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1 Detailed model description

Our modeling choices are based on the following observations of primate-like foragers: (i) there is
a diverse environment with different potential food or resource types of varying quality (Smuts
et al., 1987; Chapman and Fedigan, 1990; Altmann, 1998); (ii) resources are limited in their
abundance and are depleted when consumed, or contain aversive secondary compounds, such
that foragers need to consume a variety of resources (Provenza, 1996); (iii) foragers live in
groups with overlapping generations (Smuts et al., 1987); (iv) foragers need to learn about the
rewards that are associated with particular resources (Matsuzawa and Hasegawa, 1982, 1983;
Birch, 1999; Visalberghi et al., 2003; Hardus et al., 2014); (v) foragers are selective (i.e. do
not eat everything they encounter) (Chapman and Fedigan, 1990; Altmann, 1998); (vi) foragers
can develop skills associated with processing particular resources and so obtain greater rewards
from those resources (Byrne, 1999; Jaeggi et al., 2010); (vii) foragers can observe the foraging
choices of their neighbors and this can affect the foragers’ subsequent choices (Visalberghi and
Addessi, 2003; Fragaszy and Visalberghi, 2004; Agostini and Visalberghi, 2005; Jaeggi et al.,
2010; van de Waal and Whiten, 2012; van de Waal et al., 2014). These empirical observations
directly determine the main features of our model, and we study the dynamic processes that they
generate. Here we document a full model description based on the ODD protocol for describing
simulation models (Grimm et al., 2006).

1.1 Purpose

We develop an event-based, individual-based, spatially extended model of group foragers learn-
ing what and how to eat, in order to enable a multi-scale approach to the evolution of social
learning mechanisms. Specifically, we study how the evolution of individual-level social learning
parameters affects learning outcomes through self-organizing processes. We address the role of
self-organization in the evolution of social learning, its mechanism specificity and scrutinize the
assumptions made in game-theoretic models.

1.2 State variables and scales

Our model consists of a 2-dimensional environment with resource items and foragers. Space and
time are continuous (via event-based scheduling), but some variables are updated via discrete
time steps where each time point is a minute, a day is 720 minutes (only daylight), and a year
is 360 days.

Resource types are described by: a spatial position, a maximum energy value Qr, a task
difficulty Hr and Sr which determines how rapidly foragers can initially learn to process a
resource type. Specific resource items are also defined by a spatial position and whether they
have been consumed this year or not. To generate resource patches, resource items are arranged
randomly in a circle around a randomly selected patch center. Resource patches are characterized
by: a location, a radius, resource density. The “patch-level” is emergent in the sense that patches
can only be observed by foragers by sensing resource items. For random environments, items
are placed singly at any random location.

Foragers are characterized by the following state variables: age, energy, position, heading,
behavior state, behavioral action, time to complete an action (completion time), memory (see
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below), having a particular feeding target (i.e. a food item), a group identity, and parameters
that determine behavior (see Table S1). Forager memory includes: (i) having a particular feeding
target (i.e. a resource item), (ii) associations air between a resource and a reward, (iii) experience
tir, the total time spend processing a particular resource type, (iv) a particular resource type for
which the forager has a stimulus for via stimulus enhancement, (v) an estimate of the quality of
resources that can be found in the environment aie, and (vi) estimates of how certain foragers
are about resources cir. The forager population is fixed, but the number of groups changes when
groups die and are ‘born’.

1.3 Process overview and scheduling

We distinguish two levels of scheduling: (i) continuous time and (ii) discrete time steps (every
minute).

Discrete updating: every minute we update individual age, reduce energy due to energy
metabolism, determine if an individual dies due to a fixed death rate, starvation or old age, and
if so select a parent according to energy levels:

(hi
W /(

N∑
j=1

hj))
W (S1)

where hi is an individuals energy level, N is the population size and W (= 3) is the selection
coefficient. Groups die when the last group member dies, and are born when a group reaches
the maximum group size (20 foragers) and is randomly split into two equally sized daughter
groups. Mutations in behavior parameters during reproduction generates genetic variation. If
variation affects reproductive success, natural selection arises. Each resource type is checked if
it is replaced by a new resource type every minute according to EC the rate of environmental
change. Every DIG TIME (100) minutes all consumed resource items are ‘digested’. If any
resource type exceeds SATIATION FRAC*MAX STOMACH number of items, then the forager
attains a temporary satiation aversion for that resource type for SATIATION TIME minutes.

Continuous updating: every behavioral action has a continuous time point at which it is
completed (completion time). Actions can therefore end anywhere within a minute (with the
resolution of “float” types in C++ programming language), and an action started in a previous
minute is completed in the next minute. All foragers are put into a queue according to their
completion time. The individual with the lowest completion time is next to complete its action
and choose a new action. The completion time represents the duration of an action. Foragers
therefore start their actions asynchronously, but action durations can overlap. This is an event-
based scheduling. The sequence of actions of a forager is determined by the decision-making
algorithm.

