

a

Supplementary Figure 1. The heart, skeletal muscle, and aorta in cKO mice.

(a) Cav1 protein expression in WT in *Murc*^{-/-} lungs. Cav1 protein expression in *Murc*^{-/-} lungs was not significantly different from that in WT lungs (n = 3 per group). (b) Murc protein expression was examined in the heart and skeletal muscle of WT, *Murc*^{-/-}, *Murc*^{fl/fl}, and cKO mice. (c) Murc mRNA expression was examined in the heart and skeletal muscle of WT, *Murc*^{-/-}, *Murc*^{fl/fl}, and cKO mice (n = 3 per group). **P*<0.05 compared with WT mice, [†]*P*<0.05 compared with *Murc*^{fl/fl} mice, [§]*P*<0.05 compared with *Murc*^{-/-} mice. (d) Representative immunostaining images of Murc and Cav3 in the heart of WT, *Murc*^{-/-}, *Murc*^{fl/fl}, and cKO mice. Bar, 20 µm. (e) Representative H & E staining images of the aorta in WT, *Murc*^{-/-}, *Murc*^{fl/fl}, and cKO mice. Bar, 200 µm. Data are presented as mean ± SEM. Uncropped images of blots are shown in Supplementary Fig. 6.

Supplementary Figure 2. Induction of *MURC* mRNA expression by TGF-β1 in hPASMCs.

hPASMCs were treated with TGF- β 1 for 24 hrs, IL-1 β for 24 hrs, or ET-1 for 16 hrs (n = 3 per group). ***P*<0.01 compared with hPASMCs without a stimulation. Data are presented as mean ± SEM.

Supplementary Figure 3. Attenuation of proliferation, migration, and RhoA activity in MURC-deficient SMCs.

(a) Lysates from hPASMCs transfected with control siRNA or MURC siRNA were immunoblotted with an anti-MURC antibody. (b) Left. representative images of a transwell migration assay using hPASMCs transfected with control siRNA or MURC siRNA. Bar, 200 µm. Right, guantification of migrated hPASMCs (n = 8 per group). *P<0.05 compared with control siRNA. (c) Lysates from hPASMCs transduced with a retrovirus expressing LacZ or MURC-FLAG were immunoblotted with anti-MURC and anti-FLAG antibodies. (d) The proliferation capacities of WT and Murc-/- VSMCs treated with FBS were assessed using a WST-1 cell proliferation assay system (n = 3 per ggroup). *P<0.05 compared with WT VSMCs. (e) The migration of WT and Murc^{-/-} VSMCs was assessed by a wound healing assay (n = 4 per group). Wound closure was quantified by the percent change in the wound area. Bar, 100 µm. *P<0.05 compared with WT VSMCs. (f) RhoA activity was measured in WT and $Murc^{-/-}$ VSMCs (n = 3 per group). Starved cells were stimulated with 1% FBS for 1 h. *P<0.05 compared with WT VSMCs. (g) The phosphorylation of MYPT1 and MLC2 was assessed in hPASMCs transfected with control siRNA or MURC siRNAs. Starved cells were stimulated with 1% FBS for 1 h. (h) The phosphorylation of MYPT1 and MLC2 was assessed in LacZ- and MURC-overexpressing hPASMCs. (i) Attenuation of MURC-induced proliferation in VSMCs by the ROCK inhibitor, hydroxyfasudil. The proliferation capacities of GFP- and MURC-overexpressing rat VSMCs were assessed using a WST-1 cell proliferation assay system (n = 3-4 per group). *P<0.05 compared with GFP-overexpressing VSMCs. (i) Attenuation of MURC-induced migration in VSMCs by the ROCK inhibitor, hydroxyfasudil. The migration capacities of GFP- and MURC-overexpressing rat VSMCs were assessed by a wound healing assay (n = 3-4 per group). Wound closure was guantified by the percent change in the wound area. *P<0.05 compared with GFP-overexpressing VSMCs. (k) RhoA activity was assessed in hPASMCs transduced with LacZ + LacZ, LacZ + p115RhoGEF(2A) [p115(2A)], MURC-FLAG + LacZ, and MURC-FLAG + p115(2A) (n = 7 per group). hPASMCs were infected with a puromycin-resistant retrovirus expressing LacZ and MURC-FLAG. After being selected using puromycin, hPASMCs were infected with a hygromycin-resistant retrovirus expressing LacZ and p115(2A), and subsequently selected using hygromycin. *P<0.05 compared with LacZ + LacZ, [†]P<0.05 compared with MURC + LacZ. Data are presented as mean ± SEM. Uncropped images of blots are shown in Supplementary Fig. 6.

37

37

100

20

50

p115RhoGEF-FLAG

T7-Cav1

Gα13

GDP GTPγS

N. . *

MURC-HA

IP: anti-FLAG

IB: anti-Gα13

IB: anti-Gα13

IB: anti-FLAG

IB: anti-T7

IB: anti-HA

(a) COS cells were transfected with plasmids expressing Ga13 and Ga13(Q226L). GST pulldown was performed with GST fusion Cav1 conjugated to glutathione-Sepharose beads and the COS cell lysates. Precipitated proteins were blotted with anti-G α 13 and anti-GST antibodies. (b) GST fusion G α 13 conjugated to glutathione-Sepharose beads was preloaded with GDP or GTPyS. GST pulldown was performed with COS cell lysates transfected with plasmids expressing the indicated proteins. Precipitated proteins were blotted with anti-T7 and anti-GST antibodies. (c) COS cells were transfected with pCS2FLAG-hp115RhoGEF and/or pcDNA3.1-T7-hCav1, pcDNA3.1-hMURC-HA, pcDNA3.1-hGα13, lysates and and cell were immunoprecipitated with the anti-FLAG antibody. Uncropped images of blots are shown in Supplementary Fig. 6.

