	SPAG6
SNX16	FAHD1	FLJ31813	KCNS2	SPOCK3

SNX29P1	FAIM	FLJ44511	KCNS3	SPON1
SOX18	FAM118B	FLRT2	KCNV1	SRD5A2
SOX5	FAM135B	FLT1	KIAA1191	SSTR1
SOX8	FAM150A	FLT3	KIAA1199	SSTR2
SP6	FAM150B	FLT4	KIAA1324	ST8SIA2
SP8	FAM155B	FNDC1	KIRREL3	STK32B
SPDEF	FAM159B	FNIP1	KIRREL3-AS3	STMN2
SPDYE3	FAM161A	FOXA1	KISS1R	STXBP6
SPERT	FAM163A	FOXA3	KL	SUSD4
SPINK8	FAM189A2	FOXB1	KLF4	SV2B
SPOCK3	FAM196A	FOXB2	KLHL1	SYT12
SRP9	FAM19A4	FOXC1	KLHL13	TAL1
SRSF7	FAM201A	FOXC2	KLHL14	TBR1
SSTR1	FAM210A	FOXD1	KLHL17	TBX1
SSTR5	FAM212A	FOXD2-AS1	KLHL35	TBX2
ST14	FAM21A	FOXD3	KLK4	TBX21
ST5	FAM21C	FOXD4	KY	TBX3
STX6	FAM32A	FOXD4L2	LAMB1	TBX5
SYCP1	FAM43B	FOXD4L3	LAYN	TCEA3
TAAR1	FAM69C	FOXD4L4	LBX1	TET2
TAC1	FAM78B	FOXD4L5	LEF1	TFAP2E
TAGAP	FAM83F	FOXD4L6	LEKR1	THBD
TAL1	FAM83H	FOXE1	LGALS3	TLL1
TARBP1	FAM89A	FOXE3	LGI3	TLX1
TAS2R39	FAM95C	FOXF1	LGR5	TLX2
TBC1D3	FASTK	FOXF2	LHFPL3	TMEFF2
TBC1D3C	FBLN7	FOXG1	LHX2	TMEM132E
TBC1D3F	FBXL16	FOXI2	LHX3	TMEM27
TBC1D3H	FBXL20	FOXI3	LHX4	TMEM30B
TBC1D3P5	FBXL21	FOXL1	LHX5	TMEM59L
TBX15	FBXL8	FOXL2	LHX6	TMEM88
TBX4	FBXW2	FOXO3	LHX8	TMOD2
TBX5	FBXW7	FOXP2	LINC00268	TP73
TBX5-AS1	FCER1G	FOXQ1	LMO1	TPPP3
TCF21	FCER2	FREM3	LMOD1	TRADD
TES	FCGR1C	FRG2B	LMX1B	TRH
TFAP2A	FCHSD2	FRG2C	LOC100131554	TRIM36
TFAP2B	FCRL6	FRMD3	LOC153684	TRIM67
TFAP2D	FCRLB	FRMD4B	LOC154761	TRIM9
TGM5	FENDRR	FRMPD1	LOC84931	TRPC5
TGM6	FERD3L	FSHR	LONRF3	TSLP
TIGD2	FEV	FSIP2	LPHN3	TTYH1
TMEM132B	FEZF1	FST	LPL	UCN
TMEM174	FEZF1-AS1	FSTL4	LPPR1	UCP1
TMEM45B	FEZF2	FTCDNL1	LRAT	UNC5C

TNFAIP2	FFAR4	FUOM	LRBA	USH1G
TNFSF11	FGD2	FUS	LRCH2	VASH1
TNS4	FGF1	FXYD2	LRFN2	VAX1
TOB1	FGF10	FXYD5	LRFN5	VAX2
TPI1P3	FGF14	FXYD7	LRP2	VDR
TPM3	FGF17	FZD10	LRRC71	VSX1
TREML4	FGF19	FZD10-AS1	LRRTM1	VSX2
TRPA1	FGF23	GAB3	LTBP2	WNT1
UBC	FGF3	GABPA	LTK	WNT10A
UCA1	FGF4	GABRA2	LY6H	WNT10B
UPK1A-AS1	FGF5	GABRA4	LYSMD2	WNT11
UPK3A	FGF7	GABRB2	MAB21L1	WNT16
USHBP1	FGF8	GABRE	MAB21L2	WNT2
USP16	FGF9	GAD2	MADCAM1	WNT3A
USP44	FGFR2	GADD45G	MAFB	WNT6
USP46	FGL2	GAGE12F	MAL	WNT7A
USPL1	FIBCD1	GAGE12I	MAN1C1	WRAP73
VGLL2	FIGLA	GAGE2A	MAP6	WT1
VSIG10L	FLI1	GAGE2B	MAPK4	WT1-AS
VSX1	FLI1-AS1	GAGE2C	MAPK8IP2	ZADH2
VSX2	FLJ12825	GAGE2E	MAPT	ZBTB16
VTCN1	FLJ20518	GAGE4	MAST4	ZCCHC16
WDR72	FLJ31813	GAGE5	MCOLN3	ZEB2
WIPF3	FLJ36000	GAGE7	MECOM	ZFHX3
WNT10B	FLJ44511	GAGE8	MED31	ZFYVE28
WNT16	FLRT2	GAL	MEIS1	ZIC1
WNT8B	FLT1	GALNT3	MEOX2	ZIC4
WT1	FLT3	GALNT6	MESP1	ZMYND15
WT1-AS	FLT4	GALNT9	METRNL	ZNF436
XDH	FNDC1	GALR1	MFSD4	ZNF503
ZAN	FNIP1	GALR2	MGC39545	
ZMYM3	FOXA1	GAN	MICB	
ZMYM4	FOXA2	GAP43	MIR137HG	
ZNF260	FOXA3	GAS2	MKX	
ZNF280A	FOXB1	GATA3	MLLT3	
ZNF420	FOXB2	GATA3-AS1	MLPH	
ZNF462	FOXC1	GATA4	MLXIPL	
ZNF503-AS1	FOXC2	GATA5	MMD2	
ZNF534	FOXD1	GATA6	MMP2	
ZNF555	FOXD2	GATA6-AS1	MNX1	
ZNF676	FOXD2-AS1	GBX1	MSC	
ZPBP2	FOXD3	GBX2	MSX1	
	FOXD4	GCGR	MSX2	
	FOXD4L1	GCM2	MT1A	
	FOXD4L2	GDE1	MT1B	

FOXD4L3	GDF6	MT1DP
FOXD4L4	GDF7	MT1H
FOXD4L5	GET4	MT1M
FOXD4L6	GFI1B	MT3
FOXE1	GFRA1	MXRA7
FOXE3	GFRA4	MYB
FOXF1	GGT8P	MYF6
FOXF2	GHR	MYO5B
FOXG1	GHRL	MYOD1
FOXI2	GHSR	NAGS
FOXI3	GIMAP4	NAV2
FOXL1	GINS3	NBL1
FOXL2	GIPC1	NBPF11
FOXO3	GJA3	NCAM1
FOXP2	GJB2	NCCRP1
FOXQ1	GJB3	NDRG1
FREM3	GJB4	NDUFA4L2
FRG2B	GJB6	NEFH
FRG2C	GJD2	NEFL
FRMD3	GLB1L	NEFM
FRMD4B	GLB1L3	NEGR1
FRMPD1	GLP1R	NELL1
FSHR	GLYAT	NEURL
FSIP2	GMFB	NEUROD1
FST	GNAL	NEUROD2
FSTL4	GNAS	NEUROG1
FTCDNL1	GNE	NEUROG2
FUOM	GNG13	NEUROG3
FUS	GNN	NFIA
FXYD2	GOLGA3	NFIC
FXYD5	GOLGA7B	NFIX
FXYD7	GPAM	NGF
FZD10	GPR101	NGFR
FZD10-AS1	GPR139	NIM1
GAB3	GPR149	NIN
GABPA	GPR158	NKAIN2
GABRA1	GPR26	NKPD1
GABRA2	GPR27	NKX2-1
GABRA4	GPR50	NKX2-2
GABRB2	GPR64	NKX2-3
GABRE	GPR78	NKX2-5
GAD2	GPR88	NKX2-8
GADD45G	GRAP2	NKX3-1
GAGE12F	GRB7	NKX3-2
GAGE12I	GREM1	NKX6-1

GAGE2A	GRIA2	NKX6-2
GAGE2B	GRID1	NOC2L
GAGE2C	GRIK3	NOL4
GAGE2E	GRIN1	NOTUM
GAGE4	GRIN2C	NOVA2
GAGE5	GRIN3B	NOXO1
GAGE7	GRM1	NPAS1
GAGE8	GRM6	NPAS2
GAL	GRM7	NPAS4
GALNT3	GRM8	NPNT
GALNT6	GRP	NPR1
GALNT9	GSC	NPR3
GALR1	GSC2	NPTX1
GALR2	GSDMC	NPY1R
GAN	GSG1L	NPY5R
GAP43	GSG2	NR2E1
GAS2	GSTA3	NR2F2
GATA2	GSTZ1	NR4A3
GATA3	GSX1	NRG1
GATA3-AS1	H1F0	NRG2
GATA4	H1FX	NRGN
GATA5	H1FX-AS1	NRIP3
GATA6	H3F3B	NRN1
GATA6-AS1	HAND1	NRXN1
GBA	HAND2	NT5C1A
GBX1	HAND2-AS1	NTN1
GBX2	HAP1	NTNG2
GCGR	HAPLN4	NTRK1
GCM2	HAUS2	NTRK2
GDE1	HBM	NXPH4
GDF6	HBZ	O3FAR1
GDF7	HCFC2	OAF
GDNF	HCN4	OCA2
GDNF-AS1	HCRTR2	OLFML2B
GET4	HCST	OLIG2
GFI1	HDAC9	OLIG3
GFI1B	HDHD2	ONECUT1
GFOD1	HDLBP	ONECUT2
GFRA1	HECW1	OPRD1
GFRA4	HELT	OSBP2
GGT8P	HERC4	OSR1
GHR	HERC5	OSR2
GHRL	HES2	OTOP1
GHSR	HES3	OTOP2
GIMAP4	HEY2	OTOP3

