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Supplementary Figure Legends

Supplementary Figure 1

Region-specific distribution of pSer46-MARCKS in 5xFAD mice

The distribution of Ser46-phosphorylation of MARCKS was examined in the
brains of 5xFAD mice at 6 months of age (upper panels). Plaque-like stains of
pSer46-MARCKS were found in 5XxFAD mice but not in wild type mice (B6/SJL).
Staining was not found in the cerebellum of 5xFAD mice, consistent with the
cerebrum-dominant  pathology of AD. Another antibody against
pThr143-MARCKS did not show the plaque-like patterns (lower panels).

Supplementary Figure 2

Specificity of the anti-pSer46-MARCKS antibody

The specificity of anti-pSer46-MARCKS antibody was evaluated together with a
commercial anti-MARCKS antibody (Santa Cruz Biotechnology) using lysates of
HelLa cells expressing EGFP (negative control), MARCKS-EGFP (positive
control) and EGFP-MARCKS (positive control). Both antibodies detected
specific bands of MARCKS-EGFP (red arrow) and EGFP-MARCKS (blue arrow),
whereas the two antibodies commonly reacted with non-specific bands (black
arrows). One non-specific band was additionally detected by the
anti-pSer46-MARCKS antibody (asterisk). Specific bands but not non-specific
bands were absorbed by the phospho-MARCKS peptide used for generation of
the antibody at 1:30 and 1:300 molar ratios between the phospho-MARCKS
antibody and the phospho-MARCKS synthetic peptide.

Supplementary Figure 3

Relationship between pSer46-MARCKS staining and Af aggregation in the
cerebral cortex of 5xFAD mice

(a) Images of co-stained brain tissues acquired by confocal fluorescence
microscopy were further analysed using software (Imaris, Zeiss), and 3D images
were generated. Three representative regions are shown. Blue and red
enclosures indicate that the images are used for Figure 2B and enlarged images
in Sup Figure 3 in the following.



(b) Two enlarged images from Sup Figure 3A. pSer4d6-MARCKS stains
surrounded but not merged with Af aggregation.

(c) A representative image showing the connection between MAP2 and
pSer46-MARCKS stains.

Supplementary Figure 4

Relationship between pSer46-MARCKS staining and Af aggregation in the
cerebral cortex of PS1 mutant (M146L) human patients

(a) Images of the cerebral cortex of human PS1-linked AD patients were
analysed similarly. Three representative regions are shown. The blue enclosure
indicates that the images are used for Figure 2C.

(b) A representative image showing the connection between tau and
pSer46-MARCKS staining.

Supplementary Figure 5

Relationship between pSer46-MARCKS staining and Af aggregation in the
transparent brain of human APP knock-in mice

The forebrains of human mutant APP knock-in mice were made transparent by
the ScaleS method and subjected to immunohistochemistry of Ap,
pSer46-MARCKS and synapsin.

Supplementary Figure 6

Relationship between pSer46-MARCKS staining and two types of glia or
neurons

(a) Images were obtained from the retrosplenial dysgranular cortex of 5xFAD
mice co-stained with microglia- or astrocyte-specific markers. Phosphorylation of
MARCKS at Ser46 did not occur in the microglia or astrocytes.

(b) Co-staining of NeuN, a neuronal marker, and pSer46-MARCKS revealed that
phosphorylation of MARCKS at Ser46 occurred in the neurons, which were
surrounded by pSer46-MARCKS-positive degenerative neurites. Groups 1, 2,
and 3 are tentatively classified from the hypothetical progression. Group 1 is the
first stage, Group 2 loses viability of neurons and reactivity of NeuN, and in
Group 3



Supplementary Figure 7

Effect of Ser4d6-MARCKS phosphorylation on the interaction with actin

The interaction between MARCKS and actin affects dendritic spine
morphology”. Phosphorylated mimics of full-length MARCKS-EGFP (S46D and
S46E) lost the high affinity to actin, whereas a non-phosphorylated form of
full-length MARCKS-EGFP (S46A) preserved the high affinity.

Supplementary Figure 8

Candidate kinases phosphorylating MARCKS at Ser46

(a) NetworKIN 3.0 was used to predict candidate kinases that phosphorylate
MARCKS at Ser46. The top three include ERK1/2 and PKC mu.

(b) Summary of the mass spectrometric analysis of in vitro phosphorylation of
the GST-MARCKS (1-176 aa) peptide by each kinase.