Supplementary Figure 5. Association of p115RhoGEF with MURC.

COS cells were transfected with pCS2FLAG-hp115RhoGEF, pcDNA3.1-hMURC-HA, and/or pcDNA3.1-T7-hCav1. Cell lysates were immunoprecipitated with anti-FLAG and anti-HA antibodies. Uncropped images of blots are shown in Supplementary Fig. 6.

IB: anti-MYPT1

Fig. 3c

Fig. 3e

IB: anti-MYPT1

Fig. 4a

IB: anti-GAPDH

IB: anti-Cav1

AoSMCs

IB: anti-MLC2

Fig. 6a

50-

IB: anti-Gα13

37

50

37

25⁻

GST-pulldown IB: anti-Gα13 IB: anti-GST

Input

IB: anti-HA 75-50-37-25-

Fig. 6c

IP: anti-IgG, anti-Cav1 IB: anti-Gα13

IP: anti-IgG, anti-Cav1 IB: anti-Cav1

75 -	
50-	
37-	
25-	
23	
20-	
15-	
-	

IB: anti-Gα13

IB: anti-Cav1

75-

50 -37 -

25 20 75

50

37

25 -20 -

IB: anti-HA

Full immunoblot images with the corresponding figure and panel numbers are shown.

	WT (n=10)	<i>Murc</i> ^{_/_} (n=11)
sBP (mmHg)	93.5 ± 1.2	94.1 ± 1.3
dBP (mmHg)	62.8 ± 1.7	62.0 ± 1.6
HR (bpm)	676.0 ± 9.3	665.5 ± 16.5
LVDd (mm)	4.41 ± 0.30	4.07 ± 0.06
LVDs (mm)	2.90 ± 0.04	2.84 ± 0.03
IVSTd (mm)	0.60 ± 0.03	0.53 ± 0.02
PWTd (mm)	0.59 ± 0.18	0.56 ± 0.01
FS (%)	29.3 ± 0.4	30.1 ± 0.7
EF (%)	56.7 ± 0.7	57.8 ± 0.9

Supplementary Table 1. Blood pressure, heart rate, and echocardiographic analyses of WT and *Murc*^{-/-} mice under normoxia

sBP, systolic blood pressure; dBP, diastolic blood pressure; HR, heart rate; LVDd, left ventricular dimension at end-diastole; LVDs, left ventricular dimension in systole; IVSTd, interventricular septum thickness at end-diastole; PWTd, left ventricular posterior wall thickness at end-diastole; FS, fractional shortening; EF, ejection fraction. Values are expressed as means \pm SEM.

	<i>Murc</i> ^{fl/fl} (n=3)	cKO (n=3)
BW (g)	29.2 ± 0.3	27.6 ± 0.8
HW (mg)	120.6 ± 1.8	122.7 ± 3.3
TL (mm)	17.2 ± 0.17	16.7 ± 0.19
HW/BW (mg/g)	4.13 ± 0.02	4.44 ± 0.01
HW/TL (mg/mm)	7.01 ± 0.04	7.34 ± 0.12
LVDd (mm)	3.81 ± 0.03	3.79 ± 0.13
LVDs (mm)	2.65 ± 0.03	2.56 ± 0.05
IVSTd (mm)	0.62 ± 0.02	0.64 ± 0.02
PWTd (mm)	0.61 ± 0.01	0.63 ± 0.03
FS (%)	30.4 ± 1.1	32.3 ± 2.1
EF (%)	58.6 ± 1.6	61.2 ± 2.8

Supplementary Table 2. Morphometric and echocardiographic analyses of *Murc*^{fl/fl} and cKO mice under normoxia

BW, body weight; HW, heart weight; TL, tibial length; LVDd, left ventricular dimension at end-diastole; LVDs, left ventricular dimension in systole; IVSTd, interventricular septum thickness at end-diastole; PWTd, left ventricular posterior wall thickness at end-diastole; FS, fractional shortening; EF, ejection fraction. Values are expressed as means \pm SEM.

	<i>Murc</i> ^{fl/fl} (n=3)	cKO (n=3)
BW (g)	21.9 ± 1.5	24.0 ± 0.8
HW (mg)	111.4 ± 4.0	128.2 ± 2.6
TL (mm)	17.7 ± 0.18	18.3 ± 0.15
HW/BW (mg/g)	5.11 ± 0.26	5.36 ± 0.12
HW/TL (mg/mm)	6.30 ± 0.16	7.01 ± 0.09
LVDd (mm)	3.41 ± 0.22	3.51 ± 0.11
LVDs (mm)	2.26 ± 0.13	2.37 ± 0.12
IVSTd (mm)	0.58 ± 0.02	0.59 ± 0.02
PWTd (mm)	0.59 ± 0.01	0.61 ± 0.02
FS (%)	34.0 ± 1.0	32.6 ± 1.4
EF (%)	64.1 ± 1.3	61.9 ± 2.0

Supplementary Table 3. Morphometric and echocardiographic analyses of *Murc*^{fl/fl} and cKO mice exposed to hypoxia

BW, body weight; HW, heart weight; TL, tibial length; LVDd, left ventricular dimension at end-diastole; LVDs, left ventricular dimension in systole; IVSTd, interventricular septum thickness at end-diastole; PWTd, left ventricular posterior wall thickness at end-diastole; FS, fractional shortening; EF, ejection fraction. Values are expressed as means \pm SEM.