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Web Appendix A: Theoretical Proofs and Arguments

Define

Sn(b, τ, t0) = n−1/2
n∑
i=1

I(L∗i 6 t0)I(Y ∗i > t0)η
∗
i

Ĝ(Y ∗i − L∗i )
A∗i (t0){I[log(Y ∗i − t0) 6 A∗Ti (t0)b]− τ},

SGn (b, τ, t0) = n−1/2
n∑
i=1

I(L∗i 6 t0)I(Y ∗i > t0)η
∗
i

G(Y ∗i − L∗i )
A∗i (t0){I[log(Y ∗i − t0) 6 A∗Ti (t0)b]− τ},

µ(b, τ, t0) = n−1/2E{SGn (b, τ, t0)}

= c(t0)E[I(T2 > t0)Ã(t0){I[log(T2 − t0) 6 Ã
T

(t0)b]− τ}]

= c(t0)E{Ã(t0)[P (T2 > t0, log(T2 − t0) 6 Ã
T

(t0)b|Ã
T

(t0))− τP (T2 > t0|Ã(t0))]}

= c(t0)E{Ã(t0)[P (T2 6 t0 + exp(Ã
T

(t0)b)|Ã(t0))− P (T2 6 t0|Ã(t0))− τP (T2 > t0|Ã(t0))]}.

For brevity, we use supb, supτ and supt0 to denote supremum taken over b ∈ R2, τ ∈ [τL, τU ]

and t0 ∈ [tL, tU ], respectively.

1.1 Proof for E{SGn (β0(τ, t0), τ, t0)} = 0

Given the independence between D and (T1, T2, L), it is easy to show that the distributions

of D and D∗ are equivalent, and D∗ is also independent of (T ∗1 , T
∗
2 , L

∗). Note that I(Y ∗ >

t0)η
∗A∗(t0) = I(T ∗2 > t0, T

∗
2 < C∗)Ã∗(t0). Thus, we have

E

{
I(L∗ 6 t0)I(Y ∗ > t0)η

∗

G(Y ∗ − L∗)
A∗(t0){I[log(Y ∗ − t0) 6 A∗T (t0)b]− τ}

}
= E

{
I(L∗ 6 t0)I(T ∗2 > t0, T

∗
2 < C∗)

G(T ∗2 − L∗)
Ã∗(t0){I[log(T ∗2 − t0) 6 Ã∗

T
(t0)b]− τ}

}
= E

{
I(L∗ 6 t0)I(T ∗2 > t0)Ã

∗(t0){I[log(T ∗2 − t0) 6 Ã∗
T

(t0)b]− τ}
G(T ∗2 − L∗)

E[I(T ∗2 − L∗ < D∗)|T ∗1 , T ∗2 , L∗]
}

= E

{
I(L∗ 6 t0)I(T ∗2 > t0)Ã

∗(t0){I[log(T ∗2 − t0) 6 Ã∗
T

(t0)b]− τ} ×
G(T ∗2 − L∗)
G(T ∗2 − L∗)

}
= c(t0)E

{
I(T2 > t0)Ã(t0){I[log(T2 − t0) 6 Ã

T
(t0)b]− τ}

}
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and

E

{
I(T2 > t0)Ã(t0)I[log(T2 − t0) 6 Ã

T
(t0)b]

}
= E

{
Ã(t0)P [T2 > t0, log(T2 − t0) 6 Ã

T
(t0)b|Ã

T
(t0)]

}
= E

{
Ã(t0)P [log(T2 − t0) 6 Ã

T
(t0)b|T2 > t0, Ã(t0)]P [T2 > t0|Ã(t0)]

}
= τE{I(T2 > t0)Ã(t0)},

where G(t) = P (D > t), α = P (Y > L) and c(t0) = P (L 6 t0)/α.

Therefore, we have E{SGn (β0(τ, t0), τ, t0)} = 0.

1.2 Proof of Theorem 3.1

By condition C1, we have supt<ν |Ĝ(t)−G(t)| = o(n−1/2+r), a.s., for every r > 0. This implies

that

sup
b,τ,t0

‖n−1/2Sn(b, τ, t0)− n−1/2SGn (b, τ, t0)‖ = o(n−1/2+r), a.s.