Supplementary Figure 9

Dynamism of HMGB1 in neurons with intracellular Af accumulation and
after the rupture

(a) Co-staining of HMGB1 and AP revealed that cytoplasmic translocation of
HMGB1 occurred in neurons with intracellular AR accumulation in the cerebral
cortex of 5xFAD mice. Magnifications of fields #1-3 are shown in the lower
panels. Field #2 might be an earlier phenotype than #3 based on the amount
and distribution of intracellular Ap. The graph shows quantification of
cytoplasmic HMGB1-positive cells.

(b) HMGB1 did not bind to the ghost cells or extracellular A aggregations.

(c) Three-dimensional images of the same visual field (arrowhead) also
confirmed the findings.

Supplementary Figure 10

Chronological changes of MARCKS phosphorylation during ageing of
5xFAD mice

(a) Low magnification of sagittal sections of 5xFAD and wild type (B6/SJL) mice
stained with an anti-pSer46-MARCKS antibody. At 3 and 6 months of age, the



plaque-like pattern of staining was detected. At 1 month of age (when not
aggregated in the extracellular space), the plaque-like stains were not present,
whereas fibril-like stains of pSer46-MARCKS were detected.

(b) Co-staining with Ap revealed that the fibril-like stains at 1 month correspond
to neural fibres among the cells. Moreover, the cytoplasm of neurons without
intracellular Ap was stained with pSer46-MARCKS, suggesting that a specific
extracellular trigger rather than an intracellular trigger of Ap was critical for
MARCKS phosphorylation at Ser46.

Supplementary Figure 11

HMGB1 activates MARCKS phosphorylation at Ser46 through TLR4

(a) Time-dependent response of MARCKS phosphorylation at Serd46 after
addition of 5 nM HMG to the culture medium of primary mouse cortical neurons
prepared from the E15 embryonic cerebral cortex. Quantitative analyses are
shown in graphs for MARCKS/GAPDH, pSer46-MARCKS/MARCKS and
pSer46-MARCKS/GAPDH.

(b) HMGB1 dose-dependent response of MARCKS phosphorylation at Ser46 in
mouse primary cortical neurons (E15). The responses were evaluated 180
minutes after the addition of HMGB1 to the culture medium. Quantitative
analyses are shown in the graphs.

(c) The response of MARCKS phosphorylation at Ser46 was specific to HMGB1.
Addition of BDNF did not induce MARCKS phosphorylation.

(d) Effects of various Ap species on MARCKS phosphorylation at Serd46. Ap
monomers, oligomers and aggregates were added at 25 nM to the medium of
the primary mouse cortical neurons. Slight activation was observed only with the
Ap oligomer.

(e) A mixture of HMGB1 and Ap triggered MARCKS phosphorylation at Ser46.
(f) Similar MARCKS phosphorylation at Ser46 was induced by a TLR4 agonist
(LPS-EB).

(g) HMGB1-induced MARCKS phosphorylation at Ser46 was blocked by a TLR4
antagonist (LPS-RS).

(h) HMGB1-induced MARCKS phosphorylation at Ser46 was blocked by
knockdown of TLR4 with shRNA.



Supplementary Figure 12

Selection of the best anti-HMGB1 antibody

(a, b) Seven clones of the anti-HMGB1 antibody were compared for their affinity
to HMGB1. ELISA (a) and surface plasmon resonance (SPR) analysis (b) were
used to evaluate the affinity of antibodies to HMGB1. We selected the clone
2C8C because it showed relatively high affinity in both the ELISA and SPR
analyses.

Supplementary Figure 13

Transfer of the antibody from subcutaneous injection to the brain tissue
(a) To evaluate the efficiency of a subcutaneous injection (SC) in delivering the
antibody to the brain, we injected biotin-labelled 1gG using a similar method to
that of the anti-HMGB1 antibody and examined the concentrations in blood
plasma and in brain tissues. Some of the injected IgG (0.008%) was present in
the brain tissue that had been prepared after systemic perfusion with PBS.

(b) Immunohistochemistry with avidin-HRP and DAB colour development was
performed to detect biotin-labelled mouse IgG in the brain tissues, but no definite
signal was detected.

