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Volume Fraction Calculation 
 

. 
 
Figure SF1: Bacteria and particle count in one P. fluorescens streamer’s failure zone (dotted 
box). The volume of zoomed picture is calculated by multiplying the area of the picture with 
depth of field and is approximately 2000 µm3. Bacteria cell is cylindrical and particles are 
spherical in geometry. Diameter of bacteria and particle are 0.2 µm and the height/ length of one 
bacteria is 8 µm. Volume of one bacteria is 0.25 µm3 and one particle is 4.19 ×10-3 µm3.  
 

Estimating Experimental Uncertainty 
 
Two separate sources of experimental uncertainty were identified. The first is the repeatability 
error accounting for the heterogeneity of the biomass itself. Due to the very nature of this error, it 
has to be evaluated by statistical means (i.e. from a number of repeated observations). For each 
of 2 cases, the experiments were repeated 2-4 times for all flow rates to yield relative uncertainty 
estimates. For example, for the P. fluorescens for the flow velocity (U=8.92 × 10-4 m/s), the 
experiment was repeated 3 times thus yielding relative uncertainty for each U (Fig. SF2). Table 
ST1 provides the complete list of repetitions for each case. Let this uncertainty be denoted by 
𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. The second source of uncertainty resulted from an error in the tracking process itself. 
This error could be estimated by visually determining the uncertainty in tracking the Lagrangian 
points and the maximum error was estimated to be approximately 4%. This determines the error 
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envelope for a single tracking of couplets. Let this uncertainty be denoted by 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The final 

error envelope (𝛿𝛿) for critical stretch ratio is given by: 𝛿𝛿 = �𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 . Error bars in 

Figs. 6b and 7 represent 𝛿𝛿. 
 
 
 
 

 
Figure SF2: Stretch ratio for three different failure events of P. fluorescens streamers at a 

constant background velocity of U = 8.92 × 10-4 m/s. Legend shows the t0 and critical stretch 

ratio for the three different cases.  
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Table ST1: Repeatability data for finding different 𝜆𝜆𝑡𝑡 for different flow rates for the two cases. 
 

Parameters 𝝀𝝀𝑪𝑪 (N. D.) 
Velocity, U, m/s P. fluorescens P. aeruginosa 

8.92 × 10-04 

6.00 5.83 
5.39 5.74 
6.17 4.29 

- 6.03 

1.15 × 10-03 

3.35 3.95 
4.87 4.11 
4.04 4.60 
5.10 - 

1.40 × 10-03 
4.82 3.66 
4.23 3.69 
3.46 - 

1.66 × 10-03 

3.48 3.35 
3.54 3.25 
3.09 3.23 
3.67 3.47 

1.91 × 10-03 
3.11 3.16 
3.14 3.78 
3.16 - 

2.17 × 10-03 
3.29 3.09 
2.97 2.33 
3.17 2.31 

2.42 × 10-03 
3.09 2.88 
2.67 2.51 
2.27 - 

2.68 × 10-03 

3.02 2.76 
2.85 2.93 
3.14 2.83 
2.98 3.02 

2.93 × 10-03 
2.82 

- 2.30 
2.55 

3.19 × 10-03 
2.68 2.40 
2.61 2.57 
2.18 2.65 

3.44 × 10-03 
2.40 1.99 
2.67 2.82 
2.70 2.34 
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Streamer Instability Calculations  

Kinematics  
The streamer is assumed to be slender cylindrical body (long wavelength defect approximation) 
throughout till the onset of instability. In the reference and current configuration, the radius of 
the cylinder are   𝑅𝑅, 𝑟𝑟 and length 𝐿𝐿, 𝑙𝑙 respectively. We also assume the streamer to have uniform 
behavior throughout its material volume except at the far field boundaries before the onset of 
instability.  
We also assume that streamer deformation is purely inelastic after the elastic limit is reached and 
to remain in this state till the onset of instability. We assume that inelastic deformation is 
isochoric and describe the geometry of the current streamer (right cylinder) with radius 𝑟𝑟 and 
length 𝑙𝑙. Thus, in the rate form we arrive at the following relationship: 
2 �̇�𝑟
𝑟𝑟

+ 𝑙𝑙̇

𝑙𝑙
= 0                (S1) 