When foragers consume resource items those items are tagged as ‘consumed’ and become
available again the following year. When assessing resources items locally, any consumed re-
sources items are checked whether they have become available again. If so they are tagged as
available. This set-up was chosen for computational reasons, such that updating resource items
occurs in a ‘need to know’ manner in relation to what foragers are observing locally. As a result
we do not need to update all resource items all the time.
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Name Description Values
DAY minutes of daylight foraging time 720

YEAR number of days 360
PATCH RADIUS Radius of the patch 10 m

PATCH RES Number of resource types in a given patch type 5
PATCH RES SEL Subset of possible resource types in particular patch 3

R Number of resources species 250
N Population size 100
W Selection coefficient which determines the strength of selection 3

MAX AGE Maximum age that foragers can reach 20 years
DEATH RATE Rate of stochastic death 0.1 per year

BIRTH ENERGY Energy invested in offspring 5000 units
DIGESTIONTIME Time interval at which digestion occurs 100 minutes
STOMACH CAP Number of items that can be eaten before forager is full 20

REACH Distance at which forager can reach a resource item 0.9 m
M The maximum event time (for EAT, OBSERVE, MOVE) 1 min

COPY SPACE Distance at which foragers can observe what their neighbors are doing 20

K
The proportion of the difference in experience that can be learning in skill
learning by observation

0.1

SEARCH ANGLE Angle about forward heading that the forager searches π/2
SEARCH DISTANCE Maximum distance at which resource items can be detected 2 m

NUM ITEMS PER SEARCH Number of items that can be assessed in SEARCH TIME 20
MOVE SPEED Speed when moving forward 3.6 km / h

STEP DISTANCE Distance of a single move forward event 1 m
NOTHING TIME Duration of NOTHING action M

EAT TIME Duration of EAT action M

A Area of the environment 39.2 km2

DENSITY Total resource density 0.75
PATCH ITEMS Number of resource items in patch 1200

PATCHES Number of resource patches 24500
Qr Maximum energy reward of resource type r N(0.1, 0.1)
Hr Practice time needed before obtaining half the maximal reward 0.1..10
Sr Scalar for the sigmoid function describing how rewards increase with practice 1..4

Z
Noise on the reward foragers obtain from a resource: standard deviation of a
normal distribution about eir

0.005

EC1 Rate at which resource species are replaced by new unknown species 0..R species per year
EC2 Rate at which resource species change their quality Qr 0..R species per year

METABOLISM Energy used for metabolism 0.01 per min
SATIATION TIME Time that satiation lasts DIGESTIONTIME
SATIATION FRAC Proportion of stomach filled by a resource type in order to become satiated 0.9

G Number of foragers in a group 20
SAFE NEIGHS Number of neighbors a forager needs to feel safe 9
SAFE SPACE SAFE NEIGHS should be within this distance 17 m

PROB CHECK SAFE Probability to check if safe 0.9

ALIGN PROB
Probability to align to neighs direction after MOVETOGROUP because not
safe

0.9

ALIGN ZONE Zone of alignment 20 m
MOVETOGROUP DISTANCE Distance individual moves to become safe 3 m

MOVETOGROUP SPEED Speed at which forager move to become safe 180 m/min
SEARCH TIME Duration of SEARCH action 0.5 ∗M

δi Distance foragers move forward after not finding preferred food 0..20 m
σi Selectivity scalar 0..20
φi Rate scalar for updating the expected reward for the environment aie 0..1
λi Rate scalar for reinforcement learning 0..1
εi Maximum exploration rate 0..1

γi
Increment in probability to select a resource if previously stimulated in
stimulus enhancement

0..1

ωi Probability to OBSERVE neighbor 0..1
τi Maximum time observing neighbor 0.01..1 min
eir Reward obtained by forager i from resource r 0..max(Qr)
hi Forager’s total energy (or health) 0..∞
tir Total time forager i has practiced processing resource r 0..MAX AGE
air Reward forager i expects from resource r 0..max(Qr)
aie Reward forager i expects from environment 0..max(Qr)
cir Certainty estimate of expected reward 0..1
nik How interesting neighbor k is for forager i to be selected as demonstrator 0..1
pi The time forager i has left to complete performing its present behavioral action 0..M
oik Effective observation time by forager i of neighbor k equals min(τi, pk) 0..M

Table S1: List of parameters and variables. Upper case letters and names: to refer to invariant
parameters that do not change during simulations. Lower case letters: variables of foragers
that change during their lifetime. Greek letters: parameters that can mutate, but are invariant
during a forager’s lifetime. Subscripts: i = forager identity; r = resource type; k = forager’s
neighbor; e = environment.
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1.4 Design concepts

Emergence: our model is all about detecting and understanding emerging processes and the
interactions between them. The following is a list of emerging phenomena:

• Foraging patterns: larger-scale detection of resource patterns beyond the local perception
of individuals (van der Post and Semmann, 2011a,b).

