
Supplementary Note
Physical Model of Cell Shapes in the Mouse Embryo

1 General framework

We describe here a theory predicting the shape of blastomeres in the pre-implentation
mouse embryo. This model is an extension of our previous approach used to
study compaction at the 8-cell stage1. The shape of cells, their contacts and
the overall arrangement of the cells in space are controlled by effective surface
tensions associated to the different interfaces found between cells, and between
a cell and the surrounding medium. We suppose here that all cell-cell interfaces
have the same tension, but that tensions at cell-medium interfaces can be differ-
ent. We note γi the surface-tension at the cell-medium interface of a given cell
i, and γc the surface tension at cell-cell interfaces. Moreover, we assume that
each blastomere conserves its volume at any time, as previously verified1.

Because cell internalization in the 16-cell stage mouse embryo (or in doublets
of 16-cell stage blastomeres) happens on hours timescales, we can neglect me-
chanical dissipation, which have a typical timescale of the order of minutes2.
This corresponds to a quasistatic regime, in which blastomeres always have
enough time to reach static mechanical equilibrium, such that the evolution of
their shape is controlled solely by slow changes in surface tensions. Hence,
the conservation of cell volumes together with the minimization of the total
effective surface energy define the configuration of the embryo.

We first present a model with two cells, which can be formulated analytically
because of its axial symmetry. We then extend the model to 3 dimensions using
triangulated surfaces, and we minimize the effective energy numerically for 2
or 16 cells. To validate the numerical model, we compare its predictions for a
cell doublet to the ones given by the analytical model.

2 Internalization model for a cell doublet

2.1 Force balance

We first consider two cells in contact. With two cells only, the equilibrium con-
figuration should have an axis of symmetry, while this result does generally not
hold for more cells. We use Laplace’s force balance pi− p0 = 2 γi

Ri
at a given
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interface i to relate the pressure difference across the interface pi− p0, the sur-
face tension γi and the radius of curvature Ri of the interface. For a quasistatic
evolution, the pressure difference and surface tension being considered homo-
geneous, Laplace’s law predicts that the curvature for each interface should be
constant, but curvature may vary between interfaces, according to their respec-
tive tensions.

We consider therefore a doublet of cells made of spherical interfaces, with γ1
and γ2 the cell-medium surface tension of cells 1 and 2, and γc the cell-cell
interface tension. Calling −→ez the axis of symmetry, the doublet geometry can
be described by the longitudinal cross-section represented in Supplementary
Note Fig. 1.

Supplementary Note Figure 1:
Cross-section of the asymmetric
cell doublet and parametrization of
its shape. The cell-medium inter-
face area, tension, curvature radius
and volume of the cell i = 1, 2 are
denoted respectively Ai, γi, Ri and
Vi. The cell-cell contact tension and
area are denoted respectively γc and
Ac, and r denotes the radius of the
contact line. We furthermore define
the three contact angles θ1, θ2 and
θc as in the main text, or use alter-
natively the angles ψ1, ψ2 and ψc.
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The doublet shape can be parametrized by the interfaces curvature radii R1, R2
and Rc and the angles ψ1, ψ2 and ψc, as represented on Supplementary Note
Fig. 1. These variables are linked by the geometric relation

R1 sinψ1 = R2 sinψ2 = Rc sinψc (S1)

Laplace’s force balance for the three interfaces reads

p1− p0 = 2
γ1

R1
, (S2a)

p2− p0 = 2
γ2

R2
, (S2b)

p1− p2 = 2
γc

Rc
= 2

(
γ1

R1
− γ2

R2

)
. (S2c)

Where p1 and p2 are the pressures inside the cells, and p0 the pressure in the
surrounding medium. Note that the actual value of p0 does not affect the config-
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uration of the cells, since only relative pressure differences matter in the force
balance.

The force balance at the contact line reads
−→
γ1 +
−→
γ2 +
−→
γc =

−→
0 (S3)

where −→γi is the force vector corresponding to the surface tension γi ≡
∣∣−→γi
∣∣.

This vectorial relation can be projected respectively along −→ez and −→ex using the
angles ψi

γ1 sinψ1 = γ2 sinψ2 + γc sinψc , (S4a)
γ1 cosψ1 + γ2 cosψ2 + γc cosψc = 0. (S4b)

Using the geometrical relations Eq. S8, we show that the force balance at the
contact line projected on −→ez (Eq. S4a) is equivalent to the Laplace’s force bal-
ance along the interface between the two cells Eq. S2c

γc

Rc
=

γ1

R1
− γ2

R2

Note that one can alternatively use the natural contact angles θ1, θ2 and θc to
write the force balance at the contact line. Projecting this balance along the
directions parallel and perpendicular to −→γc yields

0 = γc + γ1 cosθ1 + γ2 cosθ2 (S5a)
0 = γ1 sinθ1 + γ2 sinθ2 (S5b)