Now since the deformation after elastic limit is purely inelastic, we define the axial creep strain  
as 𝛿𝛿𝜖𝜖𝑡𝑡𝑟𝑟 = 𝛿𝛿𝑙𝑙/𝑙𝑙. Integrating it from the elastic limit where the dimensions of the cylinder are 
assumed to be 𝑅𝑅 × 𝐿𝐿 to current configuration gives us the following logarithmic inelastic strain: 
𝜖𝜖𝑡𝑡𝑟𝑟 = ∫ 𝑑𝑑𝑙𝑙′

𝑙𝑙′
𝑙𝑙
𝐿𝐿 = 𝑙𝑙𝑙𝑙 𝑙𝑙

𝐿𝐿
= 𝑙𝑙𝑙𝑙 𝜆𝜆𝑡𝑡𝑟𝑟  ,   𝜖𝜖�̇�𝑡𝑟𝑟 = 𝑙𝑙/̇𝑙𝑙            (S2)  

where 𝜆𝜆𝑡𝑡𝑟𝑟 is the creep stretch.  We will refer to the elastic limit configuration to be the reference 
configuration for the purpose of this analysis. Now denoting the aspect ratio in the current 
configuration to be 𝜔𝜔 = 𝑙𝑙/𝑟𝑟 and the reference configuration to be Ω = 𝐿𝐿/𝑅𝑅, we can relate them 
using incompressibility: 

𝜔𝜔 = Ω �𝑙𝑙
𝐿𝐿
�
3/2

= Ω 𝑒𝑒
3
2𝜖𝜖𝑐𝑐𝑐𝑐               (S3) 

Thus this also shows that 𝑙𝑙 = 𝜔𝜔2/3Ω−2/3 𝐿𝐿 and 𝑟𝑟 = 𝑅𝑅Ω1/3𝜔𝜔−1/3 . In the rate form Eq. (S3) 
becomes 
�̇�𝜔 = 3

2
𝜔𝜔 𝜖𝜖�̇�𝑡𝑟𝑟                 (S4) 

Mechanics  
We first write the free energy rate for this system in the current configuration: 
�̇�𝐺 = �̇�𝜙(𝜖𝜖𝑡𝑡𝑟𝑟, 𝜖𝜖�̇�𝑡𝑟𝑟)𝜋𝜋𝑟𝑟2𝑙𝑙 + 𝛾𝛾𝑆𝑆𝐴𝐴�̇�𝑆 − Δ�̇�𝑊𝑃𝑃 − 𝐹𝐹𝑓𝑓𝑙𝑙𝑙𝑙 ̇                                  (S5)  
where 𝜙𝜙 is the dissipation density function which can in general depend on the strain and strain 
rate, 𝛾𝛾𝑆𝑆 is the surface tension (assumed uniform and without any gradient Marangoni effects), 𝐴𝐴�̇�𝑆 
is the rate of change of surface area, Δ�̇�𝑊𝑃𝑃 is the rate of work done by the pressure difference 
between the inside and outside of the streamer and 𝐹𝐹𝑓𝑓𝑙𝑙 is axial the fluidic traction force. We can 
write the rate of change of surface area as: 
�̇�𝐴𝑆𝑆 = 𝑑𝑑

𝑑𝑑𝑟𝑟
(2𝜋𝜋𝑟𝑟𝑙𝑙 + 𝜋𝜋𝑟𝑟2)  = 2𝜋𝜋𝑟𝑟𝑙𝑙 ��̇�𝑟

𝑟𝑟
+ 𝑙𝑙̇

𝑙𝑙
+ �̇�𝑟

𝑙𝑙
� ≈ 𝜋𝜋𝑟𝑟𝑙𝑙̇ = 𝜋𝜋𝑟𝑟𝑙𝑙𝜖𝜖�̇�𝑡𝑟𝑟,   𝜔𝜔 ≫ 1       (S6) 

For the rate of pressure work, we have: 
�̇�𝑊𝑟𝑟𝑟𝑟 = Δ𝑝𝑝2𝜋𝜋𝑟𝑟𝑙𝑙 �̇�𝑟 − 𝛥𝛥𝑝𝑝𝜋𝜋𝑟𝑟2𝑙𝑙̇ = 𝛥𝛥𝑝𝑝𝜋𝜋𝑟𝑟2𝑙𝑙 �2�̇�𝑟

