
Supplementary Notes

Supplementary Note 1

In this appendix, we are interested in determining the empirical spectral distribution (ESD) of the Jacobian matrix
of a metaecosystem model. In the �rst section, we derive the support of the ESD for a Jacobian matrix in which
within-patch Jacobians are independent and dispersal is homogeneous (the �heterogeneous Jacobian/homogeneous
dispersal� case). In the second section, we tackle the opposite case where all within-patch Jacobians are equal (the
�homogeneous Jacobian/homogeneous dispersal� case). In the third section, we come back to the heterogenous
Jacobian case and apply a basis change inherited from the second section to obtain an alternate proof. In the
fourth section, we use this alternate proof to tackle the case where the Jacobian matrix is a mix of homogeneous
and heterogeneous matrices. In the �fth section, we examine the case of heterogenous Jacobian matrices with only
a limited number of neighbouring patches.

In brief, stabilization through dispersal is manifested through three di�erent e�ects. The �rst spatial e�ect
on stability (�eigenvalue pushback e�ect�) comes from inequality (1.6), i.e. the fact that the limit support for the
ESD of the Jacobian matrix will consist in a small disk around −m and a large disk around −m − nd

n−1 . The
second spatial e�ect (�Jacobian averaging e�ect�), highlighted in sections 1, 3 and 4, simply consists in the fact
that, when within-patch Jacobian matrices are heterogeneous (not perfectly correlated, see inequality [4.22]), any
non-zero dispersal will thin the e�ective variance of the Jacobian coe�cients (through a phenomenon akin to the
central limit theorem) and, thus, make the stability criterion less stringent. The third spatial e�ect (�negative
feedback e�ect�) corresponds to the raw stabilizing e�ect of emigration at low dispersal rates (equations [1.8,4.31];
when dispersal is weak, its principal e�ect is to act as a supplementary negative feedback on populations producing
emigrants).

Preamble: �nding the support of the ESD for random matrices

Here, we describe the method inherited from the results of Tao et al. 3 to compute the support of the ESD of matrix
X = A+B of size n, with A being a random matrix (all its elements are i.i.d. drawings from a distribution with
mean 0 and variance σ2) and B is a deterministic matrix with eigenvalues noted {b1, ..., bn}. For σ = 1, the support
of X/

√
n converges when n→∞ towards the set of complex points z that obey:

ˆ
µB/

√
n(u)

|z − u|2
≥ 1 (0.1)

where µB/
√
n is the measure of {b1/

√
n, ..., bn/

√
n}, i.e. using Dirac deltas:

µB/
√
n(u) =

1

n

n∑
k=1

δbk/
√
n(u)du (0.2)

When σ 6= 1, �nding the support of X/σ
√
n is still given by:

ˆ
µB/σ

√
n(u)

|z − u|2
≥ 1 (0.3)

or using the set of eigenvalues of B:

1

n

n∑
k=1

1∣∣∣z − bk
σ
√
n

∣∣∣2 ≥ 1 (0.4)

The �stability criterion�, i.e. assuming that X represents a Jacobian matrix, the condition that puts the support of
its ESD out of R+, is given by:

max
z

σ√n×<(z)when 1

n

n∑
k=1

1∣∣∣z − bk
σ
√
n

∣∣∣2 ≥ 1

 < 0 (0.5)
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Using y = σ
√
nz, this criterion is also:

max
y

[
<(y)when

n∑
k=1

1

|y − bk|2
≥ 1

σ2

]
< 0 (0.6)

As an example, if all bk are equal to b, the maximum real admissible y is b + σ
√
n, so that the stability criterion

becomes:
σ
√
n < −b (0.7)

1 Heterogeneous Jacobian and homogeneous dispersal

Consider the following Jacobian matrix:
J = −M+D+A (1.1)

where M is the diagonal matrix with value m on the diagonal and 0 in the rest of the matrix; D is the matrix
representing the e�ect of dispersal among patches; andA is the collection of Jacobian matrices, arranged as diagonal
blocks, which describe the Jacobian matrices that would have arised in isolated communities (except for diagonal
terms which are contained in the term −M). Consecutive blocks of size S describe the stability properties within
patches, and the total size of all matrices is n× S where n is the number of patches.