GINS3	HHEX	OTP
GIPC1	HHIP-AS1	OTX1
GIPC2	HHLA1	OTX2
GJA3	HIST1H1C	OVOL1
GJB2	HIST1H1E	OXCT2
GJB3	HIST1H2AC	P2RX5
GJB4	HIST1H2AE	PABPC1L2A
GJB6	HIST1H2BC	PADI2
GJD2	HIST1H2BG	PAPL
GLB1L	HIST1H3J	PAPPA
GLB1L3	HLA-J	PARD3B
GLIS1	HLF	PARM1
GLP1R	HLX	PARP8
GLYAT	HMBS	PAX1
GMFB	HMGA2	PAX2
GNAL	HMGCS1	PAX3
GNAS	HMGCS2	PAX5
GNE	HMHA1	PAX6
GNG13	HMX1	PAX7
GNN	HMX2	PAX8
GOLGA3	HMX3	PAX9
GOLGA7B	HNRNPA1L2	PCDH17
GPAM	HOPX	PCDH8
GPR101	HOTAIRM1	PCDHGC4
GPR139	HOXA1	PCGF5
GPR149	HOXA11-AS	PCSK2
GPR158	HOXA2	PDE10A
GPR26	HOXA4	PDE1B
GPR27	HOXA5	PDE4DIP
GPR4	HOXA6	PDE8A
GPR50	HOXB3	PDE8B
GPR64	HOXB7	PDGFRA
GPR78	HOXB8	PDX1
GPR88	HOXB9	PDZD2
GRAP2	HOXC10	PENK
GRB7	HOXC6	PGM5
GREM1	HOXC9	PGR
GRIA2	HOXC-AS1	PHLDB1
GRID1	HOXD11	PHOX2A
GRIK3	HOXD13	PHOX2B
GRIN1	HOXD8	PHYHIPL
GRIN2C	HOXD9	PIGZ
GRIN3A	HOXD-AS1	PIP5K1B
GRIN3B	HOXD-AS2	PIR
GRM1	HPCA	PITX1

GRM4	HPGD	PITX2
GRM6	HPN-AS1	PITX3
GRM7	HPSE	PKNOX2
GRM8	HPSE2	PKP1
GRP	HR	PLEC
GSC	HRC	PLLP
GSC2	HRH1	PLP1
GSDMC	HRH2	PLXNA2
GSG1L	HRH3	PLXNC1
GSG2	HRK	PMP22
GSTA3	HS3ST2	PODN
GSTZ1	HS3ST3A1	POLE
GSX1	HS3ST3B1	POLR3GL
GSX2	HS3ST4	POMC
H1F0	HS3ST6	POU3F1
H1FX	HS6ST3	POU3F2
H1FX-AS1	HSF4	POU3F4
H2AFX	HSP90AA1	POU4F1
H3F3B	HSP90B1	POU4F2
HAGH	HSPB1	POU4F3
HAND1	HSPH1	PPM1E
HAND2	HTR1A	PPP1R13B
HAND2-AS1	HTR1B	PPP1R14C
HAP1	HTR4	PRAC
HAPLN4	HTR6	PRDM12
HAUS2	ICAM1	PRDM13
HBA1	ICAM5	PRKAG2
HBA2	ICOSLG	PRKCB
HBM	ID3	PRKCE
HBZ	ID4	PRKCH
HCFC2	IDO2	PRKD1
HCK	IFIH1	PRKG1
HCN4	IFITM10	PRLHR
HCRTR2	IFNG	PROK2
HCST	IFNL4	PRR18
HDAC9	IFT27	PRRT1
HDHD2	IGF2-AS	PRSS12
HDLBP	IGFBP3	PRUNE2
HECW1	IGFL1	PSD2
HELT	IHH	PTF1A
HEMGN	IKZF1	PTGDR
HERC4	IKZF3	PTGER2
HERC5	IL10RA	PTGER3
HES2	IL15RA	PTGER4
HES3	IL17REL	PTGFR

HEY2	IL1F10	PTH2
HHEX	IL1RAPL2	PTHLH
HHIP-AS1	IL20RA	PTPRN2
HHLA1	IL22RA2	PTPRT
HIST1H1A	IL6R	PTPRU
HIST1H1C	IL7	PXMP2
HIST1H1D	IL9R	PYY
HIST1H1E	ILF2	RAB11FIP3
HIST1H2AC	IMP3	RAB33A
HIST1H2AE	IMPACT	RAB40B
HIST1H2BC	INCA1	RAB6C
HIST1H2BG	INSL5	RAB9B
HIST1H3J	INSM1	RAMP1
HIST2H2AA3	INSRR	RAPGEF4
HIST2H2AA4	INTS4L2	RARA
HIST2H2BC	INTS6	RARRES2
HLA-J	INTS6-AS1	RASGEF1C
HLF	INTS7	RASGRF1
HLX	IQGAP2	RASL10A
HMBS	IQSEC2	RASSF5
HMGA2	IQSEC3	RAX
HMGCS1	IRF5	RBBP7
HMGCS2	IRF8	RBP4
HMHA1	IRX1	RBP7
HMX1	IRX2	RCSD1
HMX2	IRX3	REEP1
HMX3	IRX5	REPS2
HNF1B	IRX6	RFX4
HNRNPA1L2	ISL1	RFX6
HOPX	ISLR2	RGAG4
HOTAIR	ISM1	RGS10
HOTAIRM1	ITGA11	RGS20
HOTTIP	ITGA4	RGS9
HOXA1	ITGA8	RGS9BP
HOXA10	ITGB2-AS1	RIMBP3
HOXA10- HOXA9	ITIH5	RIMBP3B
HOXA11	ITPKA	RIMBP3C
HOXA11-AS	ITPR3	RIMKLA
HOXA13	ITPRIPL1	RIMS4
HOXA2	IVNS1ABP	RIPK3
HOXA3	JPH3	RIPPLY2
HOXA4	JUND	RNF128
HOXA5	KANK4	RNF2
HOXA6	KBTBD12	RNPEPL1
HOXA7	KBTBD13	ROBO3

HOXA9	KCNA1	RPRML
HOXA-AS3	KCNA10	RPS6KA2
HOXA-AS4	KCNA2	RPS6KA6
HOXB1	KCNA5	RSPO1
HOXB13	KCNA7	RSPO2
HOXB2	KCNAB1	RSPO3
HOXB3	KCNAB2	RTBDN
HOXB4	KCNB2	RTN4RL2
HOXB5	KCNC4	RUNX2
HOXB6	KCNE2	RXRG
HOXB7	KCNH2	RYR3
HOXB8	KCNH4	SAMD11
HOXB9	KCNH5	SATB2
HOXB-AS1	KCNIP2-AS1	SCD5
HOXB-AS3	KCNIP3	SCIN
HOXC10	KCNIP4	SCN4B
HOXC11	KCNJ12	SCNN1G
HOXC12	KCNJ5	SCTR
HOXC13	KCNK1	SCUBE3
HOXC4	KCNK10	SECTM1
HOXC5	KCNK12	SEMA3B
HOXC6	KCNK13	SEMA4F
HOXC8	KCNK15	SEMA6D
HOXC9	KCNK17	SERTM1
HOXC-AS1	KCNK2	SEZ6
HOXC-AS2	KCNK4	SFRP1
HOXC-AS5	KCNK6	SFRP4
HOXD1	KCNK9	SFRP5
HOXD10	KCNMA1	SFTPC
HOXD11	KCNMB4	SGPP2
HOXD12	KCNN2	SH3GL2
HOXD13	KCNQ1	SHC4
HOXD3	KCNQ3	SHH
HOXD4	KCNS2	SHISA6
HOXD8	KCNS3	SHOX
HOXD9	KCNV1	SHOX2
HOXD-AS1	KDM1A	SIDT1
HOXD-AS2	KDM3B	SIM1
HPCA	KDM4A	SIM2
HPGD	KDM4D	SIX1
HPN-AS1	KIAA0087	SIX2
HPSE	KIAA0226L	SIX3
HPSE2	KIAA1009	SIX6
HR	KIAA1024	SKAP1
HRC	KIAA1211L	SLC10A4

HRH1	KIAA1244	SLC16A11
HRH2	KIAA1324	SLC17A6
HRH3	KIF1C	SLC17A7
HRK	KIF5B	SLC1A2
HS3ST1	KIRREL3	SLC1A4
HS3ST2	KIRREL3-AS3	SLC22A3
HS3ST3A1	KISS1R	SLC24A4
HS3ST3B1	KIT	SLC25A27
HS3ST4	KL	SLC26A4
HS3ST6	KLF1	SLC26A5
HS6ST3	KLF4	SLC27A2
HSF4	KLF6	SLC30A10
HSP90AA1	KLHDC9	SLC30A2
HSP90B1	KLHL24	SLC30A3
HSPA5	KLHL30	SLC30A4
HSPA6	KLHL32	SLC32A1
HSPB1	KLHL35	SLC35D3
HSPH1	KLK1	SLC35F3
HTR1A	KLK10	SLC35G1
HTR1B	KLK13	SLC40A1
HTR2C	KLK4	SLC6A1
HTR4	KLK9	SLC6A11
HTR6	KLRG2	SLC6A2
ICAM1	KMT2A	SLC6A20
ICAM4	KNTC1	SLC6A3
ICAM5	KPNA4	SLC6A5
ICOSLG	KRT1	SLC9A2
ID3	KRT19	SLC9A3
ID4	KRT19P2	SLCO2A1
IDO2	KRT25	SLCO3A1
IFIH1	KRT36	SLCO5A1
IFITM10	KRT7	SLFN11
IFNG	KRT71	SLIT1
IFNL4	KRT78	SLIT2
IFT27	KRT83	SLIT3
IGF2	KRTAP13-1	SLITRK1
IGF2-AS	KRTAP5-9	SLITRK3
IGFBP3	KRTCAP2	SMOC2
IGFL1	L1CAM	SMPD3
IGSF21	LACE1	SNAI2
IHH	LAD1	SNCAIP
IKZF1	LAMB1	SNTB1
IKZF3	LAMP5	SORCS1
IL10RA	LARP1B	SORCS3
IL15RA	LARS	SOX14
IL17REL	LASP1	SOX17
-----------	-----------	---------
IL1F10	LBH	SOX7
IL1RAPL2	LBX1	SOX8
IL20RA	LBX1-AS1	SOX9
IL22RA2	LBX2-AS1	SPAG6
IL6R	LDB2	SPOCK3
IL7	LEF1	SPON1
IL9R	LEF1-AS1	SPON2
ILF2	LEPR	SPTB
IMP3	LFNG	SPTBN4
IMPACT	LGALS4	SRD5A2
INCA1	LGI1	SRRM4
INSL5	LGI3	SSBP4
INSM1	LGR5	SSTR1
INSRR	LGR6	SSTR2
INTS4L2	LHFPL3	ST8SIA2
INTS6	LHFPL4	ST8SIA4
INTS6-AS1	LHX1	ST8SIA5
INTS7	LHX2	STC2
IQGAP2	LHX3	STK32B
IQSEC2	LHX4	STMN2
IQSEC3	LHX5	STX1A
IRF4	LHX9	STXBP6
IRF5	LIAS	SUSD4
IRF8	LIF	SV2B
IRX1	LILRA6	SYNE1
IRX2	LIMS2	SYT12
IRX3	LIN28A	SYT6
IRX4	LIN28B	SYT7
IRX5	LINC00114	Т
IRX6	LINC00115	TAC1
ISL1	LINC00210	TACR1
ISL2	LINC00221	TACSTD2
ISLR2	LINC00222	TAL1
ISM1	LINC00261	TAP1
ITGA11	LINC00273	TBR1
ITGA4	LINC00461	TBX1
ITGA8	LINC00466	TBX2
ITGB2	LINC00473	TBX20
ITGB2-AS1	LINC00475	TBX21
ITIH5	LINC00485	TBX3
ITPKA	LINC00599	TBX5
ITPR3	LINC00608	TBXAS1
ITPRIPL1	LINC00617	TCEA3
IVNS1ABP	LINC00629	TCEAL1

