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Web Appendix A: Theoretical Proofs and Arguments

Define

n

Sn(b,to) =2y

=1

I(L; < to)I(Y; > to)
G(YF — L)

K3 2

L A% (o) {1 log(Y;" — t0) < AT (to)b] — 7},

n

(L <tg)I(Y, > tg)n!
S50, ta) =2 3 AL IOL OO ) (1o — 1) < AL (0008 - 7).
i=1 i i

(b, 7, to) = n"2E{SC(b, T, t)}
= c(to) B[I(Ty > to) A(to){I[log(Ts — to) < A (t)b] — 7}]
= c(to) B{A(to)[P(T5 > to, log(Ty — to) < A’ (to)b|A” (to)) — TP(Ty > to| A(to))]}

— c(to) E{A(to)[P(Ts < to + exp(A’ (to)b)| A(to)) — P(T < to| A(to)) — TP(Ts > to| A(to))]}-

For brevity, we use supy, sup, and sup,, to denote supremum taken over b € R*, 7 € (1, 7]

and tg € [tr,ty], respectively.

1.1 Proof for E{8%(B,(7,t0),7,t0)} = 0

Given the independence between D and (73,75, L), it is easy to show that the distributions
of D and D* are equivalent, and D* is also independent of (77,75, L*). Note that I(Y* >
to)n* A (to) = I(T} > to, Ty < C*)A*(t,). Thus, we have

I(L" < to)I(Y™ > 1o)
S

" A* (1) {I[log(Y" — to) < AT (to)b] — T}}

E { Hhs t“Z{ﬁ - EZ;TQ* =) A ()1 og(T; — 1) < A7 (t0)b] — T}}

{I(L* < to)I(Ty > to) A™(to){I[log(T5 — to) < A*T(t0>b] —Thx %}

c(to)E{I(T2 > 1) A(to){I[log(Ts — to) < A’ (to)b] — T}}
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and
E{[(T2 > to) A(to) I [log(T — to) < AT(t0>b]}
- E{A(to)Pm > to, log(Th — to) < AT(to)byAT(to)]}
- £{ A0 Plog(Ty ~ t) < A (W)BIT: > t0, Al PIT: > tl A1)
= 7E{I(Ty > to)A(t)},

where G(t) = P(D >t), a = P(Y > L) and c(ty) = P(L < to)/cv.

Therefore, we have E{S%(8,(r,ty), T, t0)} = 0.

1.2 Proof of Theorem 3.1
By condition C1, we have sup,_, |G(t)—G(t)| = o(n~'/2*7), a.s., for every r > 0. This implies

that

sup [0S, (b, 7, to) — 2SS (b, 7, to)]| = o(nV>7), as.

b77-7t0

Define F = {”L? SRR A (to){ I [log (Y; —to) < 7" (t0)b]—7},b € R2 7 € [r1, 7l to €
[tL,tU]}. The function class F is Donsker and thus Glivenko-Cantelli because the class
indicator functions is Donsker and both A} (¢y) and G(Y;*—L;) is uniformly bounded (Van der
Vaart and Wellner, 1996). Then sup, ., [|[n /2S5 (b, 7, t) — p(b, 7,t0)|| = o(1),a.s. by the
Glivenko-Cantelli Theorem and thus supy, ., [n72S,(b,7,t0) — p(b, 7, t0)|| = o(1),a.s..
This, coupled with the fact that {3, (7, to), 7, to} = 0 and n=/28,,(B(r, to), T, to) = o(1), a.s.,

implies that

sup | {B(7,t0), T, to} — m{Bo(T,t0), T, to} | = 0(1), a.s.

T,to

Following the same line of Peng and Fine (2009), we can show that Condition C3 and the

monotonicity of p(b, 7,1y) in b imply

inf b77-’t - T7t 77—7t Zc .
bélfB(po),T,toHM{ o} = #{Bo(7, o) o}l 000
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Consequently, {B(r,t0) : 7 € [rp,70],t0 € [tr.tu]} € B(po) for large enough n with

probability 1. Applying Taylor expansion to u{B(T, to), 7, to} around B,(T, ) gives

sup||B(7, to) — Bo (7, to)

T,to

= Slip ||H{B<Tv to)a tO}il[ﬂ'{B(T? tO)? T, tO} - ”{/80(7—7 tO)v T, tO}]”

< 051 Slip ||“{B(7-7 tO)a T, tO} - N‘[ﬂo(ﬂ t0)7 T, tO}H
T,to

where B(7,t) lies between B(7,ty) and Bo(T,ty) and is therefore within B(p,) for large
enough n. The uniform consistency of B(, o) to Bo(T,to) for 7 € 11,70, to € [t1,ty] then

follows.

