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Stability analysis of Models 1-4
In this section, we present the stability analysis of Models 1-4, which is similar to the analysis
of DNF systems described in our previous study [1]. The majority of presented formulas can be
applied to all models and we do explicitly distinguish them, unless necessary.

We linearised Models 1-4 about their respective equilibrium (Cs, Rs):
dC

dt
dR

dt

 =

(
−x −y

0 −β

)(
C

R

)
+

(
0 0

1 0

)(
C(t− τ)

R(t− τ)

)
, (1)

where elements x, y are represented in equations (7)-(10) of the main manuscript for Models 1-4,
respectively.

Further, we formulated a characteristic transcendental equation of the system (1):

P (λ, τ) = (λ+ x)(λ+ β) + y e−λτ = 0, where x, y > 0. (2)

According to the lemma from [2], as τ varies, the sum of the multiplicities of zeros of (2) in
the open right half-plane M(τ) can change only if a zero appears on or crosses the imaginary axis.
Thus, the only way that M(τ) 6= M(τ ′) for τ < τ ′ is, if there exists a marginal value τm between
τ and τ ′, such that P (λm, τm) = 0 and Re(λm) = 0 [3].

Consequently, we presented a root of (2) in the form λm = i ωm, where ωm > 0:

P (i ωm, τm) = x β − ω2
m + i (x+ β)ωm + y e−i ωmτm = 0.

Applying Euler’s formula e−i ωmτm = cos(ωmτm)− i sin(ωmτm) we obtain:

x β − ω2
m + i (x+ β)ωm + y (cos(ωmτm)− i sin(ωmτm)) = 0. (3)
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Satisfying (3) real and imaginary parts should both be equal to zero:

x β − ω2
m + y cos(ωmτm) = 0, (4)

(x+ β)ωm − y sin(ωmτm) = 0, (5)

which is equivalent to: (
x β − ω2

m

)2
= (−y cos(ωmτm))2 ,

(x+ β)2 ωm
2 = (y sin(ωmτm))

2 .

We summed up above equations and applied Pythagorean trigonometric identity:

ω4
m + (x2 + β2)ω2

m + x2 β2 − y2 = 0. (6)

Equation (6) has real non-zero roots if and only if x2 β2 − y2 < 0, which is equivalent to
x β < y. Otherwise, τm does not exist and the equilibrium (Cs, Rs) of Models 1-4 is absolutely
stable. We assumed that x β < y holds and defined the discriminant D of (6) by

D = (x2 + β2)2 − 4(x2 β2 − y2). (7)

Then, we defined roots of (6):

ω2
m± =

1

2

(
−x2 − β2 ±

√
D
)
.

Using the fact that ω2
m should be positive, we get:

ω2
m =

1

2

(
−x2 − β2 +

√
D
)
, ωm =

√
1

2

(
−x2 − β2 +

√
D
)
.

Further, we substituted the obtained expression for ωm into (4) and (5):

cos(ωmτm) =
1

2 y

(
−(x+ β)2 +

√
D
)
, (8)

sin(ωmτm) =
x+ β

y
ωm > 0. (9)

Using (8) and (9) we expressed the value of τm in the following form:

τm(n) =
1

ωm

[
arccos

(
1

2 y

(
−(x+ β)2 +

√
D
))

+ 2πn

]
, n = 0, 1, 2, ...

Since sin(ωmτm) > 0 holds, we concluded that if
(
−(x+ β)2 +

√
D
)
> 0, then

arccos

(
1

2 y

(
−(x+ β)2 +

√
D
))
∈
(
0, π

2

)
, otherwise arccos

(
1

2 y
(−(x+ β)2 +

√
D)

)
∈ (π

2
, π).

In both cases, the smallest time delay, which causes a purely imaginary pair of roots λ1,2 = ±iωm,
is

τm =
1

ωm
arccos

(
1

2 y

(
−(x+ β)2 +

√
D
))

. (10)
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Further, we proved the stability of the equilibrium (Cs, Rs) for any τ ∈ [0, τm). Indeed, roots
of P (λ, 0) are either real negative or have negative real part (see above).

Then, according to Lemma from [2], M(τ) = 0 for any τ ∈ [0, τm). Hence, for any τ ∈ [0, τm)
the equilibrium (Cs, Rs) is asymptotically stable.

