Developmental Cell, Volume 38

Supplemental Information

Transforming Growth Factor β Drives Hemogenic

Endothelium Programming and the Transition

to Hematopoietic Stem Cells

Rui Monteiro, Philip Pinheiro, Nicola Joseph, Tessa Peterkin, Jana Koth, Emmanouela Repapi, Florian Bonkhofer, Arif Kirmizitas, and Roger Patient

Supplemental Information Inventory

Supplemental Figures S1-S6

Figure S1, related to Figure 1

Figure S2, related to Figure 2

Figure S3, related to Figure 3

Figure S4, related to Figure 4

Figure S5, related to Figure 5

Figure S6, related to Figure 6

Supplemental Table S1 (excel file), related to Figure 5

Supplemental Experimental Procedures, related to Figures 1-6, S1-S6

Supplemental References, related to Supplemental Experimental Procedures and to Supplemental Table S1

Supplemental Figures and Figure Legends

Figure S1, related to Figure 1 – Expression of TGFβ signalling components at 12hpf (10-somite stage) and 15hpf (16-somite stage). All embryos were flatmounted for imaging. (A) Expression of *tgfbR2* in the somites (som) and posterior lateral mesoderm (plm) at 12hpf. Expression of *tgfbR2* at 15hpf in head vasculature (hv) and somites. (B) *tgfb1a* is not expressed in the posterior at 12hpf but is present in head vasculature from 12hpf and in the embryonic dorsal aorta (DA) at 15hpf. (C) *tgfb1b* is also present in the head vasculture and DA at 15hpf. Note that there is anterior expression of *tgfb1b* in cells that are likely myeloid. (D) *tgfb2* is expressed in the polster (p), otic vesicles (o), notochord (n) and in the tailbud (tb) at 12hpf. (E) Expression of *tgfb3* in the notochord and in the 4 anterior-most somites (ant som) at 12hpf. At 15hpf, the expression in the somites and notchord is maintained and weak expression in the head vasculature is observed.

and primers used to validate the morpholinos. (B) Western blot against TgfβR2 showing a decrease of WT protein induced by the *tgfbR2^{M01}* morpholino. (C) Validation of the *tgfbR2^{M02}* by qPCR on 24hpf cDNA with tgfbR2 F2/R2 primers (see below). Ef1a PCR was used as a control for the PCR. (D) Expression of *runx1, cmyb* and *ikzf1* at 48hpf is reduced in the trunk and CHT of *tgfbR2* morphants. Expression of *cmyb, ikzf1* and *l-plastin* is severely reduced (E) in the thymus and (F) in the CHT of *tgfbR2* morphants at 4dpf. (G) Characterisation of the tgfbR2 MO1 and MO2 morpholinos. *Runx1* expression is decreased upon injection of either morpholino, whereas the arterial markers dll4, notch3 and dlC and the vascular markers kdrl and fli1 are grossly normal. (H) Expression of *scl, gata1* and *pu.1* is indistinguishable between wildtype and *tgfbR2* morphant embryos at 20hpf. (I) Expression of the primitive hematopoietic markers *gata1* and *pu.1* is unaffected in *tgfbR2* morphants at 24hpf. (J) *tgfbR2* morphants show a slight reduction in o-dianisidine staining at 36hpf. Numbers of embryos analysed are shown in each panel as number of affected embryos/total observed.

Figure S3, related to Figure 3 – Validation of morpholinos targeting $tgf\beta1a$, $tgf\beta1b$, $tgf\beta2$ and $tgf\beta3$ and further characterization of the phenotype. (A) Schematic representation of the genomic organization of the tgfb1a gene, location of morpholinos and primers used to validate morpholino activity. (B) Schematic representation of the genomic organization of the tgfb1b gene, location of morpholinos and primers used to validate morpholino activity. (C) Validation of the activity of the tgfb1a morpholinos by PCR. Yellow asterisk marks PCR products generated as a result of aberrant splicing induced by the tgfb1a morpholinos MO2 and MO3. We have used $tgfb1a^{MO2}$ in all of the subsequent analysis. (D) Validation by PCR of the activity of two antisense morpholinos targeting tgfb1b. Clear aberrant splicing was induced by tgfb1b morpholinos MO2 and MO3. We have used $tgfb1b^{MO2}$ in all of the subsequent analysis. (E) Validation by PCR of the $tgfb1a^{MO2}+tgfb1b^{MO2}$ combination. Asterisk marks the remainder of the normally spliced tgfb1b gene product. (F) Testing the tgfb1a+tgfb1b MO2 combinations by *in situ* hybridisation against HE markers *runx1*, HSPC marker *cmyb* and arterial marker dll4 at 28hpf. The combination of tgfb1a+tgfb1b MO2 (referred to in the main text as $tgfb1^{MO}$) was used at 7.5 ng/µl +10ng/µl throughout the manuscript. Numbers of embryos analysed are shown in each panel as number of affected embryos/total observed. (G) Validation by PCR of the activity of a morpholino targeting tgfb2. (H) Validation by PCR of the activity of two published morpholinos (Cheah et al, 2010) targeting tgfb3. $Tgfb3^{MO2}$ was used in all of the subsequent analysis. (I) Expression of tgfb1a, tgfb1b and tgfb3 in $tgfb1^{MO2}$ and $tgfb3^{MO2}$ at 22hpf. $tgfb1^{MO2}$ morphants show an increase in tgfb1a and tgfb3 and a decrease in tgfb1b; $tgfb3^{MO2}$ morphants show a dramataic loss of tgfb3 expression. Numbers of embryos analysed are shown in each panel as number of affected embryos/total observed. (J,K) Comparison and quantification of the runx1 expression in the DA upon single $tgfb3^{MO2}$, $tgfb1^{MO2}$ or combined $tgfb3^{MO2}$ + $tgfb1^{MO2}$, showing increased severity of the phenotype in the triple morphants as compared to single morphants. The numbers of embryos analysed are shown in the graph in (K).

Figure S4, related to Figure 4 – Inhibition of Vegf ($kdr+kdrl^{MO}$), Wnt ($Wnt16^{MO}$) or BMP ($BMP4^{MO}$) signalling pathways by morpholino oligonucleotides. All *in situ* hybridisation experiments were performed at 22hpf except for the *runx1* probe, performed at 26hpf. (A) Loss of Vegf signalling upon morpholino knockdown of the Vegf receptors *kdrl* and *kdrl* (Bahary et al, 2007) results in decreased expression of *tgfb1a* and *tgfb1b* in the dorsal aorta (DA). *Runx1* expression in the DA was used as a positive control for the experiment. (B) Loss of Wnt signalling or BMP signalling by morpholino knockdown of Wnt16 (Clemens et al, 2011) or BMP4 (Chocron et al, 2007) showed no effect of expression of TGF β ligands or receptor. *Runx1* expression in the DA was used as a positive control for the experiment. Numbers of embryos analysed are shown in each panel as number of affected embryos/total observed.