1.3 Proof of Theorem 3.2

From Pepe (1991), sup,c(g,) [|n'/? [G(t) =Gt —n"Y23 G(b) f(f y(s)"tdME (s)|| — 0. Us-
ing similar empirical process arguments for 7, we can show that n=' " | A (to)Y;(t)I(L; <
to) (Y > to)n{I[log(Yy — to) < AT (to)b] — 7}G(Y — L¥)~" converges to w(b, T, 1o, 1)

uniformly in b, 7, ty and ¢.

Let ~ denote asymptotic equivalence uniformly in 7 € [r7,7y] and ty € [tr,ty]. Simple
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algebraic manipulations show that

Sn{Bo(7.t0), 7. o}

= SH{By(7.t0). 7, to} + [Su{Bo(7, to), T, 2fo} - 55{50(77 to), 7, to}]

_ _ —LY) -G — L)

_ 1/2 1/2 * i i i * * *

=n E (T t) —n E Al ( I(L; < to)I(Y;" > to)n;
$ua(r o) Y* LHG(Yr — L) ( ol o)1

x {Iflog(Y;" — to) < A7 (to) Bo(7, to)] — 7}

n n n—1/2 f ldMG( )
I~ —1/2 . tn) — -1 A*(t j 1Jo l ]L*gt HV* > ¢ .
n ;51,Z<7’7 0) — 1N ,Zl i (to) G = L;“) (L; 0)I(Y, o)

x {Iflog(Y;" — to) < A7 (o) Bo(7,to)] — 7}

—=n ' Z &1,4(7, %)

ey - A*tOY I(L: < to)I(Y] > to)n {Ilog(Y; —to) < AXT (to)Bo(T,t0)] — T
/Z/{ (t0)Yj(s)L( M(YF > to)n; {1 {log( ) (t0)Bo (7, t0)] }}

nG(Y; — L%)
dM{ (s)
y(s)

n n 00 MG
~ n_1/2zgl,i(7—7 tO) - n_l/QZ/ w(ﬂ0(77 t0)>7_7 t078)d z ;S)
i=1 i=1 /0 Yis

n_1/2 Z{ELZ‘ (7-7 tO) - 62,1‘(7_7 to)}'
=1

We claim that F* = {glvi(T,to),T < [TL,TU],tQ € [tL,tU]} and F** = {52,i<77t0)77 S

[0, Tul, to € [tr,ty]} are Donsker classess by using similar arguments of Peng and Fine
(2009). As a result of the Donsker theorem, S,{B,(,to), T, to} converges weakly to a mean
zero Gaussian process with covariance matrix (77, t), 7, to) = E{; (7', ()¢, (7,t0)" }, where
Ci(T,to) = &13(T t0) — &y4(T,t0), i=1,...,n

Next, we establish the asymptotic linearity of SS (b, 7,t,) in the vicinity of b = B, (T, to);

that is, for any positive sequence of {d,}>>, such that d,, — 0,

sup ||{Sg(b7 T, tO) - S§<b/’ T, t(])} - n1/2{l“l’(b’ T, to) - /‘l’(blv T, tO)}H = O(]')? a.s.
b,b/EB(po),Hb—b/Hédn,to
(1)

Its proof greatly resembles the lines of Alexander (1984) and Lai and Ying (1988). The key
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is to show

Var(I(L; < to)I(Y; > to)n; G(Y;" — L) T A (to){I[log(Y;" — to) < A" (to)b]
— Iflog(Y;" — to) < A" (to)b]}) < Gollb — ¥/
This follows from the uniform boundedness of f(t|A(ty)) and boundedness of B(py) and

G(t).