Define F =

{
I(L∗i6t0)I(Y

∗
i >t0)η

∗
i

G(Y ∗i −L∗i )
A∗i (t0){I[log(Y ∗i −t0) 6 A∗Ti (t0)b]−τ}, b ∈ R2, τ ∈ [τL, τU ], t0 ∈

[tL, tU ]

}
. The function class F is Donsker and thus Glivenko-Cantelli because the class

indicator functions is Donsker and bothA∗i (t0) andG(Y ∗i −L∗i ) is uniformly bounded (Van der

Vaart and Wellner, 1996). Then supb,τ,t0 ‖n
−1/2SGn (b, τ, t0) − µ(b, τ, t0)‖ = o(1), a.s. by the

Glivenko-Cantelli Theorem and thus supb,τ,t0 ‖n
−1/2Sn(b, τ, t0) − µ(b, τ, t0)‖ = o(1), a.s..

This, coupled with the fact that µ{β0(τ, t0), τ, t0} = 0 and n−1/2Sn(β̂(τ, t0), τ, t0) = o(1), a.s.,

implies that

sup
τ,t0

‖µ{β̂(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}‖ = o(1), a.s.

Following the same line of Peng and Fine (2009), we can show that Condition C3 and the

monotonicity of µ(b, τ, t0) in b imply

inf
b/∈B(ρ0),τ,t0

‖µ{b, τ, t0} − µ{β0(τ, t0), τ, t0}‖ > c0ρ0.
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Consequently, {β̂(τ, t0) : τ ∈ [τL, τU ], t0 ∈ [tL, tU ]} ⊆ B(ρ0) for large enough n with

probability 1. Applying Taylor expansion to µ{β̂(τ, t0), τ, t0} around β0(τ, t0) gives

sup
τ,t0

‖β̂(τ, t0)− β0(τ, t0)‖

= sup
τ,t0

‖H{β̆(τ, t0), t0}−1[µ{β̂(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}]‖

6 c−10 sup
τ,t0

‖µ{β̂(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}‖

where β̆(τ, t0) lies between β̂(τ, t0) and β0(τ, t0) and is therefore within B(ρ0) for large

enough n. The uniform consistency of β̂(τ, t0) to β0(τ, t0) for τ ∈ [τL, τU ], t0 ∈ [tL, tU ] then

follows.

1.3 Proof of Theorem 3.2

From Pepe (1991), supt∈[0,ν) ‖n1/2[Ĝ(t)−G(t)]−n−1/2
∑n

i=1G(t)
∫ t
0
y(s)−1dMG

i (s)‖ → 0. Us-

ing similar empirical process arguments for F , we can show that n−1
∑n

i=1A
∗
i (t0)Yi(t)I(L∗i 6

t0)I(Y ∗i > t0)η
∗
i {I[log(Y ∗i − t0) 6 A∗Ti (t0)b] − τ}G(Y ∗i − L∗i )

−1 converges to w(b, τ, t0, t)

uniformly in b, τ, t0 and t.

Let ≈ denote asymptotic equivalence uniformly in τ ∈ [τL, τU ] and t0 ∈ [tL, tU ]. Simple
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algebraic manipulations show that

Sn{β0(τ, t0), τ, t0}

= SGn {β0(τ, t0), τ, t0}+ [Sn{β0(τ, t0), τ, t0} − SGn {β0(τ, t0), τ, t0}]

= n−1/2
n∑
i=1

ξ1,i(τ, t0)− n−1/2
n∑
i=1

A∗i (t0)
Ĝ(Y ∗i − L∗i )−G(Y ∗i − L∗i )
Ĝ(Y ∗i − L∗i )G(Y ∗i − L∗i )

I(L∗i 6 t0)I(Y ∗i > t0)η
∗
i

× {I[log(Y ∗i − t0) 6 A∗Ti (t0)β0(τ, t0)]− τ}

≈ n−1/2
n∑
i=1

ξ1,i(τ, t0)− n−1
n∑
i=1

A∗i (t0)
n−1/2

∑n
j=1

∫∞
0
Yi(s)y(s)−1dMG

j (s)

G(Y ∗i − L∗i )
I(L∗i 6 t0)I(Y ∗i > t0)η

∗
i

× {I[log(Y ∗i − t0) 6 A∗Ti (t0)β0(τ, t0)]− τ}

= n−1/2
n∑
i=1

ξ1,i(τ, t0)

− n−1/2
n∑
i=1

∫ ∞
0

{ n∑
j=1

A∗j(t0)Yj(s)I(L∗j 6 t0)I(Y ∗j > t0)η
∗
j{I[log(Y ∗j − t0) 6 A∗Tj (t0)β0(τ, t0)]− τ}

nG(Y ∗j − L∗j)

}
× dMG

i (s)

y(s)

≈ n−1/2
n∑
i=1

ξ1,i(τ, t0)− n−1/2
n∑
i=1

∫ ∞
0

w(β0(τ, t0), τ, t0, s)
dMG

i (s)

y(s)

= n−1/2
n∑
i=1

{ξ1,i(τ, t0)− ξ2,i(τ, t0)}.