We will assume that the e�ect of dispersal is di�usive and homogeneous (with di�usion parameter d), so that
that D can be written as:

D =


−dIS d

n−1IS ... d
n−1IS

d
n−1IS −dIS ... d

n−1IS
... ... ... ...
d

n−1IS
d

n−1IS ... −dIS

 (1.2)

where IS is the identity matrix of size S.
We will also assume that the e�ects of within-patch interactions on the Jacobian are heterogeneous, i.e. that A

can be written as:

A =


A1 0 ... 0
0 A2 ... 0
... ... ... ...
0 0 ... An

 (1.3)

where random matrices Ak of size S (with elements aijk) are independent and follow:

aiik = 0

aijk ∼ B(c)×N
(
0, σ2

)
(1.4)

In other words, non-diagonal elements of the Ak matrices follow Gaussian distributions with probability c, and are
equal to 0 with probability 1−c. Note that the variance V [Ak] of Ak entries is equal to

(
1− 1

S

)
cσ2. The normality

assumption is, strictly speaking, not needed3 - only �nite variance and zero means su�ce to apply the circular law
(see preamble above).

Applying the circular law to −mIS +A1, the corresponding stability criterion for large S is given by inequality
(0.7) with the appropriate values for parameters b, n and σ 2,1:

σ

√
c

(
1− 1

S

)
×
√
S < m (1.5)

In the absence of dispersal (d = 0), the asymptotic (for large S) stability criterion of J = −M+A is also given
by inequality (1.5) because the new matrix size is of size nS and the new connectance is nc/n2 (only n out of the
n2 blocks have non-zero entries - this entails that the new variance is 1/n times the one we had with non-spatially
structured Jacobians). This is also understandable as follows: each matrix Ak − mIS contributes with its own
eigenvalues to the ESD of J; since the Ak −mIS are independent and have the same ESD support, the limiting
distribution of the ESD support of J is also the same.
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With dispersal (d > 0), the deterministic part of J becomes D −M, which has two eigenvalues, −m and
−m− nd

n−1 , with respective multiplicities S and (n− 1)S. In this case, the limit support of the ESD of D−M+A
becomes (equations [0.3] and [0.6]):

S

|z +m|2
+

(n− 1)S∣∣∣z +m+ nd
n−1

∣∣∣2 ≥
n

σ2c
(
1− 1

S

) (1.6)

For su�ciently large d, this limit support resembles a set of two disks, one centered at −m, with S eigenvalues, and
another one centered at −m − nd

n−1 , with (n − 1)S eigenvalues. However, contrary to the previous case in which

the radius of the limit disk did not vary with n, here the �radius� of the disk centered at −m is σ
√
c(S − 1)/n,

i.e. decreases with increasing n. In ecological terms, this means that more habitat patches with heterogeneous
Jacobian matrices are stabilizing for su�ciently large d. In statistical terms, the variance associated with the �rst
disk center decreases as 1/n, following the central limit theorem. When d is large, the maximum admissible real z

for inequality (1.6) is (at �rst available order in 1/d) z∗ = −m+ σ
√
c(S − 1)/n+ (n− 1)3

[
σ2c(S − 1)

]3/2
/2n3d2,

so that the stability criterion is:

σ
√
c(S − 1)√
n

[
1 +

(n− 1)
3
σ2c(S − 1)

2d2n3

]
< m (1.7)

For very small d, on the other hand, all eigenvalues are clustered around −m, and the �rst order (in d) stability
criterion becomes:

σ
√
c(S − 1) < m+ d (1.8)

This stabilizing e�ect of dispersal corresponds to the �negative feedback e�ect� mentioned in the main text.