Now, we prove that a Hopf bifurcation occurs at τ = τm. For this we differentiated the charac-
teristic polynomial (2) with respect to τ and equated it to zero:

2λ
dλ

dτ
+ (x+ β)

dλ

dτ
= y e−λτ

(
τ
dλ

dτ
+ λ

)
.

Then, we obtained the expression for
dλ

dτ
:

dλ

dτ
=

y λ

eλτ (x+ β + 2λ)− y τ
.

We substituted λ = iωm into the expression for
dλ

dτ
and applied Euler’s formula:

dλ

dτ
(τ) =

i ωm y cos(ωmτ) + ωm y sin(ωmτ)

x+ β − y τ cos(ωmτ) + i (2ωm + τy sin(ωmτ))
.

We substituted the expression for τm (10), used (8) and (9), multiplied the top and the bottom
by the conjugate of the denominator, took real part and obtained:

dRe(λ)

dτ
(τm) =

√
Dω2

m

(x+ β − y τm cos(ωmτm))
2 + (2ωm + τm y sin(ωmτm))

2 > 0. (11)

The positivity of (11) guarantees that the hypotheses of the implicit function theorem hold.
Hence, we may conclude that for τ ≈ τm the root of the characteristic polynomial (2) λm = iωm
crosses the imaginary axis from left to the right.

According to Proposition 6.5 from [3], for τ ≥ τm the equilibrium (Cs, Rs) is unstable.

Auto-inhibition increases τm
We represented τm (10) as a function of x, y and β:

τm(x, y, β) = f(x, y, β) g(x, y, β), (12)

where

f(x, y, β) =

√
2√

−x2 − β2 +
√

(x2 + β2)2 + 4(y2 − x2β2)
> 0,

g(x, y, β) = arccos
−(x+ β)2 +

√
(x2 + β2)2 + 4(y2 − x2β2)

2y
> 0.
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Assuming x β < y and usingD from (7), we obtained derivatives of functions f and g with respect
to x and y:

∂f

∂x
(x, y, β) =

√
2x
(√

D − (x2 − β2)
)

√
D
(√

D − x2 − β2
)3/2 > 0,

∂g

∂x
(x, y, β) =

2(x+ β)
(√

D − x2 + xβ
)

√
D

√
4y2 −

(
(x+ β)2 −

√
D
)2 > 0,

∂f

∂y
(x, y, β) = − 2

√
2y

√
D
(√

D − x2 − β2
)3/2 < 0,

∂g

∂y
(x, y, β) = −

(x+ β)2
(
−x2 − β2 + 2xβ +

√
D
)

√
Dy

√
4y2 −

(
(x+ β)2 −

√
D
)2 < 0.

(13)

Thus, we conclude that f(x, y, β) and g(x, y, β) are both positive functions, which increase
with x and decrease with y. Consequently, τm(x, y, β) follows the same pattern. Using the relation
between equilibria of models with and without auto-inhibitory feedback and properties of feedback
functions F , S1, S2 described in the main manuscript, we calculated lower and upper bounds of x
and y. Further, we showed how these bounds can be increased or decreased leading to changing in
the value of τm.

Firstly, we defined the relation between equilibrium components Rs and Cs for Models 1-4.

For this we equated the right hand side of the differential equation
dR

dt
to 0:

Rs =
1

β
Cs. (14)

Further, for each Model 1-4 we equated the right hand side of the differential equation
dC

dt
to 0

and substituted the expression for Rs (14):

I S1

(
1

β
Cs

)
︸ ︷︷ ︸

θ1

·F (Cs) = αCs︸︷︷︸
θ2

for Model 1, (15)

I S1

(
1

β
Cs

)
(1− Cs)︸ ︷︷ ︸

θ1

·F (Cs) = αCs︸︷︷︸
θ2

for Model 2, (16)

I︸︷︷︸
θ1

·F (Cs) = αCs + δ Cs S2

(
1

β
Cs

)
︸ ︷︷ ︸

θ2

for Model 3, (17)
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I (1− Cs)︸ ︷︷ ︸
θ1

·F (Cs) = αCs + δ Cs S2

(
1

β
Cs

)
︸ ︷︷ ︸

θ2

for Model 4. (18)

Thus, for each model we got the equation defining the equilibrium component Cs in the form:

θ1 · F (Cs) = θ2. (19)

According to (19), we find the equilibrium component Cs as the intersection of functions θ1 ◦ F
and θ2 (see Fig. S1). Since θ1 is either constant or decreasing function with respect to C and θ2 is
increasing function with respect to C, the equilibrium component Cs always exists and is unique.
In case the auto-inhibitory feedback is not present in the system (F (C) ≡ 1), the equilibrium com-
ponent Ĉs of the model without auto-inhibition is always greater than the equilibrium component
Cs of the model with auto-inhibition (see Fig. S1). According to (19), the same conclusion holds
for equilibrium components Rs and R̂s of models with and without auto-inhibition, respectively.