Figure S5, related to Figure 1 and Table S1 – Multiplex analysis of the gene expression profile in tgfbR2 morphant embryos of a custom Probe Set (132 genes) using Nanostring (see Supplementary Experimental Procedures and Table S1). The custom designed probes include genes that belong to known pathway or processes that affect endothelial or hematopoietic cell programming, fate or survival, as well as six housekeeping genes. All genes shown here displayed no significant changes in expression upon *tgfbR2^{M01}* knockdown (see Figure 5 for differentially expressed genes). Each column represents one sample in a total of six wt and six *tgfbR2^{MO1}* replicate morpholino injections (A) Notch pathway genes. (B) TGF β pathway. (C) BMP pathway. (D) Vegf pathway. (E) Hedgehog pathway. (F) Wnt pathway. (G) Blood: genes expressed mostly in HSPCs, erythroid or myeloid cells. (H) Genes with known roles in epithelial to mesenchymal transition (EMT). (I) Gene expressed in endothelial cells (J) Cell cycle: genes that mark proliferation or apoptosis. Note that expression data is repeated for some genes as they fall into more than one category. (K) p53, cdkn1a and baxa are upregulated in runx1 morphants. Trunks from 20 wild type and 20 runx1 morphant embryos at 27hpf were dissected and the cDNA analysed by qPCR. The data represents the average of 4 biological replicates and were normalised to gapdh. (L) qPCR in kdrl-GFP⁺ endothelial cells confirms that neither gata2a nor *dll4* expression were affected by *tgfbR2* morpholino knockdown at 26hpf. (M) qPCR for *jag1a* in tqfb1 and tqfb3 morphants at 28hpf. (N) p53 but not qata2a or dll4 expression are affected in tqfb1 (tgfb1a MO2+ tgfb1b MO2) or tgfb3 morphants. qPCR results are shown as the average (±s.d.) of 3-6 biological replicates. Expression levels were normalized to *bactin2* and *ef1a*. *p* values are shown on the graphs. n.s.- not significant.

Figure S6, related to Figure 6 – qPCR analysis of *tnfr2* expression. *tnfr2* expression is unaffected in kdrl-GFP⁺ endothelial cells at 26hpf in *tgfbR2* morphants. qPCR results are shown as the average (±s.d.) of 3 biological replicates; each biological replicate was done in triplicate. Expression levels were normalized to *bactin2* and *ef1a*. n.s.- not significant.

Supplemental Table S1 (excel file), related to Figure 5 - Mean Expression Values of the Data Analysed with the NanoStringNorm Package Sorted by Increasing P Value. The Top 9 Genes (P<0.05 and absolute log2FC> 0.5) are Highlighted. Eight of the Probes Failed and were not Considered in the Analysis.

Morpholinos, RNA and DNA injections and chemical inhibitors

To assess the role of TGF β signalling in definitive haematopoiesis, we designed MOs targeting either the 5'-end or a splice site of $tgf\beta R2$, $tgf\beta 1a$, $tgf\beta 1b$ and $tgf\beta 2$ (see below; Fig. S2,S3). For splice blocking MOs, correct targeting was validated by PCR on cDNA from morphant embryos (Fig. S2, S3) using the primers indicated (see below). We validated the phenotypes induced by translation blocking MOs by comparing them against those induced by splice MOs for $tgf\beta R2$, $tgf\beta 1a$, $tgf\beta 1b$ (Fig. S2,S3, data not shown). For $tgf\beta 2$, both MOs yielded the same phenotype (data not shown) but only $tgfb 2^{MO3}$ could be validated by PCR (Fig. S3G) so all experiments were done with $tgfb 2^{MO3}$. For $tgfb R2^{MO1}$, the phenotype was further verified by western blot against Tgf $\beta R2$ (Fig. S2B).

To investigate whether the Notch or Vegf pathways regulated the transcription of TGF β ligands, we treated wildtype embryos with DMSO (control), the γ -secretase inhibitor inhibitor DAPM (565777, Calbiochem) or the Vegf inhibitor DMH4 (D8696, SIGMA) from tailbud stage until collection at 22hpf or 28hpf for analysis by in situ hybridization, at concentrations specified in the figures. To interrogate *kdrl*, *tgfb1a* and *tgfb1b* gene expression in endothelial cells of DMH4-treated embryos, treated and untreated Tg(Fli1a:gfp) embryos were dissociated and GFP⁺ cells isolated and processed for mRNA extraction with the RNEasy Micro kit (Qiagen) as described (Monteiro et al., 2011). cDNA was synthesized from total RNA using a Superscript III RT-PCR enzyme (Invitrogen) following the manufacturer's instructions. The primers used for quantitative real-time PCR (qPCR) are shown in below. Fold changes in gene expression were calculated using the 2^{-ΔΔCτ} method (Livak and Schmittgen, 2001) and normalized to a geometric mean of *bactin2* and *ef1a*.

To rescue the loss of HSC markers in *tgfbR2* morphants we transiently expressed *jag1a* (Ensembl ID: ENSDARG00000030289) in endothelial cells under the control of the *Kdrl* promoter (Jin et al., 2005). The jag1a sequence was PCR-amplified from 24hpf embryo cDNA and a C-terminal V5 tag was added

in frame in the 3'end primer (see below for primers). This amplicon was then cloned into a Tol2 destination vector, downstream of the Kdrl promoter using the InFusion HD Cloning kit (Takara Clontech). The resulting Kdrl:jag1a-V5 construct was confirmed by sequencing. Additional details available upon request. The amount of DNA used for the rescue experiment is shown in the figure legends.

Western blotting

Protein extracts were prepare as described (Link et al., 2006); samples were sonicated in a Bioruptor sonicator (Diagenode) prior to loading on gel. After transfer, membranes were blocked in 5% milk (SIGMA) in Tris-Buffered Saline+0.5%Tween-20 (TBST) for 1h at RT. TgfbR2 protein was detected by a primary anti-tgfbR2 antibody (diluted 1:250 in blocking solution, sc-17792, Santa Cruz). A goat antimouse HRP-conjugated was used as a secondary antibody (1:1000 in blocking solution, P044701-2, DAKO) and developed with ImmunoCruz luminol reagent (SantaCruz). Blots were stripped with Invitrogen's stripping buffer, blocked again in 5% milk in TBST and re-probed with an anti β -actin-HRP conjugated antibody (1:35000, A3854, SIGMA).