Supplementary Figure 14

In vivo effects of the subcutaneous injection of the anti-HMGB1 antibody
on MARCKS phosphorylation at Ser46 and on A plaque formation

(a) In both groups of 5xFAD mice that had received subcutaneous injection of
the anti-HMGB1 monoclonal antibody during 1-6 or 3-6 months, the signal
intensity of the plaque-like stain pattern of pSer46-MARCKS was substantially
decreased compared to the group that had received a subcutaneous injection of
non-specific 1IgG (upper panels). The number of AP plaques was mildly
decreased by subcutaneous injection of the anti-HMGB1 monoclonal antibody
(lower panels). The inlays show a few plaque-like stains.

(b) Ap signal intensity in immunohistochemistry by DAB colour development
also confirmed that AB plaques were mildly decreased by subcutaneous
injection of the anti-HMGB1 monoclonal antibody. The lower graphs show the



effect of anti-HMGB1 monoclonal antibody on the number and area of A
plaques.

(c) In contrast to immunohistochemistry, Western blot analysis revealed a
reduction in the total amount of Ap by the anti-HMGB1 monoclonal antibody
(upper panels), especially oligomers and protofibrils (lower graph).

(d) Western blot analysis revealed that the anti-HMGB1 monoclonal antibody
decreased pSer46-MARCKS and yH2AX, a DNA damage marker.

(e) Western blot and gPCR analyses showed that human APP gene expression
was not changed by anti-HMGB1 monoclonal antibody.

Supplementary Figure 15

Experimental conditions for in vitro A aggregation

(a) Experimental conditions for in vitro Ap aggregation are shown in the scheme.
Sampling was performed before and after incubation.

(b) Western blot analysis of in vitro Ap aggregation. Two types of sample buffer
were tested, and six conditions were tested. We chose one condition (incubation
at 37°C for 48 hours) because additional incubation did not affect the
aggregation, and we used mercaptoethanol (-) sample buffer for further
analyses.

(c) Electron microscopic analysis of in vitro Ap aggregation also revealed that
the condition was suitable for further analyses.

Supplementary Figure 16

In vitro effects of HMGB1 and anti-HMGB1 antibody on A polymerization,
Ap oligomerization, AB-HMGB1 heteromer formation and
HMGB1 oligomerization

(a) Ap was incubated for 48 hours with or without HMGB1 and with or without
the HMGB1 antibody. Normal mouse IgG was used as a control. HMGB1
notably decreased fibrils/aggregates of A and increased the other types of Ap
species, such as monomers, oligomers and ADDLs/protofibrils. Further addition
of the anti-HMGB1 antibody suppressed the HMGB1-induced decrease of Ap
fibrils/aggregates and inhibited the HMGB1-induced increase of Af3 oligomers
and ADDLs/protofibrils.



(b) Quantitative analysis of ratios among four types of Ap species in the total WB
signals of Ap (IgG signals were excluded). Mean values of three experiments
were used.

(c) The effects of HMGB1 and the anti-HMGB1 antibody on Ap oligomerization
were further investigated. HMGB1 clearly increased the Af monomer, oligomer
and ADDLs/protofibrils in a dose-dependent manner. The anti-HMGB1 antibody
but not the control IgG blocked the effect of HMGB1 on A oligomerization.

(d) Using the same sample, in vitro polymerization of HMGB1 was detected. Ap
inhibited the HMGB1 polymerization and produced other types of Ap-HMGB1
heteromers as determined by their molecular weight.

(e) In the absence of Ap, HMGB1 aggregation was promoted in a
dose-dependent manner. The anti-HMGB1 antibody inhibited HMGB1
polymerization and increased the ratio of HMGB1 monomers and dimers. This
effect was not observed with the control IgG.

(f) Electron microscopic observation of in vitro aggregation samples. HMGB1
blocked fibril formation of Ap (black arrows) and increased amorphous structures
that might correspond to Ap oligomers or ADDLs/protofibrils. Addition of the
anti-HMGB1 antibody recovered fibril formation (black arrows). Immunoelectron
microscopy revealed that HMGB1 was located in the periphery (white arrows),

presumably blocking extension of the Ap fibrils.

Supplementary Figure 17

In vivo effect of the anti-HMGB1 monoclonal antibody on microglia in
5xFAD mice

(a) Low magnification of the cerebral cortex (RSD) and high magnification of a
representative Ap plaque of 5XxFAD mice at 6 months of age are shown. After
treatment with the anti-HMGB1 antibody (both the 1-6 months and 3-6 months
treatment groups), a larger number of microglia formed AP plaques, and the
microglia incorporated Ap into the cytoplasm.