JPH3	LINC00643	TCEAL8
JUND	LINC00682	TCF21
KANK4	LINC00693	TCTE1
KBTBD12	LINC00707	TET2
KBTBD13	LINC00940	TFAP2B
KCNA1	LINC00943	TFAP2D
KCNA10	LINC00951	TFAP2E
KCNA2	LINC00960	TGFA
KCNA5	LINC00966	THBD
KCNA7	LINC01024	THBS2
KCNAB1	LINC01081	TIGD3
KCNAB2	LINGO2	TLE2
KCNB2	LIPI	TLL1
KCNC4	LIPJ	TLX1
KCNE2	LMTK3	TLX2
KCNH2	LMX1A	TLX3
KCNH4	LMX1B	TMEFF2
KCNH5	LNX1	TMEM106C
KCNIP2-AS1	LOC100128770	TMEM132E
KCNIP3	LOC100129148	TMEM151A
KCNIP4	LOC100129175	TMEM163
KCNJ12	LOC100129917	TMEM185A
KCNJ5	LOC100130476	TMEM27
KCNK1	LOC100130539	TMEM30B
KCNK10	LOC100130992	TMEM54
KCNK12	LOC100131320	TMEM59L
KCNK13	LOC100132111	TMEM88
KCNK15	LOC100132215	TMOD2
KCNK17	LOC100132891	TNFRSF1B
KCNK2	LOC100134391	TNFSF9
KCNK4	LOC100144602	TP73
KCNK6	LOC100190940	TPPP3
KCNK9	LOC100240734	TRADD
KCNMA1	LOC100240735	TRH
KCNMB4	LOC100268168	TRIM28
KCNN2	LOC100288069	TRIM36
KCNQ1	LOC100288637	TRIM67
KCNQ3	LOC100288748	TRIM7
KCNS2	LOC100288842	TRIM9
KCNS3	LOC100288866	TRPC5
KCNV1	LOC100288911	TSLP
KDM1A	LOC100505622	TTLL7
KDM3B	LOC100505782	TTLL9
KDM4A	LOC100506127	TTPA
KDM4D	LOC100506551	TTYH1

KIAA0087	LOC100506810	TWIST1
KIAA0226L	LOC100653046	UCN
KIAA1009	LOC100996485	UCP1
KIAA1024	LOC101054525	ULBP1
KIAA1211L	LOC145474	ULBP2
KIAA1217	LOC145845	UNC5B
KIAA1239	LOC146513	UNC5C
KIAA1244	LOC152578	USH1G
KIAA1324	LOC153684	VASH1
KIF1C	LOC283299	VAV3
KIF5B	LOC283731	VAX1
KIRREL3	LOC284395	VAX2
KIRREL3-AS3	LOC284412	VDR
KISS1	LOC284801	VGLL2
KISS1R	LOC285084	VSX1
KIT	LOC285547	VSX2
KL	LOC285548	WNT1
KLF1	LOC340017	WNT10A
KLF14	LOC348761	WNT10B
KLF4	LOC375295	WNT11
KLF6	LOC388242	WNT16
KLHDC9	LOC389023	WNT2
KLHL24	LOC389895	WNT3A
KLHL30	LOC392232	WNT5B
KLHL32	LOC399829	WNT6
KLHL35	LOC400043	WNT7A
KLK1	LOC400456	WRAP73
KLK10	LOC401463	WSCD1
KLK13	LOC402160	WT1
KLK4	LOC440461	WT1-AS
KLK9	LOC440896	XYLT1
KLRG2	LOC440925	YAF2
KMT2A	LOC493754	ZACN
KNTC1	LOC613038	ZADH2
KPNA2	LOC63930	ZBTB16
KPNA4	LOC642366	ZBTB7A
KRT1	LOC643201	ZCCHC16
KRT19	LOC643837	ZEB2
KRT19P2	LOC643923	ZFHX3
KRT25	LOC648987	ZFPM1
KRT36	LOC654342	ZFYVE28
KRT7	LOC728463	ZIC1
KRT71	LOC728739	ZIC4
KRT76	LOC728989	ZMYND15
KRT78	LOC729911	ZNF436

KRT83	LONRF3	ZNF503
KRTAP13-1	LOR	
KRTAP5-9	LPIN1	
KRTCAP2	LPL	
L1CAM	LPPR4	
L1TD1	LRG1	
LACE1	LRRC18	
LAD1	LRRC38	
LAMA3	LRRC57	
LAMB1	LRRC71	
LAMP5	LRRK1	
LARP1B	LSR	
LARS	LTA4H	
LASP1	LTBP2	
LBH	LTK	
LBX1	LUZP2	
LBX1-AS1	LYSMD1	
LBX2	LYSMD2	
LBX2-AS1	MAB21L1	
LDB2	MAB21L2	
LEF1	MAFB	
LEF1-AS1	MAGEC2	
LEPR	MAGED1	
LFNG	MAL	
LGALS4	MAL2	
LGI1	MANBAL	
LGI3	MAP3K13	
LGR5	MAPKAPK2	
LGR6	MAPKAPK5	
LHFPL3	MAPRE2	
LHFPL4	MAPT-AS1	
LHX1	MAPT-IT1	
LHX2	MATK	
LHX3	MBIP	
LHX4	MBL2	
LHX5	MBNL3	
LHX6	MBP	
LHX8	MC5R	
LHX9	MCHR2	
LIAS	MCHR2-AS1	
LIF	MCIDAS	
LILRA5	MCOLN2	
LILRA6	MCOLN3	
LIMS2	MCRS1	
LIN28A	MDGA1	

LIN28B	MECOM
LINC00114	MECR
LINC00115	MED1
LINC00210	MED8
LINC00221	MEFV
LINC00222	MEIS1
LINC00261	MEIS1-AS3
LINC00273	MEIS2
LINC00461	MEOX2
LINC00466	MEPCE
LINC00473	MESP1
LINC00475	MET
LINC00485	METTL12
LINC00489	METTL25
LINC00554	MFSD4
LINC00599	MGC12916
LINC00608	MGC39584
LINC00617	MGEA5
LINC00629	MGME1
LINC00643	MICAL2
LINC00682	MICB
LINC00693	MIR124-1
LINC00707	MIR124-2
LINC00910	MIR124-3
LINC00940	MIR1247
LINC00943	MIR1253
LINC00951	MIR128-1
LINC00960	MIR129-2
LINC00966	MIR144
LINC01024	MIR1469
LINC01081	MIR183
LINGO2	MIR188
LIPI	MIR190B
LIPJ	MIR203
LMF1	MIR302F
LMTK3	MIR3115
LMX1A	MIR3120
LMX1B	MIR3188
LNX1	MIR3193
LOC100128770	MIR3196
LOC100129148	MIR31HG
LOC100129175	MIR34B
LOC100129917	MIR34C
LOC100130476	MIR3545
LOC100130539	MIR3621

LOC100130992	MIR3652
LOC100131320	MIR3663
LOC100132111	MIR3687
LOC100132215	MIR375
LOC100132891	MIR378D2
LOC100134391	MIR378E
LOC100144602	MIR424
LOC100190940	MIR4287
LOC100240734	MIR4297
LOC100240735	MIR4304
LOC100268168	MIR4436A
LOC100288069	MIR4453
LOC100288637	MIR4471
LOC100288748	MIR4515
LOC100288842	MIR4520A
LOC100288866	MIR4520B
LOC100288911	MIR4634
LOC100505622	MIR4638
LOC100505782	MIR4645
LOC100506127	MIR4656
LOC100506551	MIR4700
LOC100506810	MIR4732
LOC100507003	MIR4752
LOC100653046	MIR4770
LOC100996485	MIR4781
LOC101054525	MIR4785
LOC145474	MIR4787
LOC145845	MIR4792
LOC146513	MIR483
LOC152578	MIR503
LOC153684	MIR503HG
LOC283299	MIR5091
LOC283731	MIR532
LOC284395	MIR548AO
LOC284412	MIR548N
LOC284801	MIR5580
LOC285084	MIR598
LOC285547	MIR615
LOC285548	MIR622
LOC285696	MIR632
LOC340017	MIR9-1
LOC348761	MIR933
LOC375295	MIR936
LOC388242	MIR944
LOC389023	MIR96