This couple of equations Eq. S5 is equivalent to Eq. S4 by noting the following
geometrical relation between the angles θi and ψi

θc = ψ1 +ψ2 (S6a)
θ1 = 2π− (ψ1 +ψc) (S6b)
θ2 = ψc−ψ2 (S6c)

Adding the two volume conservation constraints, given the volumes V1 and V2,
and the doublet force balance, given the surface tensions γ1, γ2, and γc, the
problem involves finally eight non-linear relations with an equal number of

3



unknowns ψ1, ψ2, ψc, R1, R2, Rc, p1 and p2:

R1 sinψ1 = Rc sinψc (S7a)
R2 sinψ2 = Rc sinψc (S7b)

0 = γ1 cosψ1 + γ2 cosψ2 + γc cosψc (S7c)
γc

Rc
=

γ1

R1
− γ2

R2
(S7d)

p1− p0 = 2
γ1

R1
(S7e)

p2− p0 = 2
γ2

R2
(S7f)

V1(ψ1,R1,ψc,Rc) =V1 (S7g)
V2(ψ2,R2,ψc,Rc) =V2 (S7h)

where the pressures p1,2 shall be chosen to adjust the volumes V1,2 of the two
cells, which can be calculated from the volume of a spherical cap of radius R
and height h: 1

3πh2(3R−h).

While the force balance problem above is well-posed, it can in fact be drasti-
cally simplified by reformulating it as the minimization of an effective surface
energy, as shown below.

2.2 Surface energy approach

Re-parametrization

Using the geometrical relation

r = R1 sinψ1 = R2 sinψ2 = Rc sinψc (S8)

where r denotes the radius of the circle at which the three interfaces meet, or
contact line, we can re-parametrize the geometry using the radius r and the
three lengths

a1 = R1 cosψ1 , a2 = R2 cosψ2 , ac = Rc cosψc (S9)

reducing therefore the number of geometric variables necessary to describe the
doublet geometry from six to four (note that ac is negative).

Volumes

The volume of each spherical cap can be expressed as

vi =
1
3

π (Ri +ai)
2 (2Ri−ai) =

2
3

π

[(
r2 +a2

i
)3/2

+a3
i +

3
2

r2ai

]
(S10)
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where i≡ 1, 2, c and the volumes of the two cells are then simply

V1 = v1 + vc , V2 = v2− vc (S11)

Areas

Similarly, the surface area of the interfaces are Ai = 2π Ri(Ri+ai)= 4π H(r,ai),
for i≡ 1, 2, c, with:

H(r,a) =
1
2

[
a2 + r2 +a

√
a2 + r2

]
. (S12)

Non-dimensionalization of the problem

Without loss of generality, all lengths are normalized in the following by R0 ≡(
3V2/4π

)1/3, corresponding to a renormalization of volumes by V2. This yields
therefore V 2 = 1, and we define a dimensionless size asymmetry parameter β

such that V 1 = β 3:
β ≡

(
V1/V2

)1/3 (S13)

Cell 1 is smaller than cell 2 if β ≤ 1, or the other way around if β ≥ 1.

Surface energy potential

In a similar manner as Refs1–3, we define a surface energy potential

E = γ1A1 + γ2A2 + γcAc (S14)

that we seek to minimize under the constraints V 1 = β 3 and V 2 = 1. The
surface energy potential is non-dimensionalized by dividing it with by 4πγ2,
which yields

E
(
r,a1,a2,ac

)
≡ E

4πγ2
= δ H(r,a1)+H(r,a2)+2α H(r,ac) (S15)

where we have defined two additional dimensionless parameters

α =
γc

2γ2
, δ =

γ1

γ2
(S16)

The first parameter 0 ≤ α ≤ 1 quantifies the degree of compaction of the dou-
blet1, whereas δ ≥ 0 measures the tension asymmetry between the two cells.

Mechanical equilibrium

To take into account of the volume constraints, we introduce the Lagrangian
function:

L = E − p1

(
V 1 (r,a1,ac)−β

3
)
− p2

(
V 2 (r,a2,ac)−1

)
(S17)
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where p1 and p2 are the two Lagrange multipliers, which can be interpreted
as (renormalized) cell pressures with respect to the medium. Minimizing E
under the two volumes constraints is then equivalent to finding a solution to the
system of equations:

∂L

∂ r
=

∂L

∂a1
=

∂L

∂a2
=

∂L

∂ac
=

∂L

∂ p1
=

∂L

∂ p2
= 0 (S18)

The shape of the doublet is therefore fully determined by three dimensionless
parameters: α , β and δ .