• Patterns of resource depletion (van der Post and Hogeweg, 2006).

• Interactions between grouping and resource patterns (van der Post and Hogeweg, 2006).

• Learning patterns (van der Post and Hogeweg, 2006).

• Cultural phenomena (van der Post and Hogeweg, 2008; van der Post and Hogeweg, 2009).

Adaptation: there are at least two implemented levels of adaptation: (i) individuals have
a decision-making algorithm that determines how they respond to the local environment, and
(ii) evolutionary adaptation of behavioral parameters via natural selection.

Fitness: we define that the rate of reproduction of foragers depends on energy intake,
therefore more feeding generates a greater birth rate. A forager’s lifespan depends on a fixed
death rate, starvation and maximum age. We study how fitness is affected by the evolution of
foraging and social learning.

Prediction: individuals do not predict future conditions, but respond to environmental
conditions they encounter. These responses are embedded, in the sense that they are deter-
mined by locally observable conditions. We refer to this type of responsiveness as TODO, as in
individuals DO WHAT THERE IS TO DO (Hogeweg and Hesper, 1985). What individuals do
is determined by evolvable decision-making algorithms.

Sensing: central for TODO is local information processing, leading to larger scale TODO-
based pattern recognition beyond the direct perception of the individual (Hogeweg and Hesper,
1991; van der Post and Semmann, 2011a). We only define local perception of food (2 meters),
and on a somewhat larger scale the awareness of neighbors.

Interaction: foragers can approach, eat and deplete resources. Foragers can detect each
other and approach, align or move away from other individuals.

Collectives: resources patches and groups of foragers.
Observation: we collect data on what foragers eat, what their associations are, their ex-

perience, their group members, their age, energy, location, number of offspring, and evolvable
parameters. Analysis generally proceeds via macro-observables (e.g. energy level) and becomes
increasingly detailed as more information is needed to understand what and how processes are
occurring (see main text).

1.5 Specification choices of scaling context

The scaling context of our model is determined by fixed parameters (Table S1):
Spatial and temporal resolution: At the minimal level we define the minimal time and

spatial scale. Evolvable action durations can be minimally 10 seconds (tMIN ), to keep the model
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running fast enough. Space is continuous: individuals and resources can be placed at any given
location.

Local information processing: Constraints on movement and perception (local infor-
mation processing) are defined in terms of the spatial and temporal scale. Maximum speed is
defined in terms of the minimal time interval, so that the duration of moving 1 meter can never
be below tMIN . The maximum range of resource detection (rD) is then chosen to be small, so
that individuals have to move to detect food (Video 1, gray semi-circle). Within this range all
resource items are detected. The individual’s REACH dr is then chosen to be below maximal
resource detection range (Video 1, gray small circle). This is quite a reasonable assumption
(equal detection range and REACH is probably a limit case).

For grouping we assume that groups are cohesive and assume that forager’s can always keep
track of all their group-mates, but ignore foragers of other groups. Moreover, for the alignment
zone (ALIGN ZONE) we assume a shorter range because alignment requires identifying the
direction neighbors are moving.

Energy and life history: We fix the population at 100, and when a forager dies a parent
is chosen according to its energy level Ei. The parent gives birth with cost EB. This generates a
viability threshold for the population, i.e. energy intake must be sufficient to have a net positive
energy balance and must include sufficient energy for reproduction. If not, average energy levels
drop and average energy levels in the population drop below EB, in which case the population
is not viable. In our simulations however, births and deaths continue.

Environment: The environmental settings were chosen to support selective foraging. This
means that the resource density is so high that foragers do not end up eating everything, and
need to be selective to reach the highest energy levels.

1.6 Initialization

We initialize the environment with a fixed number of resource types and multiple items of each
type, but different resource distributions. An initial population of 100 foragers is initialized with
a either randomly initialized evolvable parameters for solitary populations, or parameters that
have evolved in solitary populations for simulations with grouping. For simulations with group-
ing the population is initialized as solitary, and after a 40 years start-up period any offspring are
grouping phenotypes and groups start to form. Individuals are initialized at random positions,
start without an action, and with no information about the environment. Their first action will
be FOODSCAN.

1.7 Input

The model does not include any external model or data files of driving environmental variables.

1.8 Submodels

Here we present a “mathematical” skeleton of the model updating schedule:
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1.8.1 Forager continuous updates and decision-making algorithm