LOC389895	MKX
LOC392232	MLNR
LOC399829	MLPH
LOC400043	MLST8
LOC400456	MLXIPL
LOC401463	MME
LOC402160	MMP25
LOC440461	MMP9
LOC440896	MNAT1
LOC440925	MNX1-AS1
LOC493754	MOGAT3
LOC613038	MOS
LOC63930	MOSPD2
LOC642366	MOXD1
LOC643201	MPP2
LOC643837	MPP5
LOC643923	MPZ
LOC648987	MPZL2
LOC654342	MRPL13
LOC728463	MRPL18
LOC728739	MRPL22
LOC728989	MRPL33
LOC729911	MRPL35
LONRF3	MRPS14
LOR	MRTO4
LPAR3	MRVI1-AS1
LPIN1	MSC
LPL	MSMO1
LPPR4	MSX1
LRG1	MSX2
LRRC18	MT1A
LRRC26	MT1B
LRRC38	MT1DP
LRRC57	MT1E
LRRC71	MT1F
LRRK1	MT1H
LSR	MT1JP
LTA4H	MT1M
LTBP2	MTBP
LTF	MTUS1
LTK	MUC17
LUZP2	MUSTN1
LYSMD1	MXRA5
LYSMD2	MYCNOS
MAB21L1	MYCT1

MAB21L2	MYH10
MAFB	MYH11
MAGEC2	MYH13
MAGED1	MYO5B
MAL	MYOCD
MAL2	MYOD1
MANBAL	MYRIP
MAP3K13	MYT1
MAPKAPK2	NAGK
MAPKAPK5	NAGS
MAPRE2	NAT10
MAPT-AS1	NAT16
MAPT-IT1	NAV1
MARCH11	NBEA
MAST4	NBEAP1
MATK	NCCRP1
MBIP	NCLN
MBL2	NCOA7
MBNL3	NCR1
MBP	NCR2
MC5R	NDP
MCHR2	NDRG1
MCHR2-AS1	NEFH
MCIDAS	NEFL
MCOLN2	NELL1
MCOLN3	NEUROD2
MCRS1	NEUROG1
MDGA1	NEUROG2
MECOM	NEUROG3
MECR	NEXN
MED1	NFE2L3
MED8	NFRKB
MEFV	NGB
MEIS1	NGF
MEIS1-AS3	NGFR
MEIS2	NHLH2
MEOX2	NID2
MEPCE	NKAIN4
MESP1	NKX1-2
MET	NKX2-1
METTL12	NKX2-1-AS1
METTL25	NKX2-2
MFSD4	NKX2-3
MGC12916	NKX2-4
MGC39584	NKX2-5

MGEA5	NKX2-6
MGME1	NKX2-8
MICAL2	NKX3-1
MICB	NKX3-2
MIR10A	NKX6-1
MIR10B	NKX6-2
MIR124-1	NMNAT3
MIR124-2	NMUR2
MIR124-3	NOC4L
MIR1247	NODAL
MIR1253	NOL3
MIR1258	NOL7
MIR128-1	NOS1
MIR129-2	NOTCH2NL
MIR144	NOTUM
MIR1469	NPAS1
MIR183	NPAS4
MIR188	NPBWR1
MIR190B	NPHP4
MIR196A1	NPHS2
MIR196A2	NPNT
MIR196B	NPPB
MIR203	NPPC
MIR302F	NPR1
MIR3115	NPR3
MIR3120	NPTX1
MIR3131	NPTX2
MIR3185	NPW
MIR3188	NPY
MIR3193	NPY5R
MIR3196	NR0B1
MIR31HG	NR2E1
MIR34B	NR2F2
MIR34C	NR2F2-AS1
MIR3545	NR3C2
MIR3621	NR5A2
MIR3652	NRG2
MIR3663	NRG3
MIR3687	NRIP3
MIR375	NRK
MIR378D2	NRN1
MIR378E	NRSN1
MIR424	NRXN1
MIR4287	NRXN3
MIR4297	NT5E

MIR4304	NTF3
MIR4436A	NTN4
MIR4453	NTNG2
MIR4471	NTRK1
MIR4515	NTSR1
MIR4520A	NUDT22
MIR4520B	NUFIP2
MIR4634	NUPL2
MIR4638	NUSAP1
MIR4645	NXPH1
MIR4656	NXPH2
MIR4700	NXPH3
MIR4727	NXPH4
MIR4732	NXT2
MIR4752	OIP5
MIR4770	OLFML2A
MIR4781	OLIG2
MIR4785	OLIG3
MIR4787	ONECUT1
MIR4792	ONECUT2
MIR4801	ONECUT3
MIR483	OPA1
MIR503	OPCML
MIR503HG	OPN1LW
MIR5091	OPRD1
MIR5188	OPRK1
MIR532	OPRL1
MIR548AO	OPRM1
MIR548N	OR10A6
MIR5580	OR10G2
MIR598	OR13C3
MIR615	OR13C5
MIR622	OR1F2P
MIR632	OR1G1
MIR663A	OR2W5
MIR9-1	OR4D1
MIR933	OR4D2
MIR936	OR4D5
MIR944	OR4F15
MIR96	OR5B12
MKX	OR5H15
MLNR	OR6B2
MLPH	OR6C68
MLST8	OR6C76
MLXIPL	OR7D2

MME	OR9I1
MMP25	OSBPL10
MMP9	OSR1
MNAT1	OSR2
MNX1	OTOP1
MNX1-AS1	OTOP2
MOGAT3	OTOP3
MOS	OTP
MOSPD2	OTX1
MOXD1	OTX2
MPP2	OVOL1
MPP5	OXTR
MPZ	P2RX2
MPZL2	P4HA1
MRPL13	PABPC1L2A
MRPL18	PABPC1L2B
MRPL22	PADI2
MRPL33	PAK3
MRPL35	PANK3
MRPS14	PAPPA
MRTO4	PAQR5
MRVI1-AS1	PARP10
MSC	PARP11
MSMO1	PARP2
MSX1	PATE4
MSX2	PAX1
MSX2P1	PAX2
MT1A	PAX4
MT1B	PAX8
MT1DP	PAX9
MT1E	PCDH11X
MT1F	PCDH11Y
MT1G	PCDH19
MT1H	PCDH8
MT1JP	PCDH9
MT1M	PCED1B-AS1
MTBP	PCP4L1
MTUS1	PCSK2
MUC12	PCSK9
MUC17	PDE1C
MUSTN1	PDE2A
MXRA5	PDE4B
MYCNOS	PDE4D
MYCT1	PDGFA
MYH10	PDGFB

MYH11	PDGFRA
MYH13	PDLIM5
MYO5B	PDP1
MYOCD	PDX1
MYOD1	PDX1-AS1
MYRIP	PDYN
MYT1	PENK
NAGK	PEPD
NAGS	PET117
NAT10	PEX5L
NAT16	PGCP1
NAV1	PGLS
NBEA	PGM5
NBEAP1	PGM5P2
NCCRP1	PGR
NCLN	PGS1
NCOA7	PHOX2A
NCR1	PID1
NCR2	PIGV
NDP	PIK3CD
NDRG1	PIK3R1
NDRG4	PIK3R5
NEFH	PINX1
NEFL	PIP4K2A
NELL1	PITX3
NEUROD1	PKP2
NEUROD2	PLA2G10
NEUROD4	PLA2G2A
NEUROG1	PLAGL1
NEUROG2	PLB1
NEUROG3	PLCG2
NEXN	PLD1
NFE2L3	PLD5
NFIX	PLEKHA8
NFRKB	PLEKHD1
NGB	PLS3
NGF	PLXDC1
NGFR	PMP22
NHLH2	PNOC
NID2	PNPLA5
NKAIN4	POC1B
NKX1-2	POC1B- GALNT4
NKX2-1	POLR2A
NKX2-1-AS1	POLR3A
NKX2-2	POLR3E

NKX2-3	POM121L2
NKX2-4	POMC
NKX2-5	POMT2
NKX2-6	POP4
NKX2-8	POU1F1
NKX3-1	POU2F2
NKX3-2	POU2F3
NKX6-1	POU3F4
NKX6-2	POU4F1
NMNAT3	POU4F2
NMUR2	POU4F3
NOC4L	PP12613
NODAL	PPAPDC1A
NOL3	PPARG
NOL7	PPFIBP2
NOS1	PPM1D
NOTCH2NL	PPM1J
NOTO	PPM1N
NOTUM	PPP1R12B
NPAS1	PPP1R14C
NPAS3	PPP1R15A
NPAS4	PPP6R3
NPBWR1	PRAC1
NPFFR1	PRDM12
NPHP4	PRDM13
NPHS2	PRDM6
NPNT	PRDM8
NPPB	PRDX3
NPPC	PRG2
NPR1	PRICKLE2-AS1
NPR3	PRIMA1
NPTX1	PRKAB2
NPTX2	PRKCB
NPW	PRKCH
NPY	PRKCQ-AS1
NPY5R	PRKG2
NR0B1	PRKRIR
NR2E1	PRLHR
NR2F1	PRMT3
NR2F1-AS1	PRMT8
NR2F2	PROK2
NR2F2-AS1	PROKR1
NR3C2	PROKR2
NR5A2	PROM1
NRG2	PROX1

NRG3	PRPF31	
NRIP3	PRPH	
NRK	PRR15	
NRN1	PRR21	
NRSN1	PRRG1	
NRXN1	PRRX1	
NRXN3	PRSS45	
NSG1	PRUNE2	
NT5E	PSAP	
NTF3	PSD2	
NTN4	PTAR1	
NTNG2	PTF1A	
NTRK1	PTGDR	
NTSR1	PTGER2	
NUBPL	PTGER3	
NUDT22	PTGER4	
NUFIP2		PTGER4P2- CDK2AP2P2
NUPL2	PTGS2	0011211212
NUSAP1	PTH2	
NXPH1	PTHLH	
NXPH2	PTK2B	
NXPH3	PTPN1	
NXPH4	PTPN23	
NXT2	PTPN3	
OIP5	PTPN5	
OLFM3	PTPRN	
OLFML2A	PTPRT	
OLIG2	PTRF	
OLIG3	PUM1	
ONECUT1	PURA	
ONECUT2	PYDC1	
ONECUT3	РҮҮ	
OPA1	QRFPR	
OPCML	QRSL1	
OPN1LW	RAB37	
OPRD1	RAB3B	
OPRK1	RAB6B	
OPRL1	RAB6C	
OPRM1	RABGAP1L	
OR10A6	RACGAP1P	
OR10G2	RAD1	
OR13C3	RAD51AP2	
OR13C5	RAD54B	
OR1F2P	RAET1K	
OR1G1	RAI14	