Figure S1 Schematic intersection of functions θ1, θ1 ◦ F and θ2. Functions θ1 and θ2 were
introduced to find equilibrium components of Models 1-4. a How to find equilibrium components
Cs, Ĉs for Model 3. b How to find equilibrium components Cs, Ĉs for Models 1, 2, 4.

Taking into account obtained relations Cs ≤ Ĉs and Rs ≤ R̂s and properties of feedback
functions F , S1, S2 described in the main manuscript we obtained following estimations of x and
y:

0 < εlb(|F ′ (Cs) |) < x < εub(|F ′ (Cs) |),
0 ≤ σlb < y < σub.

(20)

Refer to Table S2 for values of εlb, εub, σlb, σub for each Model 1-4.
Both the lower and upper bound of x, i.e., εlb and εub, are increasing with |F ′(Cs)| for Models 1-

4. Therefore, we can always increase a given x by choosing an appropriate value for |F ′(Cs)|. The
lower and upper bound of y, i.e., σlb and σub, have non-negative constant values. Consequently,
according to (13), we can always increase τm by increasing |F ′(Cs)|.

Taken together, we show how auto-inhibitory feedback allows to modify the range of the inter-
val [0, τm).
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Numerical evidence of increasing τm by auto-inhibition
The theoretical analysis presented in the section above shows that increasing the slope of the auto-
inhibitory function at the equilibrium |F ′(Cs)| leads to increasing the marginal time delay τm.
Here, we suggest an algorithm how to increase |F ′(Cs)| and, consequently, τm for the p53 model.

As auto-inhibitory feedback function we used a reverse Hill function FH(C) (Fig. S2a):

FH(C) =
1

1 + (κC)ν
, ν > 1, κ ≥ 0. (21)

Figure S2 Reverse Hill function. a Plot of the reverse Hill function FH(C) (21). b Absolute value
of the derivative of the reverse Hill function with the fixed κ and different values of ν.

For the reverse Hill-function, an obvious choice to increase the slope is increasing the Hill-
coefficient ν. Therefore, we made ν a free positive parameter, which value we choose. For sim-
plicity we considered only integer values of ν, however the algorithm can be extended to real
values of ν. Then we adjusted values of κ and equilibrium (Cs, Rs) and maximized |F ′H(Cs)|,
which is equivalent to solving F ′′H(Cs) = 0. Thus, for the fixed value of ν we solved the following
system of equations with respect to (Cs, Rs, κ) using fitted parameter values (α, β, δ,Km, n) from
Table S1:

F ′′H(Cs) =
ν(κCs)

ν ((ν + 1)(κCs)
ν − ν + 1)

C2
s ((κCs)

ν + 1)3
= 0,

0 = I FH(Cs)− αCs − δ Cs S2(Rs), (22)
0 = Cs − β Rs.

Then, we quantified τm using (12). If it is necessary, we increase ν, solve the system (22) with
respect to (Cs, Rs, κ) and quantify τm again.

Fig. S3 demonstrates results of application of the algorithm to the p53 model. In Fig. S3a we
illustrated the graph of the slope |F ′H(C)| for several values of ν and adjusted values of κ. One
can see that |F ′H(Cs)| is increasing, when we increase ν, whereas the value of Cs is only slightly
decreasing (indicated by black dots in Fig. S3a). Consequently, τm is also increasing with respect
to the Hill coefficient ν (Fig. S3b). For ν ≥ 3 the equilibrium is asymptotically stable. For ν > 8
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the equilibrium is absolutely stable. Thus, the relation between ν, |F ′H(C)| and τm demonstrated
in Fig. S3 corresponds well to the theoretical analysis made above.

In Fig. S4 we depicted simulations of the p53 model with fitted parameters from Table S1 and
synthetically activated auto-inhibitory feedback FH(C) (21) with ν = 3, κ = 1.73. One can see
that the model with auto-inhibitory feedback produces damped instead of sustained oscillations.