It follows from (1) that

SH(B(T’ tO)’ T, tO) - Sn(:@O(T’ tO)’ T, tO)

=02y Iy < to)I(Y] > to)fG(Y; — LY) T Af (o) {1 [log(Y;" — t) < A" (t0)B(, 10)]

i=1
— I[log(Y;" — to) < A7 (to) By (T, t0)]}
02y (LY < b)Y > to)n; A (to) {Ilog(Y;" — to) < A} (t0)B(r to)]
i=1

— Ilog(Y;" — to) < AfT (to)Bo (7. to)|HG (Y, — L) = G(Y; — L]) ™'}

3 (2

~ nl/Q[u’{B(Tv tD)? T, tO} - “{/6()(7_7 to)’ T tO}]

Taylor expansion of p(b) around b = 3,(7, to), along with the fact that 3,(7, o) uniformly

converges to B,(T,t), gives that
Su(B(7,10),7,t0) = Su(Bo(7:to), 7 to) &~ H{Bo(7, to), to}n'*{B(7, o) — Bo(T to)}.
This implies
n!?{B(7,t0) = By(7,t0)} & —H {Bo (7, 1), to} " Su(Bo(T, o), T to)

and then n'/2{B(r,ty) — By(7,to)} converges weakly to a mean zero Gaussian process with

covariance matrix

H{Bo(7',15), 1o} E{C(', t5)¢ (7, to)" FH{Bo(7, to) o} "
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1.4 The justification for the proposed Covariance Estimate

Denote b, ;(1,t0) = S, {en;(T,t0), T, to},j = 1,2. It is implied from the proof of Theorem
3.1 that {b, ;(7.t0), 7 € [11,Tv],t0 € [tr,tv]} is within B(py) with probability 1 for large
enough n, and thus sup, , bn;(7,t0) — Bo(7,t0)|| — 0, as., j = 1,2. Using arguments

similar to proof of weak convergence, we can show that

Si(bn (7, 0), T, to) = Sn(Bo(T, t0), 7, t0) = H{Bo(7, o), to}n'/*{by ;(,t0) — Bo(T, 1)}
The definitions of D,,(7,t) and E,(7,to) imply H '{B,(7,t),to} ~ /nD,(7,t0) E, (1, t0).
It follows immediately that
nD, (7 ) E; (7 ) S (), 7, 1) E (1, 1) DI (7, t)

is a consistent estimate for ® (7, 1y, 7, to) = H{Bo (7', 1)), to} 1 2(7', ty, .t H{By(T, t0), to} 7,

which is the asymptotic covariance matrix of \/n{3(r, to) — By(7.to)}.

1.5 The justification for the proposed estimating equation in Section 4

Recall that K*(ty) = (1, I(X* > ty), Z*T, Z*TI(X* > 19))7 and the estimating equation is
Sn(ra T, tO) =0,

where
O I(LF < tg) (Y
Su(r i ty) = nt/2 3 L S OIQT > o)
Pt G(Y; —Lj)

)

R () Tlos(Y; — 1) < K (to)r] — 7).

Similar to the one-sample case, we further define K*(t) = (1, I(T7 > to), Z*T, Z*TI(Tl* >
to))” and K (ty) = (L I(Ty > t0), Z ', Z' I(T} > t,))". Denote

I(L* <) I(Y™ > o)
{ GY* — L7

T K (1) {I[log(Y* — to) < KT (to)r] — T}}

by (I). The key justification for the proposed estimating equation in Section 4 is to show
(I)=0.

First, it is easy to see that
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(1) = p{ AES 02 0TSO e (os(r; - 1) < K (t)r] = 7}

Note that {L <Y} C{L <to,to < Ty < to+u,Ty < C, Ty > to}. This implies

_ 1 _
f(L*,C*,Tf,T;,Z*)(laCa ty, b2, 2) = af(L,C,Tl,Tz,Z*)(l7C? t1, b2, 2)

in the region of {(l, ¢, t1,t) : I <to,tg < ta <tog+u,ty < c ty > to}. Thus,

() — éE{ I(L < to)Gfgz fzﬂ)’ B <O gt I Nog(Ty — to) < K (to)r] — T}}
B éE{I(L < to)I(T > tD)K(tggil(ig(LT; —t) S K G =T pyon - p - oy L Z]}
= éE{f@ < to)I(Ty > to) K (to){I[log(Tz — to) < K (to)r] — 7} % —iii - 8}
1