During each minute:
while any action ends this minute, take soonest ending action:
1) Complete Action
——* MOVE: get new position
——* FOODSCAN: get new food target, or not
——* MOVETOFOOD: get new position
——* MOVETOGROUP: get new position
——* EAT: gain energy Ei = Ei + eir and gain experience: tir and air

where Ei is individual energy and eir is energy per food item
——* OBSERVE: gain experience tir
——* NOTHING: ready for next action
2) Choose New Action based on previous action:
—- if was MOVE: reselect MOVE if not yet reached δi meters
—- if NO ACTION YET ASSIGNED
——* CHECK IF SAFE and update any stimulus enhancement
——* if (not safe) then MOVETOGROUP
——* else (safe)
———** if was MOVETOGROUP then align to the direction of group members in ALIGN ZONE
———** if was SEARCH or MOVETOFOOD then
————-*** if resource target still exists
—————-**** if (distance to target < dR)
——————-***** EAT
—————-**** else
——————-***** MOVETOFOOD
————–*** give up (food is gone)
———** if no action assigned and (RAND < ωi) then OBSERVE
———** else (no action and not observe)
————–*** if (stomach is full)
—————-**** do NOTHING
————–*** else
—————-**** if (previous action != FOODSCAN) and not crowded
——————–***** FOODSCAN
—————-**** else
——————–***** MOVE
3) Get new completion time
4) Place forager in action cue sorted by completion time.

RAND is a random number between 0 and 1, ωi is the probability to OBSERVE, and dR is
the individual’s reach.

1.8.2 Behavior actions of foragers

MOVE:
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• Get new position and make sure it is on the grid:

– ~p′ = dM~v + ~p
where dM is the MOVE distance, ~v = normalized random vector, and ~p is the position
of the forager.

– while (̄p′x or p
′
y < 0 or p′x or p

′
y >=

√
A)

∗ select new ~v (normalized random vector)

∗ ~p′ = dM~v + ~p

where A is the area of the environment.

• Duration: dM ∗ tM
where tM is the time it takes the forager to move 1 meter.

MOVETOGROUP:

• ~v =
∑nA
j 6=i ~pj
nA

nA is the number of group members and ~pj is the position of neighbor j.

• ~p′ = dM~v + ~p
where dM is the MOVE distance and ~p is the position of the forager.

• Duration: dM ∗ tM
where tM is the time it takes the forager to move 1 meter, dM is the step-distance.

FOODSCAN (Video 1, gray semi-circle): try to get new food target

• for all n food items (distance < dF and angle < aF /2 from heading)
where dF is the radius of search, and aF is the search angle about the foragers forward
heading.

– assess a maximum of 20 items

– for each item decide whether to eat of not based on Equation 1.

• Duration: tF

MOVETOFOOD: get new position closer to food item

• ~v =
~f−~p
|~f−~p|

• d = distance to food where ~f is the position of food item and ~p the position of the forager

• if d > dr
~p′ = dM~v + ~p
else
~p′ = d~v + ~p
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• Duration: distance moved * tM

EAT: consume food item

• Duration: tE

OBSERVE: observe neighbor

• Duration: τi

• leads to acquisition of experience based on Equation 8.

NOTHING: do nothing

• Duration: tN

1.8.3 Forager discrete updates

Each minute for all foragers:

• Age: age + 1 minute

• Energy: Ei = Ei − Em

where Em is energy metabolism per minute

• Stimulus enhancement time (after stimulus):

– if (stimulus duration < 30 minutes): stimulus time = stimulus time + 1 minute

– if (stimulus duration >= 30) no more stimulus

• Reproduction:

– if (population < 100): select parent according to energy (see Equation S1)

∗ Energy change due to birth: Ei = Ei − EB, where EB is the birth cost.

∗ Offspring energy: EB

∗ Inheritance: offspring inherits all evolvable parameters (see Table S1).

∗ Mutation: with probability 0.05 each evolvable parameter is mutated. A new
value is drawn from a normal distribution about the parent’s parameter value
within an preset range (see Table S1).

• Death (forager dies if):

– Ei ≤ 0

– age >= maximum age

– RAND < death rate (equivalent to 0.1 per year)
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1.8.4 Resources

For all depleted resource items every year:

• all depleted resource items re-appear (or re-grow).

• resource items that are eaten disappear immediately.

This is not computed by looping over all items all the time, but only when those items are
assessed by foragers locally.

1.9 Comparison to diet model by van der Post & Hogeweg

The major changes as compared to the model of van der Post and Hogeweg (2006) are as follows:
(i) We now focus on skill learning rather than diet learning with delayed feedback from digestion.
To add skill learning, we model rewards to increase over time (Equations 4 and 5 in main text),
while in van der Post and Hogeweg (2006) rewards were fixed. Moreover, to simplify the model we
excluded delayed feedback, and instead assume that foragers can immediately sense rewards. (ii)
Since we include skill learning we can now include observational learning. Previously in van der
Post and Hogeweg (2006); van der Post and Hogeweg (2008); van der Post et al. (2009) we had
only included local and stimulus enhancement; (iii) We now include evolution of parameters,
while in (van der Post and Hogeweg, 2006) parameters were fixed on pre-selected values. To
allow for evolution we now focus on larger environments with populations with multiple groups
with variable size. In van der Post and Hogeweg (2006) only single groups of fixed size were
considered. Since we now include evolution, and aimed to explicitly consider the evolution of
exploration rate relative to social learning parameters, we implement an intrinsic exploration
tendency that depends on the forager’s certainty estimate. In van der Post and Hogeweg (2006)
this was implicit by assuming that individuals only explore resources for which they have no
existing preference or association with a probability depending on ‘trail rate’. The latter could
effectively limit exploration via a familiarity-selectivity feedback. This could generate unfair
constraints on asocial learning, relative to which an advantage of social learning would be an
artefact. Hence we added a more general exploration tendency, mitigated by knowledge of a
resource (‘certainty’, see Equation 2).