NanoString expression analysis

This technology is as sensitive as qPCR but gene expression levels are obtained by counting mRNA molecules that hybridise with specifically tagged probes and does not require amplification (Geiss et al., 2008). We used 100ng of total RNA to hybridise with the capture and reporter probes overnight at 65°C. After the washes, the Target/Probe complexes were eluted and immobilized in the cartridge for data collection in the nCounter Digital Analyzer according to manufacturer's instructions. The raw data was analysed using the NanoStringNorm R package (Waggott et al., 2012). The data was normalised using the geometric mean of the six positive controls and then it was background corrected by subtracting the mean and 2 standard deviations of the eight negative controls. The data was then

normalised for sample/RNA content using the geometric mean of five housekeeping genes (*bactin1*, *bactin2*, *gapdhs*, *sdha* and *ubiC*). Normalised mRNA expression levels were log2 transformed and analysed using a t-test to identify differentially expressed genes between conditions. The pheatmap package (Kolde, 2013) was used to generate heatmaps. The values used were the scaled per gene normalised values from the NanoStringNorm package (Waggott et al., 2012).

Immunohistochemistry and apoptosis staining

To evaluate apoptosis in *tgfbR2* morphants, we stained for apoptotic cells using the Click-IT TUNEL® Alexa 594 kit (C10246, LifeTechnologies) followed by immunostaining against GFP. Briefly, embryos at the desired stage were fixed for 1h at RT in 4% paraformaldehyde in PBS (PFA), permeabilized in PBS+0.25% TritonX-100 for 20min at RT and then washed twice in deionized water. The TdT and Click-IT reactions were performed according to the manufacturer's instructions. For detection of GFP following the Click-IT reaction, samples were blocked in 3%BSA, 5% goat serum in PBS+0.5% TritonX-100 (PBST) for 1h at RT and incubated overnight at 4°C with a chicken anti-GFP antibody in blocking solution (1:500, ab13970, Abcam). Samples were washed 6x15min in PBST, blocked again in 3%BSA, 5% goat serum in PBST for 1h at RT and incubated overnight at 4°C with a goat anti-chicken Alexa 488 conjugated antibody (1:500, A-11039, Invitrogen). Following 6x15min washes in PBST, the embryos were mounted in Vectashield® and imaged in an LSM780 confocal microscope with a LD C-Apochromat 40x/1.1 W objective.

Morpholinos, primers and NanoString probes

Antisense Morpholino Oligonucleotides (MOs) Used in this Study.

Gene	Ensembl ID	MO name	MO type	MO sequence (5'->3')	amount injected	published	comments
tgfbR2	ENSDART00000039832	tgfbr2 MO1	ATG	ATATCGCTCCATTAGAAACGCAGTC	12.5ng	this study	
		tgfbr2 MO2	e4i4	ATATTAAGTTGTCTCCTGACCTGCA	10ng	this study	
tgfb1a	ENSDART00000060839	tgfb1a MO1	ATG	CAGCACCAAGCAAACCAACCTCATA	10ng	this study	did not work
		tgfb1a MO2	e2i2	TGGTGCAACAATCACCTCACCTGAA	15ng	this study	
		tgfb1a MO3	e4i4	GGACAGCAAAAAGACTTACTCATCA	2ng	this study	
tgfb1b	ENSDART00000028981	tgfb1b MO1	ATG	GTAATAAACTCTCCGCCTTCATGGT	1ng	this study	
		tgfb1b MO2	e1i1	AAGGATAGTGCCACTCACTCATTGT	20ng	this study	
tgfb2	ENSDARG00000027087	tgfb2 MO1	ATG	GGAGGCTCAAGACGTACAAGTTCAT	5ng	this study	
		tgfb2 MO3	e2i2	AAAGGGACTTTGGATTTACCTGGTA	7.5ng	this study	
tgfb3	ENSDART00000019766	tgfb3 MO2	splice	CATCATCCCTAAGGGAAACTTACTG	17ng	(Cheah et al., 2010)	
kdrl		Kdrl MO		CCGAATGATACTCCGTATGTCACTT	4.5ng (in combination	or MO2 kdrl (Bahary et	
					with kdr MO)	al., 2007)	
kdr		Kdr MO		GTTTTCTTGATCTCACCTGAACCCT	4.5ng (in combination	or MO1 Kdrb	
					with kdrl MO)	(Bahary et al., 2007)	
bmp4		bmp4 MO	splice	GGTGTTTGATTGTCTGACCTTCATG	2ng	(Chocron et al., 2007)	
wnt16		wnt16 MO		AGGTTAGTTCTGTCACCCACCTGTC	5ng	(Clements et al., 2011)	
runx1		runx1 MO	splice	AGCGCTCTTACCGTATTTGGCGTCC	5ng	(Gering and Patient,	
jag1a		jag1a	splice	AAGCCAAACCCGCACATACCCGCAT	6ng	2005) (Yamamoto	