Figure S3 Influence of the synthetically activated auto-inhibitory feedback FH(C) on the stability
of the p53 model. a Absolute value of the derivative of FH(C) for ν = 2, 3, 4, 5 and adjusted
values of κ. Dots – absolute values of the derivative at the equilibrium point Cs. b Dependency
between τm and Hill coefficient ν. The dashed line designates the value of the fitted time delay τ .

Figure S4 Simulation of the p53 model with synthetically activated auto-inhibitory feedback.
Simulation of the p53 model with fitted parameters from Table S1 and synthetically activated
auto-inhibitory feedback FH(C) (21) with ν = 3, κ = 1.73.

Further, we investigated the stability of the p53 model with and without synthetically activated
feedback with respect to several parameters. In Fig. S5a-c we show that increasing the Hill coeffi-
cient ν and adjusting κ leads to a decreasing parameter region, where oscillations occur. Fig. S5d
demonstrates that τm increases with respect to κ for both ν = 2 (dark gray) and ν = 3 (light grey).
Thus, these results correspond well to our previous research [4], where we proved for the model
with delayed negative feedback that nested negative feedbacks lead to increasing resistance of the



8

system. In addition, in Fig. S5a we illustrate that τm increases with respect to α that indicates the
stabilizing property of α and may explain such a small fitted parameter value. On the other hand,
τm decreases with respect to I (Fig. S5c).

Figure S5 Dependencies between parameters of the p53 model. The p53 model is considered
without (black) and with synthetically activated (ν = 2, κ = 1.23 dark grey, ν = 3, κ = 1.73
light grey) auto-inhibitory feedback. a τm and α. b τm and β. c τm and I . d τm and κ.
Designations: dots – the fitted value of the parameter used in the p53 model, dashed line – the
fitted value of τ (Table S1).

Robustness of optimal solution of p53 model
We analysed the robustness of the optimal solutions for the p53 model with respect to noise. To this
end, we randomly sampled parameter values within ±10% of their respective fitted values using a
uniform distribution for 100 times. Then we simulated p53 model with perturbed parameters and
calculated 0.05 and 0.95 quantiles of obtained simulations (grey regions in Fig. S6). Fig. S6 shows
that the model solution with fitted parameters is located between 0.05 and 0.95 quantiles for all
considered time points.

Further, for each perturbed parameter set we calculated the relative variation of the integral of
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the first transient response after the stimulation:

vari =

∣∣∣∫ tInt

0
C(t)dt−

∫ tInt

0
Ci
p(t)dt

∣∣∣∫ tInt

0
C(t)dt

· 100%,

where C(t) corresponds to the model solution with fitted parameters, Ci
p(t) corresponds to the

model solution with ith perturbed parameter set (i = 1, 2, 3, ..., 100), tInt corresponds to the time
of the first minimum after initial stimulation (Fig. S6).

This way, the robustness of both initial activation amplitude and timing of the first transient
response, two characteristic measures of system dynamics, can be estimated concomitantly.

As the measure of robustness we calculated the mean value < var > and standard deviation
sd of obtained relative variations vari:

< var > ±sd = 8.7± 6.4%.

One may see that for the considered model values of < var > and sd do not exceed 9%.
Thus, the fitted solution turned out to be very robust with respect to noise in the parameters, also
indicating that the fitted solution is in a well-defined local minimum.

Figure S6 Robustness of the optimal solution of the p53 model. Fitted parameter values of the
p53 model were perturbed 100 times and used for model simulations. Gray region: 0.05-0.95
quantiles of simulations of the parametrized model with perturbed parameters. Black solid line:
simulations of the p53 model with fitted parameters from Table S1. Dashed areas correspond to
integral values

∫ tInt

0
C(t)dt used for calculating relative variations vari.

Modelling the switch from oscillatory to adaptive response of the
p53 system
For modelling the transition from oscillatory to adaptive response of the p53 system we extended
the p53 model (3) by including an additional component ATM . The resulting wiring scheme is
depicted in Fig. S7.
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Figure S7 Wiring scheme of the extended p53 model.

We translated the wiring scheme from Fig. S7 into the following system of DDEs:

dATM

dt
= I − γ ATM,

dp53

dt
=ATM − α p53− δ p53 Mdm2n

Mdm2n +Km
n ,

dMdm2

dt
=

p53(t− τ)
1 + ATMn2

− β R.

(23)

The extended p53 model (23) was further simulated with parameters from Table S1, γ = 0.05
and n2 = 2 (see Fig. S8a) and with parameters from Table S1, I = 1, γ = 0.05 and n2 = 2 (see
Fig. S8b). As a result, the extended p53 model demonstrates sustained oscillations for low DNA
damage (I = 0.23) and monotone adaptive response for high DNA damage (I = 1).