We claim that F∗ = {ξ1,i(τ, t0), τ ∈ [τL, τU ], t0 ∈ [tL, tU ]} and F∗∗ = {ξ2,i(τ, t0), τ ∈

[τL, τU ], t0 ∈ [tL, tU ]} are Donsker classess by using similar arguments of Peng and Fine

(2009). As a result of the Donsker theorem, Sn{β0(τ, t0), τ, t0} converges weakly to a mean

zero Gaussian process with covariance matrix Σ(τ ′, t′0, τ, t0) = E{ζ1(τ ′, t′0)ζ1(τ, t0)T}, where

ζi(τ, t0) = ξ1,i(τ, t0)− ξ2,i(τ, t0), i = 1, . . . , n.

Next, we establish the asymptotic linearity of SGn (b, τ, t0) in the vicinity of b = β0(τ, t0);

that is, for any positive sequence of {dn}∞n=1 such that dn → 0,

sup
b,b′∈B(ρ0),‖b−b′‖6dn,t0

‖{SGn (b, τ, t0)−SGn (b′, τ, t0)}−n1/2{µ(b, τ, t0)−µ(b′, τ, t0)}‖ = o(1), a.s.

(1)

Its proof greatly resembles the lines of Alexander (1984) and Lai and Ying (1988). The key
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is to show

V ar(I(L∗i 6 t0)I(Y ∗i > t0)η
∗
iG(Y ∗i − L∗i )−1A∗i (t0){I[log(Y ∗i − t0) 6 A∗Ti (t0)b]

− I[log(Y ∗i − t0) 6 A∗Ti (t0)b
′]}) 6 G0‖b− b′‖.

This follows from the uniform boundedness of f(t|Ã(t0)) and boundedness of B(ρ0) and

G(t).

It follows from (1) that

Sn(β̂(τ, t0), τ, t0)− Sn(β0(τ, t0), τ, t0)

= n−1/2
n∑
i=1

I(L∗i 6 t0)I(Y ∗i > t0)η
∗
iG(Y ∗i − L∗i )−1A∗i (t0){I[log(Y ∗i − t0) 6 A∗Ti (t0)β̂(τ, t0)]

− I[log(Y ∗i − t0) 6 A∗Ti (t0)β0(τ, t0)]}

+ n−1/2
n∑
i=1

I(L∗i 6 t0)I(Y ∗i > t0)η
∗
iA
∗
i (t0){I[log(Y ∗i − t0) 6 A∗Ti (t0)β̂(τ, t0)]

− I[log(Y ∗i − t0) 6 A∗Ti (t0)β0(τ, t0)]}{Ĝ(Y ∗i − L∗i )−1 −G(Y ∗i − L∗i )−1}

≈ n1/2[µ{β̂(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}].

Taylor expansion of µ(b) around b = β0(τ, t0), along with the fact that β̂0(τ, t0) uniformly

converges to β0(τ, t0), gives that

Sn(β̂(τ, t0), τ, t0)− Sn(β0(τ, t0), τ, t0) ≈H{β0(τ, t0), t0}n1/2{β̂(τ, t0)− β0(τ, t0)}.

This implies

n1/2{β̂(τ, t0)− β0(τ, t0)} ≈ −H{β0(τ, t0), t0}−1Sn(β0(τ, t0), τ, t0)

and then n1/2{β̂(τ, t0) − β0(τ, t0)} converges weakly to a mean zero Gaussian process with

covariance matrix

H{β0(τ
′, t′0), t

′
0}−1E{ζ(τ ′, t′0)ζ(τ, t0)

T}H{β0(τ, t0), t0}−T .
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1.4 The justification for the proposed Covariance Estimate

Denote bn,j(τ, t0) = S−1n {en,j(τ, t0), τ, t0}, j = 1, 2. It is implied from the proof of Theorem

3.1 that {bn,j(τ, t0), τ ∈ [τL, τU ], t0 ∈ [tL, tU ]} is within B(ρ0) with probability 1 for large

enough n, and thus supτ,t0 ‖bn,j(τ, t0) − β0(τ, t0)‖ → 0, a.s., j = 1, 2. Using arguments

similar to proof of weak convergence, we can show that

Sn(bn,j(τ, t0), τ, t0)− Sn(β0(τ, t0), τ, t0) ≈H{β0(τ, t0), t0}n1/2{bn,j(τ, t0)− β0(τ, t0)}.