Finally, we would also note that the model has been completely recoded in C++, while
van der Post and Hogeweg (2006) was originally coded in C.
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2 Classes and inter-dependencies of parameters

The parameter space of the model can be evaluated in an informed way by distinguishing
between different types of parameter. In particular, inter-dependencies between parameters
imply that parameter values are not arbitrary but that the values follow given some logic about
how parameters are inter-related (i.e. they must fulfill conditions relative to each other). Thus we
distinguish between (i) primary fixed parameters, (ii) dependent fixed parameters, (iii) evolving
parameters, (iv) system control parameters. All those indicated with * are either systematically
varied, or evaluated in sensitivity analyses.

2.1 Independent fixed parameters

This concerns 22 independent fixed parameters that are either empirically and/or computation-
ally motivated. 10 independent fixed parameters are mainly empirically motivated based on
small to medium sized monkeys:

1. DAY, MINUTE, YEAR: standard time, focusing on daylight (primate activity time).

2. MAX AGE & DEATH RATE: average (10 years) and maximum age (20 years), which is
reasonable for monkey species.

3. DIGESTION TIME (100 minutes): on the order of hours.

4. REACH (0.9 m): reasonable limitations of reach for primates.

5. MOVE SPEED: 3.8 km/h reasonable for relaxed primate foraging.

6. PATCH RADIUS* (10 m): defining the crown of trees in tropical rain forest. Note that
very similar results are obtained with smaller patches (van der Post and Hogeweg, 2006)

7. PATCH RES* (5): number of resource species per tree species (e.g. fruit, seeds, flowers,
young and mature leaves).

12 primary fixed parameters are mainly computationally motivated but are also empirically
reasonable:

1. POPULATION SIZE (100): in order to have fast enough simulations.

2. RESOURCE DENSITY (0.75 items / m sq): high enough such that there is not too much
depletion causing all foragers to learn everything (i.e. not selectivity).

3. number of resource species (250): this is great enough to ensure learning is sufficiently
difficult to be interesting as determined in previous work (van der Post and Hogeweg,
2006). It is empirically motivated but underestimates natural diversity.

4. METABOLISM (0.01): set arbitrarily as reference point on which to scale other energy
parameters.

5. G* (maximal group size, 20): this is constrained by POPULATION SIZE, and empirically
motivated.
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6. STOMACH CAPACITY (20): this is empirically motivated, but the relatively low number
of items is computationally convenient.

7. SEARCH ANGLE (π/2): this is empirically motivated (main vision is forward), close to
evolved values (van der Post and Semmann, 2011a), and more computationally convenient
than 360 degree vision.

8. SEARCH DISTANCE (2 m): distant-dependent search is empirically motivated, but the
discrete cut-off and distance are computationally convenient.

9. NOTHING TIME (1 min): some maximal time span after which to check a forager’s
motivation again. Checking only once every minute is computationally convenient.

10. EAT TIME (1 min): eating for a minute per item is computationally convenient and short
enough that stomachs become filled, and empirically reasonable.

11. SEARCH TIME (30 sec): searching for half a minute is computationally convenient and
short enough that stomachs become filled, and empirically reasonable.

12. STEP DISTANCE (1 m): a meter is computationally convenient minimal distance and
does not overshoot SEARCH DISTANCE, and is empirically reasonable

2.2 Dependent and partially dependent parameters

17 dependent fixed parameters either (i) follow logically based on, or (ii) are constrained in some
way by, primary fixed parameters:

1. A (area, 39 km sq): this is constrained given a target density of foragers and POPULA-
TION SIZE

2. PATCHES* (24500): set so that in principle patches would cover the area considered (i.e.
a closed forest canopy), depending on A and PATCH RADIUS.

3. PATCH ITEMS* (1200): this follows from PATCHES, and the number of resource items
following from A and RESOURCE DENSITY

4. PATCH RES SEL* (3): this follows from PATCH RES in order to generate some variation
across patches (empirically motivated)

5. Qr (max reward, N(0.1, 0.1)): scaled relative to METABOLISM such that net energy gain
from food intake is possible. Note that this is further scaled by Hr and Sr over time.

6. Z (noise on rewards, 0.005): scaled relative to Qr.

7. BIRTH ENERGY (5000): scaled relative to net energy gain from food items to define the
costs of birth, and so the time needed to recover energy levels, chosen such that foragers
cannot immediately reproduce again.

8. SATIATION TIME (100 min): scaled relative to DIGESTION TIME since satiation is
defined in terms of digestion cycles.
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9. SATIATION FRAC (0.9): just a small deviation from complete stomach contents.