Figure S8 Simulation of the extended p53 model (23). a Simulation with parameters from
Table S1, γ = 0.05 and n2 = 2. b Simulation with parameters from Table S1, I=1, γ = 0.05 and
n2 = 2.
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Calculating the duration of “On” and “Off” states of p53 pulses
For calculating the duration of “On” and “Off” states of p53 pulses we simulated p53 model (3)
with parameters from Table S1 for later time points (t > 400 h), when the system reached its
steady state (see Fig. S9). Then we quantified the mean value between maxima and minima of the
simulation curve (see black dashed line in Fig. S9). As a result the simulation curve was split on
upper and lower parts with respect to the mean value. We designated the upper part as “On” state
and the lower part as “Off” state.

Figure S9 Defining “On” and “Off” states for the p53 response. Black dashed line designates the
mean value between maxima and minima of the simulation curve.

Then we checked how different model parameters control the duration of “On” and “Off” states
(see Fig. S10). For this we varied parameter values I , τ , Km, n, α, δ, β, κ and ν one at a time in
the range, where p53 model (3) produces sustained oscillations. Then for each varied parameter
value we calculated the duration of “On” and “Off” states of the p53 response as described above.

Table S1 Best-fit parameters used for the p53 model from the main manuscript.
Parameters p53 model
I 0.23 [a.u.]
τ 1.37 h
α 5.9× 10−13 h−1

β 0.94 h−1

δ 176 h−1

Km 2µM
n 5
C(0) 0 [a.u.]
R(0) 0 [a.u.]
SSR 2.16
SSR - the sum of squared residuals
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Table S2 Lower and upper bounds of x and y for Models 1-4.

Model 1

εlb = I S1(R̂s)|F ′(Cs)|+ α,
εub = I S1(0)|F ′(Cs)|+ α,
σlb = 0,
σub = I maxR∈[0,R̂s]

|S ′1(R)|.

Model 2

εlb = I S1(R̂s) (1− Ĉs)|F ′(Cs)|+ α,
εub = I S1(0) [1 + |F ′(Cs)|] + α,
σlb = 0,
σub = I maxR∈[0,R̂s]

|S ′1(R)|.

Model 3

εlb = I |F ′(Cs)|+ α + δ S2(0),

εub = I |F ′(Cs)|+ α + δ S2(R̂s),
σlb = 0,

σub = δ Ĉs maxR∈[0,R̂s]
|S ′2(R)|.

Model 4

εlb = I (1− Ĉs)|F ′(Cs)|+ α + δ S2(0),

εub = I [1 + |F ′(Cs)|] + α + δ S2(R̂s),
σlb = 0,

σub = δ Ĉs maxR∈[0,R̂s]
|S ′2(R)|.
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Figure S10 Dependency between parameter values of the p53 model (3) and duration of “On”
and “Off” states. a I , κ = 0. b τ , κ = 0. c Km, κ = 0. d n, κ = 0. e δ, κ = 0. f β, κ = 0. g κ,
ν = 3. h ν, κ = 1.73.
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Figure S11 Dependency between parameter values of Models 1-4 and τm applied to the
parameter set I = 0.87, α = 0.11, β = 0.17, δ = 58.2, n = 12.77, Km = 0.23. a For Model 1. b
For Model 2. c For Model 3. d For Model 4. e Dependency between the parameter Km and τm for
Models 1-4. With parvar and par we designated varied and initial chosen parameter values,
respectively. For Figs. a-d we varied the value of each parameter in the range from 0.1 to 10 times
of its respective chosen value leaving the rest parameter values fixed. For Fig. e we varied the
parameter Km in the range from 0.1 to 100 times of its respective chosen value.
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Figure S12 Results of Monte-Carlo analysis of Models 1-4 applied to the second parameter set
I = 0.48, α = 0.14, β = 0.44, δ = 83.71, n = 10, Km = 0.9, τ = 10 without auto-inhibition
(κ = 0). a Simulation of Models 1-4. b Stability analysis of Monte-Carlo simulations of
Models 1-4. Model parameters were randomly sampled 10000 times in the certain range. The
range was defined according to assumptions about model characteristics: strength of DNF (strong
or weak) and presence of auto-inhibition. The percentage of parameter sets, which induced
absolute stability, was quantified.
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