The definitions ofDn(τ, t0) and En(τ, t0) implyH−1{β0(τ, t0), t0} ≈
√
nDn(τ, t0)E

−1
n (τ, t0).

It follows immediately that

nDn(τ ′, t′0)E
−1
n (τ ′, t′0)Σ̂(τ ′, t′0, τ, t0)E

−1
n (τ, t0)D

T
n (τ, t0)

is a consistent estimate for Φ(τ ′, t′0, τ, t0) = H{β0(τ
′, t′0), t

′
0}−1Σ(τ ′, t′0, τ, t0)H{β0(τ, t0), t0}−T ,

which is the asymptotic covariance matrix of
√
n{β̂(τ, t0)− β0(τ, t0)}.

1.5 The justification for the proposed estimating equation in Section 4

Recall that K∗(t0) = (1, I(X∗ > t0), Z̃
∗T
, Z̃
∗T
I(X∗ > t0))

T and the estimating equation is

Sn(r, τ, t0) = 0,

where

Sn(r, τ, t0) = n−1/2
n∑
i=1

I(L∗i 6 t0)I(Y ∗i > t0)η
∗
i

Ĝ(Y ∗i − L∗i )
K∗i (t0){I[log(Y ∗i − t0) 6K∗Ti (t0)r]− τ}.

Similar to the one-sample case, we further define K̃∗(t0) = (1, I(T ∗1 > t0), Z̃
∗T
, Z̃
∗T
I(T ∗1 >

t0))
T and K̃(t0) = (1, I(T1 > t0), Z̃

T
, Z̃

T
I(T1 > t0))

T . Denote

E

{
I(L∗ 6 t0)I(Y ∗ > t0)η

∗

G(Y ∗ − L∗)
K∗(t0){I[log(Y ∗ − t0) 6K∗T (t0)r]− τ}

}
by (I). The key justification for the proposed estimating equation in Section 4 is to show

(I) = 0.

First, it is easy to see that
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(I) = E

{
I(L∗ 6 t0)I(T ∗2 > t0, T

∗
2 < C∗)

G(T ∗2 − L∗)
K̃∗(t0){I[log(T ∗2 − t0) 6 K̃∗

T
(t0)r]− τ}

}
.

Note that {L 6 Y } ⊆ {L 6 t0, t0 < T2 6 t0 + u, T2 < C, T1 > t0}. This implies

f(L∗,C∗,T ∗1 ,T ∗2 ,Z̃
∗
)(l, c, t1, t2, z̄) =

1

α
f(L,C,T1,T2,Z̃

∗
)(l, c, t1, t2, z̄)

in the region of {(l, c, t1, t2) : l 6 t0, t0 < t2 6 t0 + u, t2 < c, t1 > t0}. Thus,

(I) =
1

α
E

{
I(L 6 t0)I(T2 > t0, T2 < C)

G(T2 − L)
K̃(t0){I[log(T2 − t0) 6 K̃

T
(t0)r]− τ}

}
=

1

α
E

{
I(L 6 t0)I(T2 > t0)K̃(t0){I[log(T2 − t0) 6 K̃

T
(t0)r]− τ}

G(T2 − L)
E[I(T2 − L < D)|T1, T2, L, Z̃]

}
=

1

α
E

{
I(L 6 t0)I(T2 > t0)K̃(t0){I[log(T2 − t0) 6 K̃

T
(t0)r]− τ} × G(T2 − L)

G(T2 − L)

}
=

1

α
E

{
I(L 6 t0)I(T2 > t0)K̃(t0){I[log(T2 − t0) 6 K̃

T
(t0)r]− τ}

}
,

where the third equality above uses the assumption of D⊥(T1, T2, L, Z̃). Under the assump-

tion of L⊥T2|(T1, Z̃), we have

E

{
I(L 6 t0)I(T2 > t0)K̃(t0)I[log(T2 − t0) 6 K̃

T
(t0)r]