Gene	Acession number /Ensembl ID	primer name	primer sequence	purpose	anti-sense linearisation	in vitro trans- cription
tgfb1a	Acession:NM_182873	tgfb1a E1	TCAGACGCTTTTCGATCCTT	generate in situ probe;	Apal	Sp6
		tgfb1a R1	AGGACCCCATGCAGTAGTTG			
tgfb1b	Ensembl ID:ENSDARG00000034895	tgfb1b F1	GCACACCATAGAAGATCCAAC A	generate in situ probe; test splice MO	Apal	Sp6
	(ENSDART00000028981)	tgfb1b R1	TGACAACTGTTCCACCTTATGC			
tgfb2	Accession:NM_194385	tgfb2 F1 tgfb2 R1	GTTCAAGAAGAAGCGGATCG GGGGTCTTGCCGATGTAGTA	generate in situ probe	Spel	Τ7
	Ensembl ID:ENSDART00000030271	tgfb2 F2	GTTCAAGAAGAAGCGGATCG	verify splice MO		
		tgfb2 R2	TGTCTGCGCTCCACAGATAC			
tgfb3	Accession:NM_194386	tgfb3 F1	TGGCTGACAAACAGAGCAAC	generate in situ probe	Apal	Sp6
		tgfb3 R1	CTGCCGTGTGACAGAGGTAA			
	Cheah et al, 2010	tgfb3 F2	TCACACTTAGTTCATGTTAG	to verify splice MO (362bp in MO, but not in WT)		
		tgfb3 R2	TGTAGCGCTGCTTGCCGA			
	Cheah et al, 2010	tgfb3 F4	CGGGCAGGACAACACTGA	qPCR		
		tgfb3 R4	GGCAGTAGGGCAGGTCATTG			
tgfbR 2	Accession:NM_182855	tgfbr2 F1	CACACATGCCAACAACATCA	generate in situ probe	Apal	Sp6
		tgfbr2 R1	TCTCATTTGTCGTCGCTCAC			
	Ensembl ID:ENSDARG00000034541	tgfbR2 F2	TCAGTCCGGATCACACGATA	verify splice MO		
		tgfbR2 R2	CGACAGCGAGTTGTCCAAAC	verify splice MO		
gata2 b		gata2b F1	ATGATGGATGCCCCAGCG	generate in situ probe	Sacl	Τ7
		Gata2b R1	TCAGCCTATAGCAGTGACTAA GC			
jag1a	Yamamoto et al, 2010	jag1a F5 jag1a R5	GACAGACAAACCGGGATGAT CACCGCTTTCTCGATCACTT	verify splice MO		
rspo1	Ensembl ID:ENSDARG00000039957	rspo1 F5	AGAAGCTCTACTCCATGGCTTG	qPCR		
		rspo1 R5	GACAGAGGCCTGGTTTATTTT G			
baxa	(Danilova et al., 2011)	Bax F1	CGTCGGGTGGAGGCGATACG	qPCR		
		Bax R1	GAGTCGGCTGAAGATTAGAGT T			
baxa*	Accession:NM_131562	Bax F2	GGAGATGAGCTGGATGGAAA	qPCR		
		Bax R2	GAAAAGCGCCACAACTCTTC			
p53	Accession:NM_001271820	p53 F1 p53 R1	TTAAGTGATGTGGTGCCTGCCT AGCTTCTTTCCCTGTTTGGGCT	qPCR		
ef1a	(Bertrand et al., 2008)	ef1a-F1 ef1a-R1	GAGAAGTTCGAGAAGGAAGC CGTAGTATTTGCTGGTCTCG	qPCR		
bactin	Ensembl	bactin2	GGACCTGTATGCCAACACTGT	qPCR		
2	ID:ENSDARG00000037870	F1	A			
		bactin2 R1	ATGTGATCTCCTTCTGCATCCT			
gapdh	(Simoes et al., 2011)	gapdh	GGTCATTGATGGTCATGCAAT	qPCR		
		F1 gapdh	C CACCTGCATCACCCCACTTA			
		R1				
taz	Ensembl ID:ENSDARG00000041421	taz F1	GGAGAATATCCAGCCGAGTG	qPCR		

	Ensembl ID:ENSDART00000138805	taz R1	TGCACCATCAGCGAGTTAAA	
cdkn1	Ensembl	cdkn1a	AAGTGGAGAAAACCCCAGAGA	qPCR
а	ID:ENSDART00000136722	F1		
		cdkn1a	TAGACGCTTCTTGGCTTGGTA	
		R1		
cdkn1	Ensembl	cdkn1a	AACGCTGCTACGAGACGAAT	qPCR
a*	ID:ENSDART00000136722	F2		
		cdkn1a	CGCAAACAGACCAACATCA	
		R2		
cdkn1	Ensembl	cdkn1b	ACGGGAATCACGACTGTAGG	qPCR
b	ID:ENSDART00000076417	F1		
		cdkn1b	CACGATGAGTCGAGACAGGA	
		R1		
jag1a	Ensembl	jag1a F3	ATTGGTGGATACTTCTGCGAG	qPCR
	ID:ENSDART00000137172		Т	
		jag1a R3	CCATTCACCAGATCCTTACACA	
		jag1a	GCCACCATGATTCTCAGACCGA	amplify jag1a+C-terminal V5 tag
		kozak F	GCGC	
		jag1a V5	CTACGTAGAATCGAGACCGAG	
		R	GAGAGGGTTAGGGATAGGCTT	
			ACCIACGATATACICCATTIC	
			IGCAAG	202
gataz	Accession:NM_131233	gata2 F3	GGACGAAAAGGAGTCCATCA	qPCR
		gataz	GCACTCATAGCCAAGCTTCC	
dll4	Ensembl		ΔΟΘΟΑΤΑΟΛΑΟΟΟΤΑΛΟΑΤΘΟ	aDCR
uli4		uli4 F4	ACGCATACAACCCTAACATGC	yrck
	12.EN3DANG0000070423	dll4 R4	CTCTGTCTGCTTCCCACTTTG	
tnfr2	(Esnin-Palazon et al 2014)	tnfr2 F		aPCR
		tnfr2 R	GGCATCTGTGATGGGAACTT	4. 0.,
*primers used for aPCR experiment shown in Figure S5K.				