- —E{[(L < to) (T > to) K (to){I[log(Ts — to) < KT(to)r] - T}},

(0%

where the third equality above uses the assumption of D1 (T, T, L, Z). Under the assump-

tion of LLTy|(T}, Z), we have
E{[(L < to)[(Ty > to) K (to)I[log(Ts — to) < fi'T(to)T]}
- E{K(tO)P[L < to, Ty > to, log(Ty — to) < KT(to)r!KT(to)]}
= E{f((to)P[L < tol K (to)] x P[Ty > to,log(Th — to) < KT(tO)r|KT(tO)]}
{K(tO)P[L < to| K (t)] x Pllog(Ts — to) < K (to)7|Ta > to, K (t)] x P[T3 > to|fc(t0)]}

_kT
K (to)P|L < to|K " (to)] x P|Ts > t0|f<(t0)]}

— TE{I(L < to)I(Ty > to)ff(to)}-

It then follows that (1) = 0.
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Web Appendix B: Additional Results from Numerical Studies

2.1 A numerical exzample comparing the proposed method with the copula modeling approach

We conduct simulation studies to compare the proposed method with the classic copula

modeling approach. Specifically, we generate T7 and T3 as follows:

0. Set n = 0.

1. Generate a Bernoulli(0.5) random variate W

2. If W = 0, then keep generating log(7}) from N(0,0.4) distribution and T3 as log(T3) =
0.240.41log(T) + € until 75 > 1.4, where €; is a N (0, 0.3) random error. Take the (77, T5)
with Th > 1.4.
If W =1, then keep generating 77 from N(0,0.3) distribution and 75 as log(7») = 0.3 —
1.41og(T71) + €5 until Ty < 1.4, where €, is a N(0,0.2) random error. Take the (77, 7T,) with
T, < 1.4.

3. Increase n by 1.

4. Go back to steps 1-3 unless n equals the specified sample size.

By this data generate scheme, we have 77 and T, are negatively associated when 75 is small
(i.e. To < 1.4) but are positively associated when Ty is large (i.e. Ty > 1.4). In addition, we
generate C' with log C following Unif(—0.2,2) distribution. Figure S1 presents the scatter
plots for (71,T3) and (77 A T, T») based on one randomly selected simulated dataset of size
1000.

We first apply Fine et al. (2001)’s method to this simulated dataset, assuming a Clayton’s
copula model for the dependence structure between 77 and T,. We obtain a copula parameter
estimate, 0.96, with 95% CI, (0.83,1.08). This result suggests the independence between T}
and T, (in the upper wedge), which clearly contradicts with the true relationship between

T and T5. We examine 499 other simulated datasets, based on 467 of which, the application
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of Fine et al. (2001)’s method leads to the same conclusion that T} and 75 are independent

(in the upper wedge).
[Figure 1 about here.]

We then apply the proposed method to the same simulated dataset shown in Figure S1.
The true LCQRR(7;ty) and the estimated LOCQRR(T;ty) (along with the corresponding
95% confidence intervals) are presented in Figure S2. We can see that the proposed method
allow us to effectively utilize the observed data of (X,Y") to identify the positive dependence
between 77 and 15 associated with large 75. With small ¢y (e.g. {9 < 1) and small 7 (e.g.
7 = 0.25), our measure LCQRR(T;ty) can also partially capture the negative dependence

associated with small T5.
[Figure 2 about here.|

As suggested by this example, existing modeling approaches that assume constant depen-
dence between T} and 75 may only reveal an overall average dependence, which can lead to
misleading conclusions when the constant dependence assumption is violated. In contrast,
the proposed new dependence measure entails a sensible approach to uncovering interesting

dynamic patterns in the dependence structure without involving strong model assumptions.

2.2 Additional results for numerical studies in Section 5

Figure S3 presents the simulation results for Scenario 2 on the estimation of LCQRR(7; ).

[Figure 3 about here.|

Table 1 reports the simulation results on the second stage inference for LCQRR(T; o) over

[Table 1 about here.]



10 Biometrics, December 2008

Figure S4 plots the estimated LCQRR(T;to) along with 95% pointwise confidence intervals

for fixed ¢y values based on the Denmark diabetes registry data.
[Figure 4 about here.|

Figure S5 plots the estimated 7(()4) (7, o) along with 95% pointwise confidence intervals for

fixed ty values based on the Denmark diabetes registry data.
[Figure 5 about here.]