OR1I1	RAI2
OR1L3	RAPSN
OR2W5	RARB
OR4B1	RASEF
OR4D1	RASGEF1A
OR4D2	RASGRF1
OR4D5	RASGRF2
OR4F15	RASL11B
OR5B12	RASSF10
OR5H15	RASSF5
OR6B2	RAX
OR6C68	RBFOX1
OR6C76	RBKS
OR7D2	RBM11
OR9I1	RBM14
OSBPL10	RBM14-RBM4
OSR1	RBM20
OSR2	RBM4
OTOP1	RBM42
OTOP2	RBMS1
OTOP3	RBP4
OTP	RBP7
OTX1	RBPJ
OTX2	RC3H2
OTX2-AS1	RDH13
OVOL1	RDH8
OVOL2	RDM1
OXTR	REEP1
P2RX2	RELN
P4HA1	RESP18
PABPC1L2A	RET
PABPC1L2B	RFC1
PADI2	RFPL2
PAK3	RFPL4B
PANK3	RFTN2
PAPL	RFX3
PAPPA	RFX6
PAQR5	RFX7
PARP10	RFXAP
PARP11	RGCC
PARP2	RGL3
PATE4	RGS10
PAX1	RGS6
PAX2	RGS7
PAX3	RGS7BP

PAX4	RGS9BP
PAX5	RHOU
PAX6	RIPK1
PAX7	RIPK3
PAX8	RIPK4
PAX9	RNASE4
PAXBP1	RND1
PCDH11X	RNF141
PCDH11Y	RNF207
PCDH19	RNF220
PCDH8	RNF6
PCDH9	RNMT
PCED1B-AS1	RNU11
PCP4L1	ROCK1P1
PCSK2	ROR1
PCSK9	ROR2
PDCL	RPF1
PDE1C	RPH3A
PDE2A	RPL10A
PDE4A	RPL23
PDE4B	RPL26L1
PDE4D	RPL27
PDE4DIP	RPL29
PDGFA	RPL31
PDGFB	RPL34
PDGFRA	RPL34-AS1
PDLIM5	RPL5
PDP1	RPL9
PDX1	RPP25
PDX1-AS1	RPPH1
PDYN	RPRD2
PENK	RPS12
PEPD	RPS26
PET117	RPS27
PEX5L	RPUSD4
PGCP1	RRAS2
PGLS	RRP1
PGM5	RSPO2
PGM5-AS1	RSPO3
PGM5P2	RSRC1
PGR	RSRC2
PGS1	RTBDN
PHACTR3	RTN2
PHOX2A	RTN4IP1
PHOX2B	RTN4RL1

PID1	RUNX1
PIGV	RUNX1T1
PIK3CD	RUNX3
PIK3R1	RYR2
PIK3R5	S100A12
PINX1	S100A14
PIP4K2A	S100A7
PITX1	S100A7A
PITX2	S100A8
PITX3	SAE1
PKD2L1	SALL1
PKP2	SALL2
PLA2G10	SAMD11
PLA2G2A	SART1
PLAGL1	SATB1
PLB1	SATB2-AS1
PLCG2	SCAMP5
PLD1	SCARNA10
PLD5	SCGN
PLEKHA8	SCN5A
PLEKHD1	SCNM1
PLS3	SCNN1B
PLXDC1	SCP2
PMP22	SCRIB
PNOC	SCRT1
PNPLA5	SCRT2
POC1B	SCTR
POC1B-	SDE2
GALNT4	
POLR2A	SDF2LI
POLR3A	SEC16B
POLR3E	SEC22A
POMI2IL2	SEMA3F
POMC	SENP/
POM12	SERPINA7
POP4	SERPINB6
POUIFI	SERTAD4
POU2F2	SERTAD4-ASI
POU2F3	SEZ6
POU3F4	SFMB12
POU4F1	SFRPI
POU4F2	SFRP5
POU4F3	SFTA3
PP12613	SFIPC
PPAPDC1A	SGPP2
PPARG	SH2D1B

PPFIBP2	SH2D3A
PPIP5K1	SH2D3C
PPM1D	SH3BP5
PPM1J	SH3GL2
PPM1N	SH3RF3
PPP1R12B	SH3RF3-AS1
PPP1R14C	SHE
PPP1R15A	SHF
PPP2R2C	SHH
PPP6R3	SHISA2
PRAC1	SHISA3
PRAC2	SHISA6
PRDM12	SHISA7
PRDM13	SHISA8
PRDM14	SHISA9
PRDM6	SHOX
PRDM8	SHOX2
PRDX3	SIDT1
PRG2	SIGIRR
PRICKLE2-AS1	SIGLEC14
PRIMA1	SIGMAR1
PRKAB2	SIM2
PRKCB	SIX1
PRKCH	SIX2
PRKCQ-AS1	SIX3
PRKCZ	SIX3-AS1
PRKG2	SKAP1
PRKRIR	SKAP2
PRLHR	SKOR1
PRMT3	SLC12A4
PRMT8	SLC15A1
PROK2	SLC16A12
PROKR1	SLC16A6
PROKR2	SLC17A6
PROM1	SLC17A7
PROX1	SLC18A3
PRPF31	SLC1A2
PRPH	SLC22A31
PRR15	SLC24A2
PRR21	SLC24A3
PRRG1	SLC24A4
PRRX1	SLC25A18
PRSS16	SLC25A48
PRSS22	SLC26A10
PRSS45	SLC26A4-AS1

PRUNE2	SLC26A5
PSAP	SLC30A2
PSD2	SLC30A3
PTAR1	SLC32A1
PTF1A	SLC35D3
PTGDR	SLC35F3
PTGER2	SLC35F4
PTGER3	SLC35F5
PTGER4	SLC38A3
PTGER4P2- CDK2AP2P2	SLC38A4
PTGS2	SLC38A6
PTH2	SLC4A1
PTHLH	SLC4A8
PTK2B	SLC5A8
PTPN1	SLC6A1
PTPN23	SLC6A11
PTPN3	SLC6A17
PTPN5	SLC6A3
PTPRD	SLC6A4
PTPRN	SLC6A5
PTPRT	SLC7A10
PTRF	SLC7A14
PUM1	SLC7A2
PURA	SLC7A5P2
PVALB	SLC8A3
PYDC1	SLC9A2
РҮҮ	SLC9A3
QRFPR	SLCO4A1
QRSL1	SLCO5A1
RAB37	SLFN11
RAB3B	SLFN12L
RAB6B	SLFN14
RAB6C	SLIT3
RABGAP1L	SLITRK3
RACGAP1P	SMAD5
RAD1	SMDT1
RAD51AP2	SMEK2
RAD54B	SMIM14
RAET1K	SMOC2
RAI14	SNAP25
RAI2	SNAP25-AS1
RAPSN	SNAR-B1
RARB	SNAR-B2
RASEF	SND1-IT1
RASGEF1A	SNED1

RASGRF1	SNORA21
RASGRF2	SNORA57
RASL11B	SNORA76
RASSF10	SNORD101
RASSF5	SNORD114-3
RAX	SNORD114-4
RBFOX1	SNORD116-28
RBKS	SNORD1A
RBM11	SNORD1B
RBM14	SNTB1
RBM14-RBM4	SNTG2
RBM20	SNX31
RBM4	SNX5
RBM42	SOCS2
RBMS1	SOCS2-AS1
RBP4	SORBS2
RBP7	SORCS1
RBPJ	SORCS3
RC3H2	SOWAHA
RDH13	SOWAHB
RDH8	SOX1
RDM1	SOX14
REEP1	SOX17
RELN	SOX3
RESP18	SOX7
RET	SP5
REXO1L2P	SP7
RFC1	SP9
RFPL2	SPAG6
RFPL4B	SPATA2
RFTN2	SPATA31C1
RFX3	SPATA31D4
RFX6	SPCS2
RFX7	SPHKAP
RFXAP	SPINT1
RGCC	SPNS2
RGL3	SPOCK1
RGS10	SPON1
RGS6	SPON2
RGS7	SRC
RGS7BP	SRD5A2
RGS9BP	SRGAP2-AS1
RHOU	SRP68
RIPK1	SRSF3
RIPK3	SST

RIPK4	SSTR2
RNASE4	ST3GAL6-AS1
RND1	ST6GAL1
RNF128	ST6GAL2
RNF141	ST6GALNAC1
RNF207	ST6GALNAC2
RNF220	ST8SIA5
RNF6	ST8SIA6
RNMT	STAC
RNPS1	STAM
RNU11	STC2
ROBO3	STK16
ROCK1P1	STK3
ROR1	STMN2
ROR2	STX11
RPF1	STX8
RPH3A	SUPT5H
RPL10A	SURF6
RPL23	SUSD4
RPL26L1	SUSD5
RPL27	SUV420H2
RPL29	SV2B
RPL31	SV2C
RPL34	SYCP2L
RPL34-AS1	SYK
RPL5	SYMPK
RPL9	SYN3
RPP25	SYNDIG1
RPPH1	SYNE1
RPRD2	SYNPR
RPS12	SYT15
RPS26	SYT2
RPS27	SYT3
RPSAP52	SYT6
RPUSD4	SZT2
RRAD	Т
RRAS2	TACR1
RRP1	TARBP2
RSPO1	TARS
RSPO2	TBC1D1
RSPO3	TBC1D21
RSPO4	TBC1D30
RSRC1	TBC1D8B
RSRC2	TBCCD1
RTBDN	TBR1

RTN2	TBX1
RTN4IP1	TBX18
RTN4RL1	TBX2
RUNX1	TBX20
RUNX1T1	TBX3
RUNX3	TC2N
RYR2	TCEAL6
S100A12	TCERG1L
S100A14	TCF15
S100A7	TCF24
S100A7A	TCP1
S100A8	TDGF1
SAE1	TDP2
SALL1	TDRD10
SALL2	TECTA
SAMD11	TERF2
SART1	TESK1
SATB1	TEX10
SATB2	TFAP2A-AS1
SATB2-AS1	TFAP2C
SCAMP5	TFCP2L1
SCARNA10	TFPT
SCGN	TGFA
SCN5A	TGFBI
SCNM1	TGFBR3L
SCNN1B	THBD
SCP2	THRB
SCRIB	THRB-AS1
SCRT1	THSD7B
SCRT2	TIA1
SCTR	TIFAB
SDE2	TLE6
SDF2L1	TLL1
SEC16B	TLR2
SEC22A	TLX1
SELL	TLX1NB
SEMA3A	TLX2
SEMA3F	TLX3
SENP7	TMEM132C
SEPT2	TMEM132D
SERPINA7	TMEM132E
SERPINB6	TMEM155
SERTAD4	TMEM163
SERTAD4-AS1	TMEM171
SEZ6	TMEM176A