Pathway	gene	accession number	target sequence
	name		
VegfA	vegfaa	NM_131408.3	
signalling	vegtab	NM_001044855.2	
	VegtC	NM_205734.1	
	KOLI (TIKT)	NIVI_131472.1	
	mflt1	NM 001024055.2	GAAGCACTGGTTTCTGGCATCTATCGCTGTGTCACATCCAACATATTAGGCAGAGATGAACTAGACATTCCTTTCTATGTCACAGATGTCAAAGAAGAGCC
	cflt1	NM_001257153 1	CAGCTTCCCAGCAGCGTGATTGTCCCCTCCGTCTTCAAACGTGGCACAGTCCGCTTCCTCAGGAGCTTGATCTATTCTTGAGAGTCCCTGATCCCACACAC
	flt4	NM_130945_1	TCCTGACCTAAAAGTCACTCTCTTCTCGTTAGTGCCGTATCCAGAGCCTGTGGATGGCAGTGTGGTCACCTGGAATAATAAAAAGGGTTGGTCGATTCCC
	plcg1	NM 194407.1	TTTTACGCAGTGGATCGTAACCGAGAGGACAGAATTTCCTGTAAGGATCTGAAATGTATGT
	tel1	NM_001044968.1	CCTGGTGGAACTAGTGGACTATTTCCGAAAGAAGCCGCTGTATCGAAAAACAAAACTGCGCTATCCTGTTACACCAGAACTAGTAGAGCGCTTCAGTTCG
	cbfa2t3	ENSDART00000021009.2	GCAACACTGCACGTTACTGTGGCTCTTTCTGTCAGCACAAGGACTGGGAGAAACACCATCATGTATGCGGCCAGGGTCTGCCTAGCAGTAGCGAGAGCAC
Notch	notch1a	NM_131441.1	CAACTCTGATGATTGTGCATCTCAGCCGTGTCTCAACGGAAAATGCATCGACAAAATCAACTCGTTCCACTGCGAATGCCCTAAAGGGTTTTCTGGGAGT
signalling	notch1b	NM_131302.2	GCCCGAGCAATTCAAGTAGAACAATGAGATTCGCTAAATGAAGGCACATTCCATAAGCCTGCTTATCTGAAGGGTCTTTATATGCCGCTTGTACTAACCT
0 0	notch2	NM_001115094.1	CCATTCGGGATTCCTGTTTACAGCCATCTGCGATCTGAGGCAATGTTACCATTGAACGATCACACTGCCAAAAGTAAGGAGTCTCATTTTGGGGGTACTG
	notch3	NM_131549.2	TCAAACAGCTTGGACTGCATACAGTTGCCCAATGATTACCAATGTGTGTG
	dll4	NM_001079835.1	TCACCTTACTCGGATCTACCTGTAGACGCATACAACCCTAACATGCAGATAAGCTTTTTTGCCATCCAAAGAAAG
	dlc	NM_130944.1	GTCAACATTCACTGGTGGTAACTATTTCCCGACATTCCCAAGGCTTGAAAGGACCCTTGGTCCAAACTGATAGCCTCAACATTGTCAAGATTTCCTGGGTT
	dld	NM_130955.2	
	Jagia	NIVI_131801.1	
	jagin jagada	NM 131862 1	TGAAGACCCACAATCCCTTCCCTTACCAGTCCTCCTGTTGCTGATCATAAAACCGAGACCTGCCGGTTCATGCTTGTTGCTTGC
	hev1	NM_131002.1	AACATCAGACTATTTTGAACAGATGCACAGAAACAGACTTGTACAAAGGGAAGACACGAATACAGATCCACTCTACTAACCAGAACGACTGTGCTTGTCC
	hev2 (grl)	NM 131622.2	GGAATGAAGTTTGAGACCTCCATTCGACGGCTCGGGGCGTGTTTTCTATTTTTTTT
	efnb2a	NM_131023.1	ACTTTGGAGTTTTAGTGATCGCGTGCAAGGTGAACCTGTCCCGCGCGCCTCATCCTGGACTCCATATACTGGAACACCACGAACACCAAGTTTGTGCCGGG
	ephb4a	NM_131414.1	ACCTTGTAAACATTCACAAGTAAAACACTCGTGATTCCGCGATGGAGCTCTTCTCCAGGAATGTGGCCGCGTTTTGGGTTATCCTGCTGGAGTTCCTGCT
TGFβ	tgfb1a	NM_182873.1	CTGGGAACTCGCTTTGTCTCCAAGGACTTGTCCAACCGCTGGCTCTCATTTGACGTGAAACAGACAATGATAGAATGGCTGCAGGGTTCAGAAGATGAAG
, signalling	tgfb1b	ENSDART00000134907.2	TGCAAGTGTTGCTGAAAGCATCATTTCCGTTTGGTCTTGATGAGCAAAGTTAAGAGAACAACACACAGGGGGCGCTTGAGACCCAGCACTTTCTGAGGGGGA
0 0	tgfb2	NM_194385.1	AAGTGCACAAGATAGACATGCAGCCCTTTTACCCTTCAGAGAATGTCATCTTATCACAACATTACTACCCATACTTCAGGAGGCTGATGTTTGACGTGAG
	tgfb3	NM_194386.2	CGCCTAAAGTGGAGCAGCTTTCCAACATGATCGTCAAATCCTGCAAGTGCAGCTGAGAGGTCCGTTTTCAACCCATCCACGAGCCAAAAGCTTCTGCGTT
	eng	ENSDART00000125008.2	GTGCGTTGGGTTTTGGAAAATGAGGGGACTGTCAAGCAACATCAATGTGCTGGTGCAGTTGTCTGTGAACTCCACGGCAGAGTCTTCGAGTCTGTCT
	tgfbr3	ENSDAR100000109313.2	
	dCVIII	NIVI_103043.1	
	tofhr1a	NM 001037683 2	CAAGGACTGCTGTGTTACTGTGAACGATGTGTCAATCGGTCGTGCAACACCAACTGGACTGTGTTTGCCGTCATCGCTAAGTCTTCTGGACAGACCGTGA
	tofhr1h	NM_001115059.1	CATGAAGCATTTCGAGTCCTTCAAGAGGGCTGATATCTACGCCATGGGCCTGGTGTTCTGGGAGATCGCCAGCCGCTGCTCTATCGGAGGTATTCATGAA
	smad1	NM 131356.1	CCCCGTGCTGGATTGAGATTCATCTTCATGGACCCCTGCAGTGGTTGGATAAAGTCCTCACCAGATGGGATCTCCTCACAACCCCATTTCTTCAGTGTC
	smad2	NM 131366.2	CTGCAGCCAGTGACTTACTCAGAGCCTGCGTTTTGGTGCTCCATAGCTTACTATGAACTTAACCAGCGGGTCGGAGAAACATTCCACGCCTCTCAGCCTT
	smad3a	NM_131571.2	CCCACAACAATTTAGATCTACAGCCAGTGACATACTGTGAACCAGCATTTTGGTGCTCTATTTCCTACTACGAATTGAACCAGCGAGTAGGAGAAACTTT
	smad3b	NM_175083.2	ACAGCCTCTGGACTCCTCAGAGTGTTACTTTATCAATTACAGATCCCGATATTTGCTGTGGGGCAAAAACTGCTGCATACAGTTGAAGCACTTTGAACGGT
	smad4	ENSDART00000035478.2	AGTTTGACACCCCTGCTTTAAAGTAAACATTTAACCGTGTCTCTTTGTGCAGTTTCTCATAACCAAAGCTATTTTCTCCTCAGGGCCTGTTCACAATGAA
	smad5	NM_131368.2	CGGTGTCTGTAAAACAGAGCAAAGGTCGACAGAGTCTACAGCATTTCTTGAAAGGGATGGTGGCTTTTCCGCAGGGAGGTGTTGAGAAGTGATTGAAAAA
	claudin5a	NM_213274.1	
	claudin5b	NM_001006044.1	
	Id2a	NM 201291 1	ATATGTGCAGCATAGTGACCTTGCCTTTTATATCCAGGACTCTGAAGCATGTCACTGACCCTTCAAACTTGCACATTCGCCCAAGGAATGTTCTATTGAA
	Id2b	NM 199541 1	ACAGATGACCTCATAGCCCTGTCTCGTTGAAATGGTGAGTTGATTCATCTTCATGCTTTGACAAGCCAAGTTAAACTTTTGCACGTGGGGCAGTTTGCTG
	id3	NM 152967.1	AAACGAGACAGACAACAAAAACACGCCTGACATTTTCCTGTCAATGAAGAACTCAGAGATGAGCCGTAATTTCTCCAAAGAAGATGGAGCTATGTGCCAT
	zeb2a	NM 001135104.1	ATATGATTCTTAAACGTACAAAGTCTTAAAGTTGGCCAGGGGGGGG
	zeb2b	NM_001245966.1	ACTGGATCGGAGACGGAAGAAGAAGAAGACAGACTTTTGGTATCGGAGGAGGACGCTTTGCTTAATGGGGCGGGGGAGTCCGGCCAGCCTTGTCAATCATGAGT
	twist1a	NM_130984.2	GATGCACGCGTTTGATGCAGCATGATTCTCGGCCTGAGGAGCTGAACTCACTGGAAGGAGCGGCTCAAAACAAGGGCGAAAATAAGGATTATAAAGGGAA
	twist1b	NM_001017820.1	AATCTTGGGGAAAACGGCAAATGTTCCAACAGAGGTCATGGCTGTTACCGAGAGAAGGCCACGGGCAGCGAATTGTCATATGGATTTCCTCGCGAGTCTT
	twist2	NM_001005956.1	
	snai1a	NM_131066.1	
	snai1b	NM_130989.3	
	cuns	NIVI_001003983.1	
Cell cycle	COKN1a	ENSDAR100000113620.2	
and	cdkn1c	NM 001002040 1	GAGCGAGACCAGAGCCGGTGGAATTTTAACTTTGAGACCAACTCGCCTTTGCCTGGAGATTACGAGTGGGGGGGG
apoptosis	cyclinD1	NM 131025.3	ACACGGTGCAGAAATTCATGTATAAGTGGCTGCCTGTCTTGTTCTGAACACAGGAGACCTGGCAGGTCCCCACCAAGTCGTTGTCTTAATAAATGTGACG
	tp53	NM 131327.1	TGAGGGGCAGGGAGCGTTATGAAATTTTAAAGAAATTGAACGACAGTCTGGAGTTAAGTGATGTGGTGCCTGCC
	perp	NM_001256207.1	ATGGAAGTCAGTGGGTGCATTTGTAGGTGAGATTTTTGGCGTGAACTGTCCCTCTAACAGGTATACATGCATCTCTCCCATAGTTAATTCTGATAGGTGG
	baxa		GTCTCCACTGCAAGGGCTTCCAAATGTCTGTGAGTTGTATTTACAGGTACAAGATGAGCCTCTAAAGTTTATGAGGTGGCGTGGCAGCAGTTGAGCGCAG
	bcl2	NM_001030253.2	TGGAGGTTGGGATGCCTTCGTGGAGATGTACGGTCAGCAGAGAGACTCTGTGTTCCACCCGTTTTCATACCTAACAAAAGTGCTCGGCTTGGCGGCGCGCG
	bcl2l1	NM_131807.1	GCTTTGCAGAGATCTTTGGAAAAGATGCAGCGGCGGAAAGCAGGAAATCGCAAGAAAGCTTCAAGAAATGGTTGTTTGCAGGAATGACCTTGCTCACGGG
	pcna	NM_131404.1	TGTGACCCTCTAAAGCCATTACATATCATTGGCAGAATTGCGGGCGCACTTATTAAATGATGGTAGTTTGGGCCTTAGCTTTACCAGGCGCTCCGTGGGC
	bmp4	NM_131342.2	GATTUGTTTTAATUTCAGCAGCATCCCAGAGGACGAACTCATATCCACCGCAGAGCTTCGCGTCTACAGGCAACAAATAGATGACGCCTTCTCAGACCC