𝑟𝑟
− 𝑙𝑙̇

𝑙𝑙
� = −2𝛥𝛥𝑝𝑝𝜋𝜋𝑟𝑟2𝑙𝑙 𝜖𝜖�̇�𝑡𝑟𝑟                

where 𝛥𝛥𝑝𝑝 = 𝑝𝑝0𝑟𝑟𝑒𝑒 − 𝑝𝑝0𝑡𝑡𝑡𝑡 is the pressure differential between outside 𝑝𝑝0𝑟𝑟𝑒𝑒 and inside pressure 𝑝𝑝0𝑡𝑡𝑡𝑡. 
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Now note that from the slender body approximation of resistive flow theory we have, 𝐹𝐹𝑓𝑓𝑙𝑙 =

𝐶𝐶𝜋𝜋𝐶𝐶𝐶𝐶/ ln𝜔𝜔 and thus we get for the fluidic work rate,  𝐹𝐹𝑓𝑓𝑙𝑙𝑙𝑙̇ =
𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙
ln 𝑙𝑙/𝑟𝑟

 𝑙𝑙̇ = 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙2

ln𝜔𝜔
 𝜖𝜖�̇�𝑡𝑟𝑟       

 
Using these expressions and then dividing Eq. (S-1) by the current volume 𝜋𝜋𝑟𝑟2𝑙𝑙 we have: 
 
�̇�𝑔 = �̇�𝜙𝑑𝑑(𝜖𝜖𝑡𝑡𝑟𝑟, 𝜖𝜖�̇�𝑡𝑟𝑟) + 𝛾𝛾𝑆𝑆

𝑟𝑟
𝜖𝜖�̇�𝑡𝑟𝑟 − 2𝛥𝛥𝑝𝑝𝜖𝜖�̇�𝑡𝑟𝑟  − 𝐶𝐶𝜋𝜋𝐶𝐶𝐶𝐶  𝜔𝜔

2

ln𝜔𝜔
1
𝑙𝑙
𝜖𝜖�̇�𝑡𝑟𝑟          (S7) 

 
Using the time scale approximations and the isochoric nature of the deformation (refer to the 
main body of the paper), the second time derivative of Eq. (S7) leads to  
 
�̈�𝑔 = �̈�𝜙𝑑𝑑(𝜖𝜖𝑡𝑡𝑟𝑟, 𝜖𝜖�̇�𝑡𝑟𝑟) − 𝛾𝛾𝑆𝑆

𝑟𝑟2
 �̇�𝑟𝜖𝜖�̇�𝑡𝑟𝑟 − 𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑

𝑑𝑑𝑟𝑟
� 𝜔𝜔

2

ln𝜔𝜔
1
𝑙𝑙
� 𝜖𝜖�̇�𝑡𝑟𝑟   

= �̈�𝜙𝑑𝑑(𝜖𝜖𝑡𝑡𝑟𝑟 , 𝜖𝜖�̇�𝑡𝑟𝑟) + 1
2
𝑅𝑅−1𝛺𝛺−13𝜔𝜔

1
3𝛾𝛾𝑆𝑆 𝜖𝜖�̇�𝑡𝑟𝑟𝜖𝜖�̇�𝑡𝑟𝑟 − 𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑

𝑑𝑑𝑟𝑟
 � 𝜔𝜔

2

ln𝜔𝜔
 𝜔𝜔−23𝛺𝛺

2
3 𝐿𝐿−1� 𝜖𝜖�̇�𝑡𝑟𝑟   

= �̈�𝜙𝑑𝑑(𝜖𝜖𝑡𝑡𝑟𝑟 , 𝜖𝜖�̇�𝑡𝑟𝑟) + 1
2
𝑅𝑅−1𝛺𝛺−13𝜔𝜔

1
3𝛾𝛾𝑆𝑆 𝜖𝜖�̇�𝑡𝑟𝑟𝜖𝜖�̇�𝑡𝑟𝑟 − 𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑

𝑑𝑑𝑟𝑟
� 𝜔𝜔

4
3

𝑙𝑙𝑡𝑡𝜔𝜔
 𝛺𝛺

2
3 𝐿𝐿−1� 𝜖𝜖�̇�𝑡𝑟𝑟  

= �̈�𝜙𝑑𝑑(𝜖𝜖𝑡𝑡𝑟𝑟 , 𝜖𝜖�̇�𝑡𝑟𝑟) + 1
2
𝑅𝑅−1𝛺𝛺−13𝜔𝜔

1
3𝛾𝛾𝑆𝑆  𝜖𝜖�̇�𝑡𝑟𝑟𝜖𝜖�̇�𝑡𝑟𝑟 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛺𝛺

2
3 𝐿𝐿−1  �

4
3 𝑙𝑙𝑡𝑡𝜔𝜔𝜔𝜔

1
3−𝜔𝜔

1
3

(𝑙𝑙𝑡𝑡𝜔𝜔)2 � �̇�𝜔𝜖𝜖�̇�𝑡𝑟𝑟   

= �̈�𝜙𝑑𝑑(𝜖𝜖𝑡𝑡𝑟𝑟 , 𝜖𝜖�̇�𝑡𝑟𝑟) + 1
2
𝑅𝑅−1𝛺𝛺−13𝜔𝜔

1
3𝛾𝛾𝑆𝑆 𝜖𝜖�̇�𝑡𝑟𝑟𝜖𝜖�̇�𝑡𝑟𝑟 − 𝐶𝐶𝐶𝐶 𝐶𝐶𝛺𝛺

2
3 𝐿𝐿−1  �

4
3 𝑙𝑙𝑡𝑡𝜔𝜔𝜔𝜔

1
3−𝜔𝜔

1
3

(𝑙𝑙𝑡𝑡𝜔𝜔)2 � 3
2
𝜔𝜔𝜖𝜖�̇�𝑡𝑟𝑟𝜖𝜖�̇�𝑡𝑟𝑟 (via Eq. S4) 

= �̈�𝜙𝑑𝑑(𝜖𝜖𝑡𝑡𝑟𝑟 , 𝜖𝜖�̇�𝑡𝑟𝑟) + 1
2
𝑅𝑅−1𝛺𝛺−13𝜔𝜔

1
3𝛾𝛾𝑆𝑆 𝜖𝜖�̇�𝑡𝑟𝑟𝜖𝜖�̇�𝑡𝑟𝑟 − 2𝐶𝐶𝐶𝐶𝐶𝐶𝛺𝛺

2
3 𝐿𝐿−1 𝜔𝜔

4
3

ln𝜔𝜔
𝜖𝜖�̇�𝑡𝑟𝑟𝜖𝜖�̇�𝑡𝑟𝑟  

 
Now multiplying throughout by Ω

1
3𝜔𝜔−13 and expanding the dissipation function using Taylor 

series in 𝜖𝜖𝑡𝑡𝑟𝑟 we get: 
 
 
�̈�𝑔 =  �𝜕𝜕

2𝜙𝜙𝑑𝑑�𝜖𝜖�̇𝑐𝑐𝑐𝑐,𝜖𝜖𝑐𝑐𝑐𝑐�
𝜕𝜕𝜖𝜖𝑐𝑐𝑐𝑐2

 𝛺𝛺
1
3𝜔𝜔−13 + 𝛾𝛾𝑆𝑆

2𝑅𝑅
− 𝐶𝐶′𝜇𝜇𝐶𝐶

𝐿𝐿
 Ω 𝜔𝜔

ln𝜔𝜔
�  𝜖𝜖�̇�𝑡𝑟𝑟𝜖𝜖�̇�𝑡𝑟𝑟       (S8)  

 
 
Now recalling  that 𝜔𝜔,Ω ≫ 1 and from Eq. S3 the vanishing second derivative gives us the 
following condition for instability at critical point: 
 

�𝜕𝜕
2𝜙𝜙𝑑𝑑�𝜖𝜖�̇𝑐𝑐𝑐𝑐,𝜖𝜖𝑐𝑐𝑐𝑐�

𝜕𝜕𝜖𝜖𝑐𝑐𝑐𝑐2
�
𝑡𝑡
𝑒𝑒− 𝜖𝜖𝑐𝑐𝑐𝑐,𝑐𝑐

2 + 1
2
𝛾𝛾𝑆𝑆
𝑅𝑅
− 𝐶𝐶′𝜇𝜇𝐶𝐶

𝐿𝐿
 𝛺𝛺

2 
lnΩ

𝑒𝑒  3𝜖𝜖𝑐𝑐𝑐𝑐,𝑐𝑐
2 = 0       (S9) 

  
 
Supplementary Videos 
 
Supplementary Video 1: Video shows failure of a P. fluorescens streamer. Video is real-time 
and tracking of two Lagrangian points (‘1’ & ‘2’) are shown.  
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