10. SAFE NEIGHS*, SAFE SPACE*, PROB CHECK SAFE*, ALIGN PROB*, ALIGN ZONE*,
MOVETOGROUP DISTANCE*, MOVETOGROUP SPEED*: these parameters are all
set relative to each other to define cohesive grouping based on previous work (van der Post
and Hogeweg, 2006; van der Post and Semmann, 2011a; van der Post et al., 2015).

11. NUM ITEMS PER SEARCH (20): scaled relative to SEARCH TIME and with a prefer-
ence for a low number for computational efficiency. Very low numbers make search very
inefficient, and very high numbers are redundant.

2.3 Evolving parameters

8 evolving parameters are not fixed, but simulated evolution explores this parameter space:

1. δi (move distance, see ’Local decision making’)

2. σi (selectivity during food choice, Equation 1)

3. φi (update factor of expected rewards in the environment, see ’Food choice algorithm’)

4. λi (learning rate, Equation 3 and 6)

5. εi (exploration rate, Equation 2)

6. γi (stimulus enhancement, Equation 7)

7. ωi (rate of observing neighbors, see ’Local decision making’)

8. τi (duration of observing neighbors, Equation 8).

2.4 System control parameters

14 system control parameters are varied in a systematic way to vary the social, learning mech-
anism and environmental settings and to conduct sensitivity analysis:

1. Task difficulty: by varying Hr between 1 and 10. At 1 learning is nearly instantaneous,
while at 10 solitary foragers are not viable (too difficult).

2. Environmental change: by varying EC1 or EC2 between 0 and 250. At 0 these is no
change, and at 250 solitary forager are not really viable.

3. Resource distributions: we compare our default setting to random and pure patchy en-
vironments. Thus we vary a ’meta-parameter’ composed of PATCHES, PATCH SIZE,
PATCH RES and PATCH ITEMS. Previous work has shown that this targets the key
feature of interest, namely local variation in resources (van der Post et al., 2009).

4. Solitary and grouping: here we change the ‘meta-parameter’ of sociality involving G,
SAFE NEIGHS, SAFE SPACE, PROB CHECK SAFE, ALIGN PROB, ALIGN ZONE,
MOVETOGROUP DISTANCE, MOVETOGROUP SPEED.
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In addition, we exclude particular social learning mechanisms by setting the respective pa-
rameters of those mechanism to zero and by not letting them evolve.
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3 Further details on simulations

In our analysis we use different kinds of simulations:
(i) Evolutionary simulations. These form the backbone of the analysis, and provide

the evolved parameters that we use to compare the evolved mechanisms in non-evolutionary
follow-up simulations (see below). We first established an asocial learning baseline by evolving
foraging and learning parameters in solitary populations. In this way we established the level
of optimization achieved via asocial learning and the optimized asocial rate of exploration.
Simulations with solitary foragers (SOL) were initialized with randomized values for all evolving
parameters. Next we used the average evolved parameters from solitary populations to initialize
simulations where foragers form groups. In the GR NC condition no extra parameters evolve.
In the GR SE and GR OL condition the relevant extra parameters evolve and are initialized at
zero. We also included a GR OL SE condition, but results are qualitatively similar to the GR
OL condition, so do not present the results in the main paper.

We ran evolutionary simulations for 1000 years (roughly 100 generations) and repeated 10
simulations of a given setting (with different random seeds). As a default, we did this in en-
vironments with a population of 100 foragers and a resource density of 0.75 items per meter
squared, which means 24500 patches with 1200 resource items each. This resource density was
chosen such that global depletion of resources was limited in order to make sure that foragers
would have to specialize in order to optimize their behavioral repertoires. These environmen-
tal conditions were also used for other simulations. In evolutionary simulations we varied H
(0.1,1,5,10) and EC (0, 5, 20, 250). For non-evolutionary simulations (see below) we focused on
H = 1 and EC = 5.

(ii) Parameter-sweep simulations. Here we used the evolved parameters for a given
learning mechanisms, but varied exploration rate in order to (a) determine whether there was
evidence for information parasitism, or (b) characterize constraints on learning. These simu-
lations were run for 140 years (40 year burn-in period) which was found to be sufficient for
the measure of interest, where the mutation rate was set to zero. In simulations with groups,
exploration rate was both varied across groups where we had a population of 9 groups of 11
foragers, or within groups, with a population of 11 groups of 9 foragers. We therefore varied
exploration rate over 9 intervals between a minimum and maximum value. In simulations with
solitary foragers, εi was simply varied across the population (121 intervals).

(iii) Switch simulations. Here we used evolved parameters for a given learning mechanism,
and ran simulations for a 40 years burn-in period, after which we changed learning mechanism.
In particular we started with groups without copying (GR NC) to generate a relevant pattern
of experience in groups, and then introduced stimulus enhancement in order to determine the
immediate and more long term effects of SE.
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4 Evolution of learning rate and foraging parameters

We observe that learning rate λi evolves to a range of about 0.5-1.0 (Fig. S1A and S2A). These
are fairly high learning rates, and emphasizes that foragers learn such that air quickly match
eir, leading to quick selectivity. Foragers also react a lot to noise, both overestimating and
underestimating resources quickly.