BMP, Shh	bmp2b	NM_131360.1	AAGTTTTCATCACGAAGAGGCTTTCGAGGCACTGTCCAGCCTGAAAGGAAAAACAACGCAGCAGTTTTTCTTCAACCTTACCTCCATTCCTGGCGAGGAG
and	bmpr2a	NM_001039817.1	CAGTTCTGCTCTCCTGAAACGTCAGCCTCCCACGGCCCGTTTTATCCTCTCATGAAGATGGTTTCTGAGGTTTCGGGGTCACAAGGATCCAGTAGGCATG
angionoie	bmpr2b	NM_001039807.1	CACATGAGCTTGAACTTCGTTCGATAGAAAGAAGAAGGGGGAACAGAAAATCTAGTTACTGGAACTTTTTTGGAGCTGAATCCATCC
tin	shha	NM_131063.1	CCACGACGCGACGTGTTTTACGTCATAGAAACGCAAGAACCCGTTGAAAAGATCACCCTCACCGCCGCTCACCTCCTTTTTGTCCTCGACAACTCAAC
signalling	shhb	NM_131199.2	GAAACATACAAGAGATTATATGAGATATGAGAAAGCGCAGGGCTGTGCAGTGTGCAGCGCTCTATTTTATCGGATAACCATAAAGGATGGCGCTCAAAAG
signalling	ptch2	NM_130988.1	GCCACGCCGCTTTTGCTTTAAAACAGATTTCTAAGGGGAAAGCTGTGGGACAGAAAGCACCACTGTGGATTCGGGCGAGGTTCCAGGCTTTTCTCTTTTC
	gli1	NM_178296.2	GAACATGATGACATCCCATCATAATCTCCCTCATAACCAGCACACCTCGAACTCATGGCATCAGGAGACGCCTCTTGTTTCTCCACTCCTCGCTCG
	gli2a	NM_130967.1	GTATTTTGTCTCATCTAAGCTGTGTGATACTGAAGGACAGCATCTCTGCGCTTCAGCCTGTGTAGGCTTGACGAACCTTGCGTCCCTTTGAGATGTCTTT
	angpt1	NM_131813.1	GCTGACGAGGAGCGAAAGTTTCGGGATTGTGCTGATCTTTATCAAGCAGGCTTCCAGAAAAACGGAGTTTACACCATCAATATTAGCCCACAAGAGACCA
	angpt2	NM_131814.1	TGCAGAGGAACACCAGGCTTATTCTCAGTATGACACTTTCTACATTGACGGAGAAGATAAGAAGTATAGTCTCCATGCCAGGGGTTTCAGTGGTACTGCT
	tie1	ENSDART0000003701.2	GGGATAAAAATGAGTGCTGCAATTAAAATGCTCAAGGAGTTCGCCTCAGAGAATGACCATCGAGACTTTGCTGGAGAATTGGAAGTGCTGTGCAAATTGG
	tie2	NM_131461.1	GCGGCTCGAAACGTCCTGGTGGGAGAGAACTTTGTGGCGAAGATCGCAGACTTCGGGCTGTCCAGAGGTCAGGAGGTGTACGTCAAGAAGACCATGGGTC
Haemato	fli1a	NM_131348.2	ACTTCCTGAGACTCACCAGCGTTTATAACACCGAGGTCCTTCTCTCACATCTCAATTACCTCAGGGAAAGTAGCTCATCGATATCATACAACACGCCATC
poietic/va	fli1b	NM_001008780.1	GTAATTTCTTCACGCCTCAATCCACCTACTGGAACTCCGCAACCAGTGTGGTTTATCCCAGTTCACCGATGCCACGACATCCCAGCACTCACACTCACT
scular	apInra	NM_001075105.1	TCAGCTTCCAGTGAGATAAACTTTACCACAGACTCTTGTATCAGACAGA
genes	nr2f2	NM_131183.1	GTATTACAGACGCTTACCTAAGGTTGCGCCCAAGCGAATTTTCGCTCAAGTGTTTAGCCTCAGTAAACTGTATTTGTGAACGTGGGGAAATGATGGGTCA
80.00	dab2	NM_205757.2	GGCCAGATTTCAGGGTGATGGAGTGAGATATAAAGCCAAACTTATTGGTGTGGATGATGTTCAAGATGCAAGAGGGGATAAAATGTGTCAGGATTCCATG
	scl alpha	NM_213237.1	TAGCAATCGAGTCAAGCGCAGACCTGCACCTTATGAGGTTGAAATCAACGATGGTTCGCAGCCCAAAATTGTGCGACGGATTTTCACGAACAGTCGCGAG
	lmo2	NM_131111.1	GCGTACACAATGTGTGCTGGATGTTTCTGACCTTTGATACACTTGCTAAGACAGCAGAACAGGTGCATCTCTGAAGCGTTTTGTGCGGCAGATGGTCTTT
	lmo4a	NM_177984.1	ACATCTTCCCTCCAATCTCTCCTCGTGAATGTCCACCTTCACCCGAGACCTTCTGCCCACTTCTGCGCATCCAGCCACCTTAAAAGAGTTCAGAACTACG
	lmo4b	NM_212689.1	TCTCAAGTGTTTCACATGTTCTACCTGCCGGAACCGGCTTGTCCCTGGTGACAGGTTTCACTACATCAACGGCAGCTTGTTTTGTGAACACGACAGACCC
	ldb2a	NM_131314.1	TGTCCAACCCTCCGCACGACCCCTTTCACTCGTCCCCTTTCGGACCCTTTTACCGGAGACATTCACCGTACATGGTGCAGCCCGAGTACAGAATCTACGA
	tbx20	NM_131506.1	GTTTCACGAACTCGGCACTGAAATGATTATCACAAAGTCTGGAAGACGAATGTTTCCGGACAATTCGTGTGTCATTTTCCCGAGTGGACCCCAGACGCCAAA
	hhex	NM_130934.1	GAGCATCAGTICACCCTATGATAAGCCCTGCTCTTACTGTAAATACTGCACCATACTGCACCATACCTGACCATGCGACATCGGACATCGGACATCGGACATGGGAG
	gata2a	NM_131233.1	
	gata2b	NM_001002689.1	CCCTATACCTICATATCCCGATTACTCAGTAGCCGGACCGCACGAGTATCCCGCCAGTGTGTTTCACTCCAGAAATCTGCTCGGAAACATGACCACAAAA
	etv2	NM_001037375.1	CTTTGGCAGTTCTGCTAGAACTCCTGCTGGCATCTGCTGCCACACTTTTATAAGTTGGACTGGTGATGGCTGGGAGTTTAAAATGTCAGATCCCGCTG