SFMBT2	TMEM176B
SFRP1	TMEM18
SFRP5	TMEM215
SFTA3	TMEM229A
SFTPC	TMEM229B
SGPP2	TMEM233
SH2D1B	TMEM235
SH2D3A	TMEM30B
SH2D3C	TMEM38B
SH3BP5	TMEM59
SH3GL2	TMEM59L
SH3RF3	TMEM61
SH3RF3-AS1	TMEM66
SHE	TMEM79
SHF	TMOD1
SHH	TMOD2
SHISA2	TMPRSS2
SHISA3	TMX1
SHISA6	TNFRSF11A
SHISA7	TNFRSF19
SHISA8	TNFRSF8
SHISA9	TNFSF9
SHOX	TNK1
SHOX2	TOP1P2
SIDT1	TP73
SIGIRR	TPBG
SIGLEC14	TPR
SIGMAR1	TPRKB
SIM1	TRABD2A
SIM2	TRABD2B
SIX1	TRADD
SIX2	TRH
SIX3	TRHDE-AS1
SIX3-AS1	TRIM34
SIX6	TRIM35
SKAP1	TRIM36
SKAP2	TRIM41
SKOR1	TRIM46
SKOR2	TRIM54
SLC12A4	TRIM67
SLC15A1	TRIM72
SLC16A12	TRMT5
SLC16A6	TRPC5
SLC17A6	TRPC6
SLC17A7	TRPM4

SLC18A2	TRPT1
SLC18A3	TSC22D2
SLC1A2	TSGA13
SLC22A31	TSLP
SLC24A2	TSPEAR
SLC24A3	TTC39A
SLC24A4	TTLL6
SLC25A18	TUBA4A
SLC25A48	TUBA4B
SLC26A10	TWIST1
SLC26A4	UBASH3B
SLC26A4-AS1	UBE2D3
SLC26A5	UBE2F
SLC27A6	UBE2F-SCLY
SLC30A2	UBE4A
SLC30A3	UBTD2
SLC32A1	UCN
SLC35D3	UCP1
SLC35F3	UG0898H09
SLC35F4	ULBP1
SLC35F5	ULBP2
SLC38A3	UNC5A
SLC38A4	UNC5B-AS1
SLC38A6	UNC5C
SLC4A1	UNC5D
SLC4A11	UNCX
SLC4A8	UPB1
SLC5A7	UQCRC2
SLC5A8	USH1G
SLC6A1	USP42
SLC6A11	USP50
SLC6A17	UTF1
SLC6A2	UTRN
SLC6A20	VAV3-AS1
SLC6A3	VAX1
SLC6A4	VAX2
SLC6A5	VDR
SLC6A7	VENTX
SLC7A10	VGF
SLC7A14	VGLL4
SLC7A2	VIPR1
SLC7A5P2	VIPR2
SLC8A3	VMA21
SLC9A2	VPS33A
SLC9A3	VPS51

SLCO4A1	VRK3
SLCO5A1	VSIG2
SLFN11	VSTM2B
SLFN12L	VTRNA2-1
SLFN14	VWA2
SLIT3	VWA5B2
SLITRK3	VWC2
SMAD5	VWC2L-IT1
SMDT1	WASH2P
SMEK2	WBSCR17
SMIM14	WDR16
SMOC2	WDR33
SMUG1	WDR4
SNAP25	WIF1
SNAP25-AS1	WLS
SNAR-A1	WNT1
SNAR-A10	WNT10A
SNAR-A11	WNT11
SNAR-A14	WNT2
SNAR-A2	WNT2B
SNAR-A3	WNT3
SNAR-A4	WNT3A
SNAR-A5	WNT6
SNAR-A6	WNT7A
SNAR-A7	WNT7B
SNAR-A8	WNT9B
SNAR-A9	WRAP73
SNAR-B1	WTH3DI
SNAR-B2	XIRP1
SNAR-C1	XKR7
SNAR-C2	XRRA1
SNAR-C5	YBX3P1
SND1-IT1	YWHAE
SNED1	ZACN
SNHG7	ZBTB4
SNORA21	ZCCHC16
SNORA57	ZCWPW1
SNORA76	ZDHHC22
SNORD101	ZDHHC5
SNORD114-3	ZFAND5
SNORD114-4	ZFHX3
SNORD116-28	ZFP91
SNORD1A	ZFP91-CNTF
SNORD1B	ZFPL1
SNRPA1	ZFPM2

SNTB1	ZFYVE28
SNTG2	ZIC1
SNX16	ZIC2
SNX31	ZIC3
SNX5	ZIC4
SOCS2	ZIC5
SOCS2-AS1	ZMYND15
SORBS2	ZNF106
SORCS1	ZNF207
SORCS3	ZNF259
SOWAHA	ZNF385B
SOWAHB	ZNF436
SOX1	ZNF471
SOX14	ZNF473
SOX17	ZNF484
SOX18	ZNF503
SOX3	ZNF503-AS2
SOX5	ZNF546
SOX7	ZNF706
SOX8	ZNF77
SP5	ZNF775
SP6	ZNF804B
SP7	ZNF827
SP8	ZNF830
SP9	ZNF860
SPAG6	ZSCAN5B
SPATA2	ZSWIM6
SPATA31C1	
SPATA31D4	
SPCS2	
SPHKAP	
SPINT1	
SPNS2	
SPOCK1	
SPON1	
SPON2	
SRC	
SRD5A2	
SRGAP2-AS1	
SRP68	
SRSF3	
SRSF7	
SST	
SSTR1	
SSTR2	

SSTR5 ST14 ST3GAL6-AS1 ST5 ST6GAL1 ST6GAL2 ST6GALNAC1 ST6GALNAC2 ST8SIA5 ST8SIA6 STAC STAM STC2 STK16 STK3 STMN2 STX11 STX6 STX8 SUPT5H SURF6 SUSD4 SUSD5 SUV420H2 SV2B SV2C SYCP2L SYK SYMPK SYN3 SYNDIG1 SYNE1 SYNPR SYT15 SYT2 SYT3 SYT6 SZT2 Т TAC1 TACR1 TAL1 TARBP2 TARS TBC1D1

TBC1D21
TBC1D3
TBC1D30
TBC1D3C
TBC1D3F
TBC1D3H
TBC1D8B
TBCCD1
TBR1
TBX1
TBX15
TBX18
TBX2
TBX20
TBX3
TBX4
TBX5
TBX5-AS1
TC2N
TCEAL6
TCERG1L
TCF15
TCF21
TCF24
TCP1
TDGF1
TDP2
TDRD10
TECTA
TERF2
TESK1
TEX10
TFAP2A
TFAP2A-AS1
TFAP2B
TFAP2C
TFAP2D
TFCP2L1
TFPT
TGFA
TGFBI
TGFBR3L
TGM5
THBD
THRB

THRB-AS1 THSD7B TIA1 TIFAB TLE6 TLL1 TLR2 TLX1 TLX1NB TLX2 TLX3 TMEM132C TMEM132D TMEM132E **TMEM155 TMEM163 TMEM171** TMEM176A TMEM176B TMEM18 **TMEM215** TMEM229A TMEM229B TMEM233 TMEM235 TMEM30B TMEM38B TMEM45B TMEM59 TMEM59L TMEM61 TMEM66 TMEM79 TMOD1 TMOD2 TMPRSS2 TMX1 TNFRSF11A TNFRSF19 TNFRSF8 TNFSF11 TNFSF9 TNK1 TNS4 TOP1P2

TP73 TPBG TPM3 TPR TPRKB TRABD2A TRABD2B TRADD TRH TRHDE-AS1 TRIM34 TRIM35 TRIM36 TRIM41 TRIM46 TRIM54 TRIM67 TRIM72 TRMT5 TRPA1 TRPC5 TRPC6 TRPM4 TRPT1 TSC22D2 TSGA13 TSLP **TSPEAR** TTC39A TTLL6 TUBA4A TUBA4B TWIST1 UBASH3B UBC UBE2D3 UBE2F UBE2F-SCLY UBE4A UBTD2 UCN UCP1 UG0898H09 ULBP1 ULBP2

UNC5A
UNC5B-AS1
UNC5C
UNC5D
UNCX
UPB1
UQCRC2
USH1G
USP42
USP44
USP50
USPL1
UTF1
UTRN
VAV3-AS1
VAX1
VAX2
VDR
VENTX
VGF
VGLL2
VGLL4
VIPR1
VIPR2
VMA21
VPS33A
VPS51
VRK3
VSIG2
VSTM2B
VSX1
VSX2
VTRNA2-1
VWA2
VWA5B2
VWC2
VWC2L-IT1
WASH2P
WBSCR17
WDR16
WDR33
WDK4
WIF1
WLS WNT1
VV IN L L

ZNF436
ZNF462
ZNF471
ZNF473
ZNF484
ZNF503
ZNF503-AS2
ZNF546
ZNF555
ZNF706
ZNF77
ZNF775
ZNF804B
ZNF827
ZNF830
ZNF860
ZSCAN5B
ZSWIM6