We observe that move distance δi evolves to around 15 in SOL, and about 10 in groups (GR)
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Figure S1: Evolution of parameters in environments with varying H. Top left: learning
rates λi; Top right: move forward distance δi; Bottom left: update rate φi of aie; Bottom
right: selectivity scalar σi. SOL = solitary; GR groups; LE = only stimulus enhancement;
SE = stimulus enhancement; OL = observational learning. Default environment (orange): 250
resources, mixed patches, 0.75 resource items per meter squared, 100 foragers, max group size
= 20, 5 resource types change per year, H = 1. Data: pooled data of last 50 years of the whole
population (energy of individuals or diets recorded each half year). Whiskers show standard
deviation.
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(Fig. S1B and S2B). Moving forager a long distance optimizes the time allocation between
movement and search in patchy environments (van der Post and Semmann, 2011a). Moving
forward a long distance can exacerbate coordination problems in groups, hence the decrease of
δi in groups. This decrease can limit foraging selectivity, since moving forward a long distance
before searching reduces the number of potential sampling events (van der Post and Hogeweg,
2008).

We observe that the update rate φi of aie evolves to a range of about 0.05-0.4 (Fig. S1C and
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Figure S2: Evolution of parameters in environments with varying EC. Top left: learning
rates λi; Top right: move forward distance δi; Bottom left: update rate φi of aie; Bottom
right: selectivity scalar σi. SOL = solitary; GR groups; LE = only stimulus enhancement;
SE = stimulus enhancement; OL = observational learning. Default environment (orange): 250
resources, mixed patches, 0.75 resource items per meter squared, 100 foragers, max group size
= 20, 5 resource types change per year, H = 1. Data: pooled data of last 50 years of the whole
population (energy of individuals or diets recorded each half year). Whiskers show standard
deviation.
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S2C). This parameter determines how quickly foragers alter their selectivity when either having
eaten too little or too much. That this parameter evolves to relatively low values (below 0.5),
indicates that adjustment of selectivity occurs relatively subtly.

We observe that selectivity scalar ωi evolves to a range of about 5-15 (Fig. S1D and S2D).
These values ensure selectivity, but also some sampling and exploration of less preferred resources
(this is reduced when values reach 20). Note that these values are in the range of those shown to
generate diet traditions and cumulative cultural diet optimization (van der Post and Hogeweg,
2008).
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5 Effect of grouping on foraging efficiency

We tested the effect of grouping on energy intake by comparing solitary foragers (SOL) to
foragers living in groups with only local enhancement (GLE). To rule out the effect of grouping
on learning, we considered foragers with complete knowledge so that only the possible effects
of (i) local foraging competition and (ii) inefficient travel between patches, remain as effects.
In Fig. S3 we show the results, where we plot the box plots of the means of 10 simulations of
SOL and GLE simulations. The means are calculated over all individuals between year 40 and
140. We find that SOL have greater energy intake than GLE (Wilcox test, W = 81, p-value =
0.01854). This confirms that grouping reduces foraging efficiency independent of the effects of
learning. This does not rule out that changes in foraging due to grouping feedback on learning
reducing efficiency even further.
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Figure S3: Average energy levels in ‘complete knowledge’ populations of solitary (SOL) and
grouping foraging with only local enhancement (GLE). Foragers were initialized with complete
knowledge, which means that foragers have perfect expectations about resource rewards (air =
eir) and are maximally experienced (tir =maximal age). We used groups of size 10. The means
are calculated over all individuals between year 40 and 140.
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6 Social learning parameters

SE evolves via γi, and in general evolves to values between 0.2 and 0.6 (Fig. S4A and D). SE
effectively overrules personal preferences, i.e. overrules selectivity, thus relying on the selectivity
of another forager. Very high values of SE can therefore cause pathological social contagion,
where any action by any group member compulsively spreads throughout the group. Since SE
helps groups foragers to specialize on resources eaten by their neighbors, and reduces knowledge
diversity, increased SE makes sense in a more difficult (high H) environments, although this
effect only seems to occur for SE on its own (blue line, top left), but not when in combination
with OL (red line).