	gata1	NM_131234.1	ACAGACTCTGGTTTACTGCCACCCGTTGATGTAGATGAACTTTCTACTCAAGCTCTGAGACTGACCTACTGCCATCGTATTATTCCACCAGCGTCCAGA
	tif1g	NM_001002871.1	
	alas2	NM_131682.2	
	gfi1b	XM_001922262.1	
	spi1	NM_198062.1	
	mpx	NM_212779.1	GAGAGAGE IGTT GCCTT CACATCCCACATAGCT TIGGAT CIGCUTTCCCTACTAGCAAGAGGGGG IGACCATGCTATAGCATGGGTATAGAGCATG
	mpeg1	NM_212737.1	
	csf1ra	NM_131672.1	
	cebp1	NM_131837.1	
	lcp1	NM_131320.1	
	cmyb	NM_131266.1	
	IKZTI	NM_130986.1	
		NIM_131603.2	
	itao2h	NM_199209.1	
	ligazo domt4	NIM_00103857.1	
	ummu4 σfi1 1	NM_001023430.1	ACAGGCTAGATTGGAGAGCTGTGAGTGATTGGTGACCCTGAAGCTGATAACGGAGAGTAAACATGCCGAGGTCATTTTTGGTGAAGAGCAAACGGGCGCA
	gii1.1 afi1	NM_001020770.1	A23173267473642364364364364367374673747372326673646746747373736673766767674774737236767474774737236767674747
	bhbo1 1	NM_201338.1	GCTGATTGCTTGATCATCGTTGTTGCTGCTGCATGGATGCTGGGTTGCGGATTCACACCTGAAGTTCAGGCCGCTTTCCAGAAATTCATCGCTGTTGCGGTGCTCG
	urod	NM 131347 1	TGGGTCACGGCCTTTACCCTGATATGGACCCAGAAAATGTGGGGCGCATTCGTGGGAGGCTGTACATAACCACTCTCGCCAGCTTCTCAAACGCTAATAAAA
	ntorc	ENSDART00000105607 2	ATGCTTCATTCTTAGATGGCTACTGGTGTCAGAAGAGTCTGATCGCAGCACAAGGGCCTTTACCAAACAACAACAGCAGAGTTTCTGCTCATGCTGTACCA
	klf2	NM 131856.2	CTGGACCTAAAACCTCAAGACGGAACTGGAATCAGACAGTATAATGTGCTTTAAGTTAACATGATGTGCTGCGGGACATCACGACAGTGCCTTTTAATATGC
	klf4	NM 131723.1	TTTTAATATGTTTAGCGAACCACTGCGGGCAAATCACCCGGCCATGCCAGGTGTGATGCTGACTCCACCATCCTCACCTCTCGGGATTTTTAAGCCCA
W/nt	rsno1	NM_001002352.1	TTCATCTTACTGGAGCGAAATGATATCCGTCAGATAGGCATTTGCCTGGCCGCGTGTCCTGTTGGATATTATGGCATTCGAAATCGGGATATGAACAAAT
vviit	wnt2hh	NM_001044344 1	CCCTTGGTGCACGTGTGATCTGTGACAATATTCCTGGGCTGGTGAATAAACAGAGACAGTTGTGTCAGAAATATCCTGACATCGTGCAATCGATAGGTGG
signaling	wnt16	NM 001100046.1	CCAAAACAATGTTGACAGACTGCCGCTGTCATGGCGTATCGGGGTTCATGTGCGGTAAAGACGTGTTGGCGCACAATGGCTGCATTTGAGCGTGTGGGCGC
	fzd2	NM 131140 1	GAAAGACACTGCACTCTTGGCAGAAGTTCTATGTGCGTTTGACCAGTGCTGGACAAGGAGAAACCACTGTTTGAAACGAGACATTGTGATCCACAATTTC
	fzd7b	NM 170763.1	ACAACGGTGTGAACTGGACTGTGGGACTGCATGTGGGAAATACAGGTCAATATAGAAAGGAAACGTGAACTGCGATCAGGTCACACATTTGCTGATGGG
	taz	NM 001001814.1	TCTGGGGAGTCCTTAAGTTCCGGCAGTTGTGGAACCTTAACAAGATGAGATGGACACCTGCTGCTCCTGATATCTGTTTCACAAGAGAATTTCACTCCAG
Housekee	actb1	NM 131031 1	GATCTTGCAGGACTTCCCTAGGGTATGTGAATAAGGGATGTCCCTTGAAAATGTAAGCCAGGGTGTCTCTGTACACTGACAAGTCAACCCAAATAAAACG
ning	acth2	NM 181601 3	CCTGGGCATATTGTAAAAGCTGTGTGGAACGTGGCGGTGCCAGACATTTGGTGGGGCCAACCTGTACACTGACTAATTCCAATTCCAATAAAAGTGCACAT
hing	gapdhs	NM 213094.2	GAGGTTTAGCACCACAATCCACACTCTTGCAATAATGTCTGAGCTTTGTGTTGGAATCAATGGATTTGGCCGTATTGGCCGTTTGGTCCTCAGGGCCTGC
genes	ubic	NM 001077804.1	AGATGGACGCACTCTGTCCGACTACAACATCCAGAAGGAGTCCACCCTCCACCTGGTGCTGCGTCTTCGTGGCGGCAAATAATCTGCTTATGATTAATCA
	sdha	NM 200910.1	AAGACTATGCAGAGTCACGCAGCTGTGTTCCGTACTGGAGATGTTCTGAAGGAGGGTTGTGTCAAGATGGAGTCCGTCTATAAGTCGATGGATAACATTA
	eef1a1a	NM 200009.1	CTTCGGTGCACTGACAGCTTTATGTTTAGCACTTTGACTGGCGTAGGCTAACCCTGCACAAGCACTTGTTGACTTTAATTGGCATTAGCTACTGCACCTT
propenhri	chordin	NM 130973 1	CGACTCTGGGAGGAAGGAGGTCGAGTCTCTGTTTGATTTCTTCCAGGAAAAAGATGACGATTTGCACAAATCCTACAACGACAGATCGTACATCAGCTCC
c duct	cdh17	NM 194422.1	GCACTTTTGCTACACTTGACCCTTCTCGTCAGCATTGGTCATGGGATTGATCTAGAGGACAAAAAGGGGGCCATTAATAGATACGGTTTTAGATGTGCCAG
	pax2a	NM_131184.2	CCATTCTTGAAGAGAGGGGGGACTGAGAGACACTCGCCGTGTCCATGTTTTTCCTGTCATTCCCGCACGAATCTGACTGTACCCCTCAGACTGTTCAGAC