This gives six equations to solve, instead of eight previously. Note that the
Lagrangian is not necessarily convex (or concave), and the optimum defined
above is hence not necessarily an extremum. Optimizing the Lagrangian with
respect to a1 and a2 leads to

p1 =
δ

2π

√
a2

1 + r2
, p2 =

1

2π

√
a2

2 + r2
(S19)

Note that by multiplying the renormalized pressures values above by the nor-
malizing factor 4πγ2, we recover the Laplace force balance for the cell-medium

interfaces of the two cells (Eq. S2), because pi− p0 = 4πγ2 pi and Ri =
√

a2
i + r2

for i≡ 1, 2 .

Replacing these normalized pressure values in the Lagrangian, the optimization
with respect to p1 and p2 naturally enforces the volume constraints V1 = β 3 and
V2 = 1, while the optimization with respect to ac and r leads to the equations
corresponding to the balance of forces at the contact line (Eq. S3).

Thus minimizing the surface energy potential Eq. S14 under the two constraints
of volume conservation yields exactly the same mathematical result as the one
defined previously by the balance of forces in the doublet.

2.3 Internalization threshold

We first note that for V1 =V2 and γ1 = γ2, the doublet is symmetric (β = 1 and
δ = 1) corresponding to the problem that was solved previously1 with a single
parameter α .

For the non-symmetric case, solutions are obtained numerically using Math-
ematica by solving the constrained minimization problem above for various
values of α , β and δ . The results are presented in the main text Fig. 2 and
as Extended Data Fig. 3, with two phase-diagrams illustrating the equilibrium
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shape of cell doublets and the unique transition to complete internalization. We
find numerically that the cell 1 is fully internalized by the cell 2 if, and only if,
δ ≥ 1+2α . This relation corresponds to γ1 ≥ γ2 + γc.

We note that the internalization threshold, corresponding to δc = 1+2α is con-
sistent with previous numerical results, obtained in the context of 2-dimensional
multi-cellular tissues4,5 or of emulsions6.

We predict furthermore that this internalization threshold does not depend on
the volume asymmetry defined by β . Volume asymmetries nevertheless affect
the doublet shape for tension asymmetries lower than the threshold. For in-
stance, changing β for a doublet with symmetric tensions (δ = 1 leads to a
partial ingress of one cell into the other, because of the difference in Laplace’s
pressures between the two cells originating from their different curvature radii
(see Extended Data Fig. 3). However, a volume asymmetry is never sufficient
to get complete internalization as it does not affect the predicted internalization
threshold δc.

3 3D numerical model

The symmetry of revolution that was used in the analytical model for a cell
doublet does not hold in general for more than two cells. We have thus devel-
oped a 3-dimensional model, in which each cell is defined by a triangulated
surface and can occupy an arbitrary volume, as illustrated on Supplementary
Note Fig. 2. To handle multimaterial interfaces in three dimensions, our sim-
ulations are based on a custom-modified version of the mesh tracking method
Multitracker7. The energy of the system is calculated given the coordinates
of all vertices forming the triangles, and given the surface tensions for each
interface. The identity of each interface separating the cells i and j is simply
tracked over its evolution by a label (i, j) that is stored in each triangle of this
interface. A gradient descent numerical optimization scheme is then used to
evolve cells shape towards static mechanical equilibrium. To maintain numeri-
cal precision, the triangular mesh is furthermore allowed to vary the number of
vertices, edges and faces over its evolution (remeshing), and to perform topo-
logical T1 and T2 transitions. Note that, in contrast to classical vertex mod-
els where cell-cell boundaries are assumed to remain flat8, our 3-dimensional
model does not impose any prior constraints on cell shapes, and its precision of
smooth and continuous interfaces is only limited by the user-defined precision
for the triangular mesh discretization .
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cell 1 cell 2

Supplementary Note Figure 2: Non-manifold triangular mesh and labeling of cells 1 and 2.

3.1 Generalized surface energy potential

The surface energy potential defined for the doublet can be generalize to n cells
as

E =
n

∑
i=1

γiAi + γc

n

∑
i=1

n

∑
j=i+1

Ai j (S20)

where Ai and γi are respectively the area and the tension of the interface between
the medium and cell i, while Ai j and γc are the area and the tension of the
interface between cells i and j. The energy is a function of the coordinates of
all vertices in the system.

Moreover, we suppose that each cell conserves its volume during shape changes
and we minimize the generalized surface energy under these constraints. The
energy is minimized iteratively with respect to the state variables (the vertex
coordinates) using a gradient descent method. For a vertex v the descent step is
given by

dv =−h
∂E
∂v

(S21)

To find the scalar parameter h that defines the amplitude of displacement (h is
the same for all vertices), we use a line-search method at each descent step.
The volume constraints are enforced using a fast force projection method9.
Finally, we consider that the minimization process has converged when the
relative variation in the mesh surface energy is lower than 10−9, corresponding
to the numerical precision of the machine.

To verify our numerical implementation, we compare the numerical results ob-
tained with two cells, with the results of the analytical model for a cell doublet.
As illustrated on Extended data Fig. 7, the results of the 3D simulations remain
perfectly axisymmetric, and match quantitatively with the analytical theory.
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