2.3 Sample code

A sample code for implementing the proposed method can be found at

http://webl.sph.emory.edu/users/lpeng/Rpackage.html.
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Figure S1. A simulated data example: scatter plots for (71, 73) and (T} A T3, T5) based on
one simulated dataset of size 1000.
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Figure S2. A simulated data example: estimated LCQRR(T;t) (black line), true value
of LCQRR(T;to) (red line) and 95% Wald-type boostrapping CI (dashed line).
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Figure S3. Simulation results for Scenario 2: Empirical bias (EmpBias), empirical stan-
dard error (EmpSE) and average estimated standard error (EstSE) of the proposed estimator
of LCQRR. EmpBias for n = 200 and that for n = 400 are plotted in solid lines and dotted
lines respectively. EmpSE and EstSE for n = 200 are plotted in solid lines and bold solid
lines respectively. EmpSE and EstSE for n = 200 are plotted in dotted lines and bold dashed
lines respectively.
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t0=15 t0=21 t0=29

Infuence of DN on Time to Death
Infiuence of DM on Time to Death
Infiuence of DM on Time to Death

Figure S4. Denmark Diabetes Registry Study: Estimated LCQRR(7;ty) (bold solid lines),
corresponding 95% pointwise confidence intervals (dotted lines), 95% pointwise Wald-type
bootstrapping confidence intervals (long-dashed lines), and overall influence of DN over 7
(horizontal dashed lines)
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=15 0=21 0=29

of DI on Tine to Death across Age

Change Rate of Infuence of DN on Time to Death across Age

Change Rate of I

Figure S5. Denmark Diabetes Registry Study: Estimated 7[()4)(7, to) (bold solid lines), the
corresponding 95% pointwise confidence intervals (dotted lines) and 95% pointwise Wald-
type bootstrapping confidence intervals (long-dashed lines), and the overall influence of DN
across time (horizontal dashed lines).
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Table 1

Empirical biases, empirical standard errors and average standard errors estimates of (i, and empirical rejection
rates for Hos and Hoa.

Q Hos Hos
0 to n EmpBias EmpSE EstSE  EmpRR EmpRR
Scenario 1
7 €[0.1,0.87]

1 055 200 0.006 0.193 0.195 0.060 0.041
400 0.004 0.128 0.134 0.043 0.047

0.84 200 0.006 0.197 0.201 0.052 0.036
400 0.001 0.144 0.141 0.054 0.046

1.10 200 0.005 0.262 0.247 0.061 0.050
400 0.002 0.175 0.174 0.052 0.054

2 0.55 200 0.018 0.205 0.211 0.575 0.051
400 0.007 0.139 0.144 0.893 0.069

0.84 200 0.018 0.221 0.219 0.791 0.092
400 0.006 0.153 0.152 0.982 0.139

1.10 200 -0.005 0.269 0.274 0.697 0.053
400 -0.004 0.191 0.193 0.955 0.091

3 0.55 200 0.017 0.220 0.216 0.918 0.072
400 0.001 0.146 0.149 0.999 0.154

0.84 200 -0.005 0.223 0.225 0.984 0.126
400 0.006 0.156 0.157 1.000 0.292

1.10 200 0.000 0.302 0.310 0.908 0.051
400 -0.001 0.214 0.216 0.997 0.114

Scenario 2
7 €[0.1,0.9]

1 0.85 200 0.003 0.244 0.236 0.066 0.045
400 0.003 0.167 0.164 0.052 0.047

1.00 200 0.004 0.242 0.232 0.061 0.045
400 0.007 0.161 0.164 0.052 0.047

1.20 200 -0.009 0.303 0.279 0.075 0.064
400 -0.003 0.215 0.203 0.073 0.060

2 0.85 200 0.002 0.204 0.198 0.859 0.092
400 0.005 0.138 0.139 0.992 0.180
1.00 200 -0.012 0.188 0.194 0.929 0.157

400 0.003 0.136 0.137 1.000 0.314

1.20 200 -0.007 0.220 0.213 0.938 0.271
400 0.004 0.156 0.151 0.997 0.426

3 085 200 0.010 0.185 0.182 0.998 0.236
400 0.003 0.129 0.128 1.000 0.492

1.00 200 0.003 0.178 0.179 1.000 0.363
400 -0.002 0.126 0.126 1.000 0.664

1.20 200 -0.007 0.187 0.190 1.000 0.492
400 0.001 0.136 0.134 1.000 0.837