Supplemental References

Bahary, N., Goishi, K., Stuckenholz, C., Weber, G., Leblanc, J., Schafer, C.A., Berman, S.S., Klagsbrun, M., and Zon, L.I. (2007). Duplicate VegfA genes and orthologues of the KDR receptor tyrosine kinase family mediate vascular development in the zebrafish. Blood *110*, 3627-3636.

Bertrand, J.Y., Kim, A.D., Teng, S., and Traver, D. (2008). CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development *135*, 1853-1862.

Cheah, F.S., Winkler, C., Jabs, E.W., and Chong, S.S. (2010). Tgfbeta3 regulation of chondrogenesis and osteogenesis in zebrafish is mediated through formation and survival of a subpopulation of the cranial neural crest. Mech Dev *127*, 329-344.

Chocron, S., Verhoeven, M.C., Rentzsch, F., Hammerschmidt, M., and Bakkers, J. (2007). Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Dev Biol *305*, 577-588.

Clements, W.K., Kim, A.D., Ong, K.G., Moore, J.C., Lawson, N.D., and Traver, D. (2011). A somitic Wnt16/Notch pathway specifies haematopoietic stem cells. Nature 474, 220-224.

Danilova, N., Sakamoto, K.M., and Lin, S. (2011). Ribosomal protein L11 mutation in zebrafish leads to haematopoietic and metabolic defects. Br J Haematol *152*, 217-228.

Espin-Palazon, R., Stachura, D.L., Campbell, C.A., Garcia-Moreno, D., Del Cid, N., Kim, A.D., Candel, S., Meseguer, J., Mulero, V., and Traver, D. (2014). Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell *159*, 1070-1085.

Geiss, G.K., Bumgarner, R.E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D.L., Fell, H.P., Ferree, S., George, R.D., Grogan, T., *et al.* (2008). Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol *26*, 317-325.

Gering, M., and Patient, R. (2005). Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev Cell *8*, 389-400.

Jin, S.W., Beis, D., Mitchell, T., Chen, J.N., and Stainier, D.Y. (2005). Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development *132*, 5199-5209.

Kolde, R. (2013). pheatmap: Pretty Heatmaps. R package version 0.7.7. (<u>http://cran.r-project.org/web/packages/pheatmap/index.html</u>).

Link, V., Shevchenko, A., and Heisenberg, C.P. (2006). Proteomics of early zebrafish embryos. BMC Dev Biol *6*, 1.

Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods *25*, 402-408.

Monteiro, R., Pouget, C., and Patient, R. (2011). The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1gamma. EMBO J *30*, 1093-1103.

Simoes, F.C., Peterkin, T., and Patient, R. (2011). Fgf differentially controls cross-antagonism between cardiac and haemangioblast regulators. Development *138*, 3235-3245.

Waggott, D., Chu, K., Yin, S., Wouters, B.G., Liu, F.F., and Boutros, P.C. (2012). NanoStringNorm: an extensible R package for the pre-processing of NanoString mRNA and miRNA data. Bioinformatics *28*, 1546-1548.

Yamamoto, M., Morita, R., Mizoguchi, T., Matsuo, H., Isoda, M., Ishitani, T., Chitnis, A.B., Matsumoto, K., Crump, J.G., Hozumi, K., *et al.* (2010). Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development *137*, 2527-2537.