Supplementary Information

Patterning nanowires through the templated growth of multiple modified amyloid peptides

Hiroki Sakai, Ken Watanabe, Fuki Kudoh, Rui Kamada, Yoshiro Chuman & Kazuyasu Sakaguchi^{1,*}

Department of Chemistry, Faculty of Science, Hokkaido University, N10, W8, Kita-ku, Sapporo 060-0810, Japan

*E-mail: kazuyasu@sci.hokudai.ac.jp, TEL: +81-11-706-2698, FAX: +81-11-706-4683

Contents

- Table S1. The peptide sequences used in this study
- Figure S1. Fluorescence microscopy images of fluorescein-functionalized fibrils
- Figure S2. Fluorescence microscopy images of control fluorescent fibrils
- Figure S3. K_3/E_3 -ratio dependency of the degree of symmetric tandem fibrils
- **Figure S4.** AFM image of fragmented α -lipoylated fibrils
- Figure S5. AFM image of the nanoparticle-fibril complexes
- **Figure S6.** AFM image of a control experiment for the initiation of fibrils from a gold nanoparticle

Table S1. Peptide sequences used in this study. All of the peptides were synthesized using standard

 Fmoc solid-phase chemistry.

Peptide	Sequence
E ₃ -TTR	H-EEE-GG-YTIAALLSPYS-NH ₂
K ₃ -TTR	$\operatorname{H-KKK-GG-YTIAALLSPYS-NH}_2$
FAM-E ₃ -TTR	5,6-carboxyfluorescein-GG-EEE-GG-YTIAALLSPYS-NH $_2$
TAMRA-K ₃ -TTR	5,6-carboxytetramethylrhodamine-GG-EEE-GG-YTIAALLSPYS-NH $_2$
Lip-E ₃ -TTR	α -lypoyl-EEE-GG-YTIAALLSPYS-NH ₂

Figure S1. Fluorescence microscopy images of the fluorescein-functionalized fibrils formed from a mixture of K_3 -TTR:FAM- E_3 -TTR: E_3 -TTR before (a) and after (b) purification via centrifugation and dialysis. The scale bar represents 20 μ m.

Figure S2. (a–c) Mixing of individually formed FAM and TAMRA fibrils, and (d–f) cofibrillation with FAM-E₃-TTR and TAMRA-K₃-TTR peptides did not lead to the formation of tandem structures on the fibrils (c,f). Excitation/emission wavelengths were 480/535 and 540/605 nm in (a,d) and (b,e), respectively, and each image was superimposed (c,f). The scale bar represents 20 μ m.

Figure S3. K_3/E_3 -ratio dependency of the degree of symmetric tandem fibrils. The line represents the linear regression with R² of 0.988. The error bars represent standard deviations.

Figure S4. AFM images of the α -lipoylaged fibrils (a) before and (b) after sonication. The fibrils were adsorbed on mica. The average length of the sonicated fibrils was 45±20 nm. The scale bars represent 5 and 1 µm in (a) and (b), respectively.

Figure S5. AFM image of the nanoparticle-fibril complexes. One fibril per one gold nanoparticle (**a**), two fibrils (**b**), three fibrils (**c**), and four fibrils (**d**) per one gold nanoparticle were shown.

Figure S6. AFM image of a mica surface after the incubation of a mixture of K_3 -TTR: E_3 -TTR = 1:1 with fibril fragment-free gold nanoparticles. The nanoparticles are indicated by the yellow arrowheads. The scale bar represents 1 μ m.