(b) Quantitative analysis of the number of microglia in a visual field (N=10,
cerebral cortex) and the number of microglia forming plaques (N=30, cerebral
cortex). Both values were increased in the mice after treatment with the
anti-HMGB1 antibody.



(c) Phagocytosis of fluorescent A by rat microglia in primary cultures.
TAMRA-AB, human HMGB1 and anti-HMGB1 monoclonal antibodies were
mixed, pre-incubated and added to the primary microglial culture (upper panel).
Addition of the anti-HMGB1 monoclonal antibody enhanced phagocytosis of
TAMRA-AB ((middle photos)), and quantitative analysis confirmed the findings
(lower graph).

Supplementary Figure 18

Ap species at high concentrations trigger the release of HMGB1 from
neurons

Monomers, oligomers and fibrils of A were added to the primary mouse cortical
neuron cultures prepared from E15. After 3 hours, HMGB1 concentrations in the

culture medium were examined by ELISA.

Supplementary Figure 19

Hypothetical mechanisms of the therapeutic effects of the anti-HMGB1
monoclonal antibody

(a) Pathological status of AD focusing on Ag and HMGB1. (b) Ameliorated
pathological status of AD after injection of the anti-HMGB1 monoclonal antibody.

Supplementary Video 1

3D movie of co-staining of pSer46-MARCKS staining and AB in
6-month-old 5xFAD mice cortex.

This movie corresponds to the image in figure 2B.

Supplementary Video 2
3D movie of co-staining of pSer46-MARCKS staining and AB in human AD
brain.

This movie corresponds to the image in figure 2C.

Supplementary Video 3



Relationship between pSer46-MARCKS staining and Af aggregation in the
transparent brain of human APP knock-in mice.

(a) This movie corresponds to the image of 8-month-old human APP knock-in
mice brain in Supplementary figure 5B.

(b) This movie corresponds to the image of 17-month-old human APP knock-in
mice brain in Supplementary figure 5B.

(c) This movie corresponds to the image of 20-month-old human APP knock-in

mice brain in Supplementary figure 5B.

Supplementary Video 4
3D movie of co-staining of pSer46-MARCKS staining and Tau in human
AD brain.

This movie corresponds to the image in figure 2D.
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Supplementary Figure 2
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Supplementary Figure 3

5xFAD Mouse
AP and pS46-MARCKS
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Supplementary Figure 4 Human AD
AP and pS46-MARCKS
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Supplementary Figure 5

a 8 months old App™-FN-F mouse b Amyloid- Phospho-MARCKS
Volume-renderied

Alexa488-oAmyloid-3 mAb CF633-aPhospho-MARCKS pAb
Volume-rendered

8 months old

Volume-rendered

17 months old

Volume-rendered

20 months old

CC: corpus callosum, CX: cortex, GCL: granule cell layer, HL: hilus, SC:subiculum, TL: thalamus



Supplementary Figure 6
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Supplementary Figure 7
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Supplementary Figure 8
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Supplementary Figure 9

a Cytoplasmic shift of HMGB1 b Amyloid beta remains around the ghost cells C Amyloid beta remains around the ghost cells
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Supplementary Figure 10
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Supplementary Figure 11
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Supplementary Figure 13

a Comparison of biotin labeled IgG levels at Day 3
in mouse plasma and cortex by s.c. injection

* p=0.02857 * p=0.02857

50

1

40

: n

20
®

Biotin labeled IgG levels
in mouse cortex (pg / mg cortex)
N w H (6] (o] ~

10

—

0 -

AT

No treatment biotin labeled No treatment biotin labeled
IgG IgG

oocl).
NAAS

Biotin labeled IgG levels
in mouse plasma (pg / pl plasma)
o

o: Lower detection limit.
*: p-values by Wilcoxon rank sum test and Fisher's exact test. (Both p-values were equivalent.)

Day 1 Day3

C57BL/6j male 2 months
old

Biotin-labeled mouse IgG
1mg/kg

SC injection

day1 or day3 after injection
n=3

PFA-fixed, paraffin- /
embedded 5um

Biotin-detect:
Avidin-HRP+ DAB color :
development ; \

1 mm



Supplementary Figure 14
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Supplementary Figure 15
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Supplementary Figure 16 ;
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Supplementary Figure 17

nti-HMGB1-Ab on microglia in vivo . . .
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Supplementary Figure 18
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Supplementary Figure 19
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