<u>Table S5.</u> IC_{50} of compounds* used in the chemical screen

Nama	IC50 (-log mM)		
Name	Normal	P5K	Δ
MI-2 (hydrochloride)	2.18	3.81	1.64
Sinefungin	<1.5	2.43	0.93
CAY10591	1.95	2.55	0.60
MS-275	1.87	2.46	0.59
Tubastatin A (trifluoroacetate salt)	1.61	2.07	0.46
Tenovin-6	2.53	2.82	0.30
Decitabine	<1.5	1.80	0.30
(−)-Neplanocin A	<1.5	1.68	0.18
UNC0224	2.49	2.61	0.12
4-iodo-SAHA	2.31	2.41	0.10
HC Toxin	3.07	3.17	0.09
AGK2	2.06	2.12	0.06
UNC0638	2.54	2.59	0.05
CAY10398	2.47	2.49	0.02
Piceatannol	1.94	1.94	0.00
Apicidin	2.90	2.89	-0.01
SB 939	2.73	2.71	-0.02
Trichostatin A	2.75	2.68	-0.08
M 344	2.50	2.40	-0.10
Suberohydroxamic Acid	2.18	2.07	-0.11
SAHA	2.38	2.23	-0.15
Chidamide	2.51	2.28	-0.23
2,4-Pyridinedicarboxylic Acid	1.75	<1.5	-0.25
(S)-HDAC-42	2.58	2.32	-0.27
Ellagic Acid	2.07	<1.5	-0.57
Mirin	2.65	2.07	-0.58
Oxamflatin	2.10	<1.5	-0.60
Pyroxamide	2.13	<1.5	-0.63
Tenovin-1	2.14	<1.5	-0.64
(−)-JQ1	<1.5	<1.5	NA
(+)-JQ1	<1.5	<1.5	NA
2',3',5'-triacetyl-5-Azacytidine	<1.5	<1.5	NA
2,4-DPD	<1.5	<1.5	NA
2-PCPA (hydrochloride)	<1.5	<1.5	NA
3-amino Benzamide	<1.5	<1.5	NA
3-Deazaneplanocin A	<1.5	<1.5	NA
5-Azacytidine	<1.5	<1.5	NA
AG-014699	<1.5	<1.5	NA
AMI-1 (sodium salt)	<1.5	<1.5	NA

Anacardic Acid	<1.5	<1.5	NA
BSI-201	<1.5	<1.5	NA
C646	<1.5	<1.5	NA
CAY10433	<1.5	<1.5	NA
CAY10603	<1.5	<1.5	NA
СВНА	<1.5	<1.5	NA
CI-Amidine	<1.5	<1.5	NA
Daminozide	<1.5	<1.5	NA
Delphinidin chloride	<1.5	<1.5	NA
DMOG	<1.5	<1.5	NA
EX-527	<1.5	<1.5	NA
F-Amidine (trifluoroacetate salt)	<1.5	<1.5	NA
Garcinol	<1.5	<1.5	NA
Gemcitabine	<1.5	<1.5	NA
GSK-J1 (sodium salt)	<1.5	<1.5	NA
GSK-J4 (hydrochloride)	<1.5	<1.5	NA
HNHA	<1.5	<1.5	NA
IOX1	<1.5	<1.5	NA
Isoliquiritigenin	<1.5	<1.5	NA
JGB1741	<1.5	<1.5	NA
Lomeguatrib	<1.5	<1.5	NA
MI-nc (hydrochloride)	<1.5	<1.5	NA
Nicotinamide	<1.5	<1.5	NA
N-Oxalylglycine	<1.5	<1.5	NA
PCI 4051	<1.5	<1.5	NA
PFI-1	<1.5	<1.5	NA
Phthalazinone pyrazole	<1.5	<1.5	NA
Pimelic Diphenylamide 106	<1.5	<1.5	NA
RG-108	<1.5	<1.5	NA
S-Adenosylhomocysteine	<1.5	<1.5	NA
Salermide	<1.5	<1.5	NA
Scriptaid	<1.5	<1.5	NA
Sirtinol	<1.5	<1.5	NA
Sodium Butyrate	<1.5	<1.5	NA
Splitomicin	<1.5	<1.5	NA
Suramin (sodium salt)	<1.5	<1.5	NA
trans-Resveratrol	<1.5	<1.5	NA
UNC0321 (trifluoroacetate salt)	<1.5	<1.5	NA
UNC1215	<1.5	<1.5	NA
Valproic Acid (sodium salt)	<1.5	<1.5	NA
Zebularine	<1.5	<1.5	NA

*selected from an epigenetic chemical library from Cayman Chemicals (cat. No. 11076)

<u>Table S6.</u> Oligonucleotide sequences

shRNA target sequences

Name	Target sequence
shLuc	CTTACGCTGAGTACTTCGA
sh-p53	GACTCCAGTGGTAATCTACT
sh-p53#2	GTAATCTACTGGGACGGAA
shLIN28B#1	GCAGGCATAATAAGCAAGTTA
shLIN28B#3	GGATTCATCTCCATGATAAAC
shPLAG1#1	GGAAGAAGCACATTCTTCTGT
shPLAG1#2	GCAAGAACTACAATACCAAGC
shPLAGL1#1	GAGAAGACGTTCAACCGGAAA
shPLAGL1#2	GTCAGTTACAATATGAGAAAG
shMEN1#1	GATCTACAAGGAGTTCTTTGA
shMEN1#2	GAGTACAGTCTGTATCAAACC

Primer sequences for RT-qPCR

Name	Sequence
LIN28B_Fw	GAAGACCCAAAGGGAAGACAC
LIN28B_Rv	TTCTTTGGCTGAGGAGGTAGA
PLAG1_Fw	ATTGTGATCGCCGGTTCTAC
PLAG1_Rv	ATCCTTTCGCCCAAATCTCT
PLAGL1_Fw	CAGACCGGAGACCTTCTGAG
PLAGL1_Rv	TCTGGGCAGAAGCTCCTAAA
Nkx2-2_Fw	AGTACTCCCTGCACGGTCTG
Nkx2-2_Rv	GGGTCTCCTTGTCATTGTCC
MBP_Fw	CCCACATGTAGTAAGCCACTC
MBP_Rv	TGTCCTTCTCTCACCTCCTAAA
Actin_Fw	ACCCCATCGAGCACGGCATCG
Actin_Rv	GTCACCGGAGTCCATCACGATG
MEN1_Fw	TCCAGTCCCTCTTCAGCTTC
MEN1 Rv	ACCACAGCAAAGGCCACAC

Primer sequences for ChIP-PCR

Name	Sequence
MEN1_TSS_Fw	GCCCCCTCTCTACGACTGTG
MEN1_TSS_Rv	AGGACTCTCCTTGGGGGTTTG
MEN1_Up5k_Fw	GCTGTGTGAGGAGGCATGTA
MEN1_Up5k_Rv	CAACTCGAATTGACGGTTGA
LIN28B_TSS_Fw	GGGGGCTATTGTTTGAATTGT
LIN28B_TSS_Rv	TTAAAGTTGGGGTGGAATGG
Nkx2-2_TSS_Fw	AGGGAGGGAGGGAAAGAAAG
Nkx2-2_TSS_Rv	GCCAACCTTTGCGTTTTTAAT
REFERENCES

- J. Schwartzentruber, A. Korshunov, X. Y. Liu, D. T. Jones, E. Pfaff, K. Jacob, D. Sturm, A. M. Fontebasso, D. A. Quang, M. Tönjes, V. Hovestadt, S. Albrecht, M. Kool, A. Nantel, C. Konermann, A. Lindroth, N. Jäger, T. Rausch, M. Ryzhova, J. O. Korbel, T. Hielscher, P. Hauser, M. Garami, A. Klekner, L. Bognar, M. Ebinger, M. U. Schuhmann, W. Scheurlen, A. Pekrun, M. C. Frühwald, W. Roggendorf, C. Kramm, M. Dürken, J. Atkinson, P. Lepage, A. Montpetit, M. Zakrzewska, K. Zakrzewski, P. P. Liberski, Z. Dong, P. Siegel, A. E. Kulozik, M. Zapatka, A. Guha, D. Malkin, J. Felsberg, G. Reifenberger, A. von Deimling, K. Ichimura, V. P. Collins, H. Witt, T. Milde, O. Witt, C. Zhang, P. Castelo-Branco, P. Lichter, D. Faury, U. Tabori, C. Plass, J. Majewski, S. M. Pfister, N. Jabado, Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. *Nature* 482, 226–231 (2012). Medline doi:10.1038/nature10833
- G. Wu, A. Broniscer, T. A. McEachron, C. Lu, B. S. Paugh, J. Becksfort, C. Qu, L. Ding, R. Huether, M. Parker, J. Zhang, A. Gajjar, M. A. Dyer, C. G. Mullighan, R. J. Gilbertson, E. R. Mardis, R. K. Wilson, J. R. Downing, D. W. Ellison, J. Zhang, S. J. Baker; St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project, Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. *Nat. Genet.* 44, 251–253 (2012). Medline doi:10.1038/ng.1102
- J. Zhang, G. Wu, C. P. Miller, R. G. Tatevossian, J. D. Dalton, B. Tang, W. Orisme, C. Punchihewa, M. Parker, I. Qaddoumi, F. A. Boop, C. Lu, C. Kandoth, L. Ding, R. Lee, R. Huether, X. Chen, E. Hedlund, P. Nagahawatte, M. Rusch, K. Boggs, J. Cheng, J. Becksfort, J. Ma, G. Song, Y. Li, L. Wei, J. Wang, S. Shurtleff, J. Easton, D. Zhao, R. S. Fulton, L. L. Fulton, D. J. Dooling, B. Vadodaria, H. L. Mulder, C. Tang, K. Ochoa, C. G. Mullighan, A. Gajjar, R. Kriwacki, D. Sheer, R. J. Gilbertson, E. R. Mardis, R. K. Wilson, J. R. Downing, S. J. Baker, D. W. Ellison; St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project, Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. *Nat. Genet.* 45, 602–612 (2013). <u>Medline doi:10.1038/ng.2611</u>
- D. Sturm, H. Witt, V. Hovestadt, D. A. Khuong-Quang, D. T. Jones, C. Konermann, E. Pfaff, M. Tönjes, M. Sill, S. Bender, M. Kool, M. Zapatka, N. Becker, M. Zucknick, T. Hielscher, X. Y. Liu, A. M. Fontebasso, M. Ryzhova, S. Albrecht, K. Jacob, M. Wolter, M. Ebinger, M. U. Schuhmann, T. van Meter, M. C. Frühwald, H. Hauch, A. Pekrun, B. Radlwimmer, T. Niehues, G. von Komorowski, M. Dürken, A. E. Kulozik, J. Madden, A. Donson, N. K. Foreman, R. Drissi, M. Fouladi, W. Scheurlen, A. von Deimling, C. Monoranu, W. Roggendorf, C. Herold-Mende, A. Unterberg, C. M. Kramm, J. Felsberg, C. Hartmann, B. Wiestler, W. Wick, T. Milde, O. Witt, A. M. Lindroth, J. Schwartzentruber, D. Faury, A. Fleming, M. Zakrzewska, P. P. Liberski, K. Zakrzewski, P. Hauser, M. Garami, A. Klekner, L. Bognar, S. Morrissy, F. Cavalli, M. D. Taylor, P. van Sluis, J. Koster, R. Versteeg, R. Volckmann, T. Mikkelsen, K. Aldape, G. Reifenberger, V. P. Collins, J. Majewski, A. Korshunov, P. Lichter, C. Plass, N. Jabado, S. M. Pfister, Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. *Cancer Cell* 22, 425–437 (2012). <u>Medline doi:10.1016/j.ccr.2012.08.024</u>