OL evolves via ωi and τi, which both affect the total time foragers invest in observing their
neighbors (middle and right). This time investment tends to increase as environments becomes
more difficult (Fig. S4B and C) and change more rapidly (Fig. S4E and F). In those cases the
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Figure S4: Evolution of SL parameters in different environments: average values of γi
(left), ωi (middle) and τi (right). Top: Environments of varying difficulty. Bottom: Environ-
ments with varying rates of change. SOL = solitary; GR groups; LE = only local enhancement;
SE = stimulus enhancement; OL = observational learning. Default environment (orange): 250
resources, mixed patches, 0.75 resource items per meter squared, 100 foragers, max group size
= 20, 5 resource types change per year, H1. Data: pooled data of last 50 years of the whole
population (energy of individuals or diets recorded each half year). Whiskers show standard
deviation.
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benefits of more rapid specialization are high, less easily leading to redundant OL and therewith
outweighing the time costs involved in skill development.
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7 Random and pure patchy environments

To compare different resource distributions, we compare our default mixed patches setting with
two extremes, namely random and pure patches. For random environments, each item is place
at any randomly selected location in continuous space. For pure patches, each patch type has a
radius of 10 meters and only consists of a single resource type. Patches of each patch type are
placed at a random location in continuous space, and can overlap. In all cases we make sure
that resource density is 0.75 items per meter squared, so that the amount of food is the same
in the different resource distributions.

In random and mixed patchy environments, but not for pure patches, we find that GLE

exhibits lower energy levels than SOL (Fig. S5A, compare dashed gray to solid black line).
In environments with local variation in resources, random environments and mixed patches,
each resource type is more rare, and this intensifies local competition for high quality resources.
However, in environments with pure patches, where this is no local variation in resources, which
both reduces local competition as well as coordination issues. As in mixed patches, we find that
the evolution of SE leads to increased energy levels in random and pure patches environments
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Figure S5: Evolved energy levels (A) and exploration rates (B) environments with
different resource distributions. A: average energy levels foragers in last 50 years of simula-
tion in environments with random (blue), mixed patches (orange), or pure patches (red). Default
environment (orange): 250 resources, mixed patches, 0.75 resource items per meter squared, 100
foragers, max group size = 20, 5 resource types change per year, H1. Data: pooled data of
last 50 years of the whole population (energy of individuals or diets recorded each half year).
Whiskers show standard deviation. B: box plots showing evolved exploration rates in ancestors
between year 850 and 950 in environments with random (blue), mixed patches (orange), or
pure patches (red). SOL = solitary; Groups; GLE = no individual-level social learning; GSE =
stimulus enhancement; GOL = social skill learning. Box plots show medians, upper and lower
quartiles, and whiskers show the complete range.
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(Fig. S5A, compare blue to black and gray lines). In addition, OL leads to an even greater
increase than SE (Fig. S5A, compare orange to other lines).

For exploration rates, we find that same overall pattern that for each environmental condition
exploration rates only decline when SE evolves (Fig. S5B). We also find that the exploration
rate declines in random environment (Fig. S5B, compare blue to orange and red). This probably
relates to exploration opportunities, where resource types are more locally abundant at any one
place and time due to high diversity in random environments. Hence, for the same exploration
parameter, the effective exploration rate (i.e. eating something that is unfamiliar) will be greater
in the random environment than in patchy environments. Thus for the same optimal effective
exploration rate, the optimized exploration parameter would be somewhat lower in random
environments.
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8 Alternative environmental change

In Fig. S6 we show the effect of a different kind of environmental change (EC2), namely where
resource do not disappear but only change in quality Qr, where a new quality is drawn randomly
from a normal distribution about 0.1 with standard deviation 0.1 (i.e. the same distribution from
which resources are initialized). We compare our main environmental change (EC1, resources
disappear and are replaced by novel ones) at rates EC5 (blue line) and EC250 (orange line), to
the alternative type EC2 at rate EC250 (red lines). While EC1 250 leads to an overall decline
in energy levels relative to EC1 5, E2 250 has a much more reduced impact and even leads to
an increase in energy levels when OL is added to the model. Moreover, while the impact of SE is
relatively minor for E2 250, it still helps to optimize behavior somewhat relative to LE despite
the rapid environmental change.

The reason that OL can enhance energy levels in EC2 relative to much slower rates of change
for EC1 is because with EC2, individuals do not loose their processing skills. Hence experience
can still accumulate in groups, and foragers can simply track changes in resource quality. When
a resource changes in quality, all foragers adjust their assessment of it, and switch to other
resources. Discovering resources that recently increased in reward, may be a bit more difficult,
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Figure S6: The effect of alternative environmental change. We compare changes where
resources disappear EC1 (blue and orange lines), and where only quality changes EC2 (red
lines). Average energy in the population; Right: Average values of εi in ancestor traces. SOL
= solitary; Groups: GLE = only local enhancement; GSE = stimulus enhancement; GOL =
social skill learning. Default environment (orange): 250 resources, mixed patches, 0.75 resource
items per meter squared, 100 foragers, max group size = 20, 5 resource types change per year,
H1. Data: pooled data of last 50 years of the whole population (energy of individuals or diets
recorded each half year). Whiskers show standard deviation.
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but would happen as long as there is a small chance that foragers explore less familiar resources.
The latter is the case, given that exploration rates remain high (Fig. 3A). Thus, overall skill
can continue to accumulate until foragers would obtain maximal rewards from resources, and
all they would have to do is shift according to changes in quality.
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