}
= E

{
K̃(t0)P [L 6 t0, T2 > t0, log(T2 − t0) 6 K̃

T
(t0)r|K̃

T
(t0)]

}
= E

{
K̃(t0)P [L 6 t0|K̃

T
(t0)]× P [T2 > t0, log(T2 − t0) 6 K̃

T
(t0)r|K̃

T
(t0)]

}
= E

{
K̃(t0)P [L 6 t0|K̃

T
(t0)]× P [log(T2 − t0) 6 K̃

T
(t0)r|T2 > t0, K̃(t0)]× P [T2 > t0|K̃(t0)]

}
= τE

{
K̃(t0)P [L 6 t0|K̃

T
(t0)]× P [T2 > t0|K̃(t0)]

}
= τE

{
K̃(t0)P [L 6 t0, T2 > t0|K̃(t0)]

}
= τE

{
I(L 6 t0)I(T2 > t0)K̃(t0)

}
.

It then follows that (I) = 0.
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Web Appendix B: Additional Results from Numerical Studies

2.1 A numerical example comparing the proposed method with the copula modeling approach

We conduct simulation studies to compare the proposed method with the classic copula

modeling approach. Specifically, we generate T1 and T2 as follows:

0. Set n = 0.

1. Generate a Bernoulli(0.5) random variate W

2. If W = 0, then keep generating log(T1) from N(0, 0.4) distribution and T2 as log(T2) =

0.2 + 0.4 log(T1) + ε1 until T2 > 1.4, where ε1 is a N(0, 0.3) random error. Take the (T1, T2)

with T2 > 1.4.

If W = 1, then keep generating T1 from N(0, 0.3) distribution and T2 as log(T2) = 0.3 −

1.4 log(T1) + ε2 until T2 6 1.4, where ε2 is a N(0, 0.2) random error. Take the (T1, T2) with

T2 6 1.4.

3. Increase n by 1.

4. Go back to steps 1-3 unless n equals the specified sample size.

By this data generate scheme, we have T1 and T2 are negatively associated when T2 is small

(i.e. T2 6 1.4) but are positively associated when T2 is large (i.e. T2 > 1.4). In addition, we

generate C with logC following Unif(−0.2, 2) distribution. Figure S1 presents the scatter

plots for (T1, T2) and (T1 ∧ T2, T2) based on one randomly selected simulated dataset of size

1000.

We first apply Fine et al. (2001)’s method to this simulated dataset, assuming a Clayton’s

copula model for the dependence structure between T1 and T2. We obtain a copula parameter

estimate, 0.96, with 95% CI, (0.83, 1.08). This result suggests the independence between T1

and T2 (in the upper wedge), which clearly contradicts with the true relationship between

T1 and T2. We examine 499 other simulated datasets, based on 467 of which, the application
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of Fine et al. (2001)’s method leads to the same conclusion that T1 and T2 are independent

(in the upper wedge).

[Figure 1 about here.]

We then apply the proposed method to the same simulated dataset shown in Figure S1.

The true LCQRR(τ ; t0) and the estimated LCQRR(τ ; t0) (along with the corresponding

95% confidence intervals) are presented in Figure S2. We can see that the proposed method

allow us to effectively utilize the observed data of (X, Y ) to identify the positive dependence

between T1 and T2 associated with large T2. With small t0 (e.g. t0 < 1) and small τ (e.g.

τ = 0.25), our measure LCQRR(τ ; t0) can also partially capture the negative dependence

associated with small T2.

[Figure 2 about here.]

As suggested by this example, existing modeling approaches that assume constant depen-

dence between T1 and T2 may only reveal an overall average dependence, which can lead to

misleading conclusions when the constant dependence assumption is violated. In contrast,

the proposed new dependence measure entails a sensible approach to uncovering interesting

dynamic patterns in the dependence structure without involving strong model assumptions.

2.2 Additional results for numerical studies in Section 5

Figure S3 presents the simulation results for Scenario 2 on the estimation of LCQRR(τ ; t0).

[Figure 3 about here.]

Table 1 reports the simulation results on the second stage inference for LCQRR(τ ; t0) over

τ .

[Table 1 about here.]
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Figure S4 plots the estimated LCQRR(τ ; t0) along with 95% pointwise confidence intervals

for fixed t0 values based on the Denmark diabetes registry data.

[Figure 4 about here.]