- D.-A. Khuong-Quang, P. Buczkowicz, P. Rakopoulos, X. Y. Liu, A. M. Fontebasso, E. Bouffet, U. Bartels, S. Albrecht, J. Schwartzentruber, L. Letourneau, M. Bourgey, G. Bourque, A. Montpetit, G. Bourret, P. Lepage, A. Fleming, P. Lichter, M. Kool, A. von Deimling, D. Sturm, A. Korshunov, D. Faury, D. T. Jones, J. Majewski, S. M. Pfister, N. Jabado, C. Hawkins, K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. *Acta Neuropathol.* 124, 439–447 (2012). <u>Medline doi:10.1007/s00401-012-0998-0</u>
- V. Tabar, L. Studer, Pluripotent stem cells in regenerative medicine: Challenges and recent progress. *Nat. Rev. Genet.* 15, 82–92 (2014). <u>Medline doi:10.1038/nrg3563</u>
- 7. S. M. Chambers, C. A. Fasano, E. P. Papapetrou, M. Tomishima, M. Sadelain, L. Studer, Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. *Nat. Biotechnol.* 27, 275–280 (2009). <u>Medline doi:10.1038/nbt.1529</u>
- 8. B. S. Paugh, X. Zhu, C. Qu, R. Endersby, A. K. Diaz, J. Zhang, D. A. Bax, D. Carvalho, R. M. Reis, A. Onar-Thomas, A. Broniscer, C. Wetmore, J. Zhang, C. Jones, D. W. Ellison, S. J. Baker, Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. *Cancer Res.* 73, 6219–6229 (2013). Medline doi:10.1158/0008-5472.CAN-13-1491
- 9. P. W. Lewis, M. M. Müller, M. S. Koletsky, F. Cordero, S. Lin, L. A. Banaszynski, B. A. Garcia, T. W. Muir, O. J. Becher, C. D. Allis, Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. *Science* 340, 857–861 (2013). <u>Medline doi:10.1126/science.1232245</u>
- K.-M. Chan, D. Fang, H. Gan, R. Hashizume, C. Yu, M. Schroeder, N. Gupta, S. Mueller, C. D. James, R. Jenkins, J. Sarkaria, Z. Zhang, The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. *Genes Dev.* 27, 985–990 (2013). Medline doi:10.1101/gad.217778.113
- 11. S. Bender, Y. Tang, A. M. Lindroth, V. Hovestadt, D. T. Jones, M. Kool, M. Zapatka, P. A. Northcott, D. Sturm, W. Wang, B. Radlwimmer, J. W. Højfeldt, N. Truffaux, D. Castel, S. Schubert, M. Ryzhova, H. Seker-Cin, J. Gronych, P. D. Johann, S. Stark, J. Meyer, T. Milde, M. Schuhmann, M. Ebinger, C. M. Monoranu, A. Ponnuswami, S. Chen, C. Jones, O. Witt, V. P. Collins, A. von Deimling, N. Jabado, S. Puget, J. Grill, K. Helin, A. Korshunov, P. Lichter, M. Monje, C. Plass, Y. J. Cho, S. M. Pfister, Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. *Cancer Cell* 24, 660–672 (2013). <u>Medline doi:10.1016/j.ccr.2013.10.006</u>
- T. D. Halazonetis, V. G. Gorgoulis, J. Bartek, An oncogene-induced DNA damage model for cancer development. *Science* **319**, 1352–1355 (2008). <u>Medline</u> <u>doi:10.1126/science.1140735</u>
- 13. D. Hanahan, R. A. Weinberg, The hallmarks of cancer. *Cell* **100**, 57–70 (2000). <u>Medline</u> doi:10.1016/S0092-8674(00)81683-9
- 14. R. Sethi, J. Allen, B. Donahue, M. Karajannis, S. Gardner, J. Wisoff, S. Kunnakkat, J. Mathew, D. Zagzag, K. Newman, A. Narayana, Prospective neuraxis MRI surveillance reveals a high risk of leptomeningeal dissemination in diffuse intrinsic pontine glioma. *J. Neurooncol.* **102**, 121–127 (2011). <u>Medline doi:10.1007/s11060-010-0301-y</u>

- 15. Y. Elkabetz, G. Panagiotakos, G. Al Shamy, N. D. Socci, V. Tabar, L. Studer, Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. *Genes Dev.* 22, 152–165 (2008). <u>Medline doi:10.1101/gad.1616208</u>
- 16. P. W. Lewis, C. D. Allis, Poisoning the "histone code" in pediatric gliomagenesis. *Cell Cycle* 12, 3241–3242 (2013). <u>Medline doi:10.4161/cc.26356</u>
- 17. I. Ben-Porath, M. W. Thomson, V. J. Carey, R. Ge, G. W. Bell, A. Regev, R. A. Weinberg, An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. *Nat. Genet.* 40, 499–507 (2008). <u>Medline doi:10.1038/ng.127</u>
- J. Grembecka, S. He, A. Shi, T. Purohit, A. G. Muntean, R. J. Sorenson, H. D. Showalter, M. J. Murai, A. M. Belcher, T. Hartley, J. L. Hess, T. Cierpicki, Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. *Nat. Chem. Biol.* 8, 277–284 (2012). <u>Medline doi:10.1038/nchembio.773</u>
- S. Matkar, A. Thiel, X. Hua, Menin: A scaffold protein that controls gene expression and cell signaling. *Trends Biochem. Sci.* 38, 394–402 (2013). <u>Medline</u> <u>doi:10.1016/j.tibs.2013.05.005</u>
- 20. A. Yokoyama, T. C. Somervaille, K. S. Smith, O. Rozenblatt-Rosen, M. Meyerson, M. L. Cleary, The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. *Cell* **123**, 207–218 (2005). <u>Medline</u> <u>doi:10.1016/j.cell.2005.09.025</u>
- 21. S. R. Viswanathan, G. Q. Daley, Lin28: A microRNA regulator with a macro role. *Cell* **140**, 445–449 (2010). <u>Medline doi:10.1016/j.cell.2010.02.007</u>
- Y. Hu, G. K. Smyth, ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. *J. Immunol. Methods* 347, 70–78 (2009). <u>Medline doi:10.1016/j.jim.2009.06.008</u>
- 23. M. S. Bradbury, G. Panagiotakos, B. K. Chan, M. Tomishima, P. Zanzonico, J. Vider, V. Ponomarev, L. Studer, V. Tabar, Optical bioluminescence imaging of human ES cell progeny in the rodent CNS. *J. Neurochem.* **102**, 2029–2039 (2007). <u>Medline doi:10.1111/j.1471-4159.2007.04681.x</u>
- 24. R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf, T. P. Speed, Exploration, normalization, and summaries of high density oligonucleotide array probe level data. *Biostatistics* 4, 249–264 (2003). <u>Medline</u> doi:10.1093/biostatistics/4.2.249
- 25. A. D. Goldberg, L. A. Banaszynski, K. M. Noh, P. W. Lewis, S. J. Elsaesser, S. Stadler, S. Dewell, M. Law, X. Guo, X. Li, D. Wen, A. Chapgier, R. C. DeKelver, J. C. Miller, Y. L. Lee, E. A. Boydston, M. C. Holmes, P. D. Gregory, J. M. Greally, S. Rafii, C. Yang, P. J. Scambler, D. Garrick, R. J. Gibbons, D. R. Higgs, I. M. Cristea, F. D. Urnov, D. Zheng, C. D. Allis, Distinct factors control histone variant H3.3 localization at specific genomic regions. *Cell* **140**, 678–691 (2010). <u>Medline doi:10.1016/j.cell.2010.01.003</u>
- 26. B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol.* 10, R25 (2009). <u>Medline</u> <u>doi:10.1186/gb-2009-10-3-r25</u>

- 27. Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum, R. M. Myers, M. Brown, W. Li, X. S. Liu, Model-based analysis of ChIP-Seq (MACS). *Genome Biol.* 9, R137 (2008). <u>Medline doi:10.1186/gb-2008-9-9-r137</u>
- C. M. Johannessen, J. S. Boehm, S. Y. Kim, S. R. Thomas, L. Wardwell, L. A. Johnson, C. M. Emery, N. Stransky, A. P. Cogdill, J. Barretina, G. Caponigro, H. Hieronymus, R. R. Murray, K. Salehi-Ashtiani, D. E. Hill, M. Vidal, J. J. Zhao, X. Yang, O. Alkan, S. Kim, J. L. Harris, C. J. Wilson, V. E. Myer, P. M. Finan, D. E. Root, T. M. Roberts, T. Golub, K. T. Flaherty, R. Dummer, B. L. Weber, W. R. Sellers, R. Schlegel, J. A. Wargo, W. C. Hahn, L. A. Garraway, COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. *Nature* 468, 968–972 (2010). <u>Medline doi:10.1038/nature09627</u>
- 29. E. Campeau, V. E. Ruhl, F. Rodier, C. L. Smith, B. L. Rahmberg, J. O. Fuss, J. Campisi, P. Yaswen, P. K. Cooper, P. D. Kaufman, A versatile viral system for expression and depletion of proteins in mammalian cells. *PLOS ONE* 4, e6529 (2009). <u>Medline</u> doi:10.1371/journal.pone.0006529
- 30. V. Tabar, G. Panagiotakos, E. D. Greenberg, B. K. Chan, M. Sadelain, P. H. Gutin, L. Studer, Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. *Nat. Biotechnol.* 23, 601–606 (2005). <u>Medline doi:10.1038/nbt1088</u>