Figure S5 plots the estimated γ
(4)
0 (τ, t0) along with 95% pointwise confidence intervals for

fixed t0 values based on the Denmark diabetes registry data.

[Figure 5 about here.]

2.3 Sample code

A sample code for implementing the proposed method can be found at

http://web1.sph.emory.edu/users/lpeng/Rpackage.html.
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Figure S1. A simulated data example: scatter plots for (T1, T2) and (T1∧T2, T2) based on
one simulated dataset of size 1000.
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Figure S2. A simulated data example: estimated LCQRR(τ ; t0) (black line), true value
of LCQRR(τ ; t0) (red line) and 95% Wald-type boostrapping CI (dashed line).
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Figure S3. Simulation results for Scenario 2: Empirical bias (EmpBias), empirical stan-
dard error (EmpSE) and average estimated standard error (EstSE) of the proposed estimator
of LCQRR. EmpBias for n = 200 and that for n = 400 are plotted in solid lines and dotted
lines respectively. EmpSE and EstSE for n = 200 are plotted in solid lines and bold solid
lines respectively. EmpSE and EstSE for n = 200 are plotted in dotted lines and bold dashed
lines respectively.
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Figure S4. Denmark Diabetes Registry Study: Estimated LCQRR(τ ; t0) (bold solid lines),
corresponding 95% pointwise confidence intervals (dotted lines), 95% pointwise Wald-type
bootstrapping confidence intervals (long-dashed lines), and overall influence of DN over τ
(horizontal dashed lines)
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Figure S5. Denmark Diabetes Registry Study: Estimated γ
(4)
0 (τ, t0) (bold solid lines), the

corresponding 95% pointwise confidence intervals (dotted lines) and 95% pointwise Wald-
type bootstrapping confidence intervals (long-dashed lines), and the overall influence of DN
across time (horizontal dashed lines).
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Table 1
Empirical biases, empirical standard errors and average standard errors estimates of Ω̂t0 and empirical rejection

rates for H03 and H04.

Ω̂t0 H03 H04

θ t0 n EmpBias EmpSE EstSE EmpRR EmpRR

Scenario 1
τ ∈ [0.1, 0.87]

1 0.55 200 0.006 0.193 0.195 0.060 0.041
400 0.004 0.128 0.134 0.043 0.047

0.84 200 0.006 0.197 0.201 0.052 0.036
400 0.001 0.144 0.141 0.054 0.046

1.10 200 0.005 0.262 0.247 0.061 0.050
400 0.002 0.175 0.174 0.052 0.054

2 0.55 200 0.018 0.205 0.211 0.575 0.051
400 0.007 0.139 0.144 0.893 0.069

0.84 200 0.018 0.221 0.219 0.791 0.092
400 0.006 0.153 0.152 0.982 0.139

1.10 200 -0.005 0.269 0.274 0.697 0.053
400 -0.004 0.191 0.193 0.955 0.091

3 0.55 200 0.017 0.220 0.216 0.918 0.072
400 0.001 0.146 0.149 0.999 0.154

0.84 200 -0.005 0.223 0.225 0.984 0.126
400 0.006 0.156 0.157 1.000 0.292

1.10 200 0.000 0.302 0.310 0.908 0.051
400 -0.001 0.214 0.216 0.997 0.114

Scenario 2
τ ∈ [0.1, 0.9]

1 0.85 200 0.003 0.244 0.236 0.066 0.045
400 0.003 0.167 0.164 0.052 0.047

1.00 200 0.004 0.242 0.232 0.061 0.045
400 0.007 0.161 0.164 0.052 0.047

1.20 200 -0.009 0.303 0.279 0.075 0.064
400 -0.003 0.215 0.203 0.073 0.060

2 0.85 200 0.002 0.204 0.198 0.859 0.092
400 0.005 0.138 0.139 0.992 0.180

1.00 200 -0.012 0.188 0.194 0.929 0.157
400 0.003 0.136 0.137 1.000 0.314

1.20 200 -0.007 0.220 0.213 0.938 0.271
400 0.004 0.156 0.151 0.997 0.426

3 0.85 200 0.010 0.185 0.182 0.998 0.236
400 0.003 0.129 0.128 1.000 0.492

1.00 200 0.003 0.178 0.179 1.000 0.363
400 -0.002 0.126 0.126 1.000 0.664

1.20 200 -0.007 0.187 0.190 1.000 0.492
400 0.001 0.136 0.134 1.000 0.837