2 Homogeneous Jacobian and homogeneous dispersal

We now consider the Jacobian matrix J as in equation (1.1) with homogeneous within-patch Jacobian matrices, i.e.
such that:

A =


A0 0 ... 0
0 A0 ... 0
... ... ... ...
0 0 ... A0

 (2.1)

Clearly, the limiting distribution of the ESD of A is equal to that of A0, with each eigenvalue having multiplicity
n. In the absence of dispersal, the limit ESD support for J is not di�erent from the one found for heterogeneous
Jacobians (i.e. a disk centered at −m and of radius σ

√
c(S − 1)), but the limit ESD is di�erent in that it converges

towards the whole disk with S, while it did with nS (and hence more rapidly) in the heterogeneous case. Esssentially,
convergence towards the whole disk is slowed because each eigenvalue has multiplicity n.

The matrix D−M is easy to diagonalize. Indeed, P−1 (D−M)P is diagonal, with the S �rst eigenvalues equal
to −m, when

P =


IS −IS −IS ... −IS
IS IS 0 ... 0
IS 0 IS ... 0
... ... ... ... ...
IS 0 0 ... IS

 (2.2)

and

P−1 =
1

n


IS IS IS ... IS
−IS (n− 1)IS −IS ... −IS
−IS −IS (n− 1)IS ... −IS
... ... ... ... ...
−IS −IS −IS ... (n− 1)IS

 (2.3)

It is easy to compute that
P−1AP = A (2.4)
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so that the following relation holds:

P−1JP =


A0 −mIS 0 0 ... 0

0 A0 − (m+ nd
n−1 )IS 0 ... 0

0 0 A0 − (m+ nd
n−1 )IS ... 0

... ... ... ... ...
0 0 0 ... A0 − (m+ nd

n−1 )IS

 (2.5)

Because the ESDs of J and P−1JP are equal, we conclude that the limit ESD of J consists in S times the limit
ESD of A0−mIS and (n− 1)S times the limit ESD of A− (m+ nd

n−1 )IS . For su�ciently large d, the condition for
stability is the same as given by equation (1.5), i.e.

σ
√
c(S − 1) < m (2.6)

.

3 Revisiting the case of the heterogeneous Jacobian

Taking the case where A is de�ned by equation (1.3), the transformation applied in equation (2.4) yields:

P−1AP =


A 1

n (A2 −A1)
1
n (A3 −A1) ... 1

n (An −A1)
A2 −A A2 +

1
n (A1 −A2)

1
n (A1 −A3) ... 1

n (A1 −An)
A3 −A 1

n (A1 −A2) A3 +
1
n (A1 −A3) ... 1

n (A1 −An)
... ... ... ... ...

An −A 1
n (A1 −A2)

1
n (A1 −A3) ... An + 1

n (A1 −An)

 (3.1)

where A = 1
n

∑
iAi. When n is large, all matrix blocks in equation (3.1) that have variance of order o

(
1
n2

)
can be

removed (remember that V
[
A
]
is of order 1

n ), so that:

P−1AP ≈


A 0 0 ... 0

A2 −A A2 +
1
n (A1 −A2) 0 ... 0

A3 −A 0 A3 +
1
n (A1 −A3) ... 0

... ... ... ... ...
An −A 0 0 ... An + 1

n (A1 −An)

 (3.2)

When n is su�ciently large, we thus observe that P−1JP is approximately:

P−1JP ≈


A−mIS 0 ... 0
A2 −A A2 +

1
n (A1 −A2)− (m+ nd

n−1 )IS ... 0

A3 −A 0 ... 0
... ... ... ...

An −A 0 ... An + 1
n (A1 −An)− (m+ nd

n−1 )IS

 (3.3)

Because the ESD of a block triangular matrix is the union of the ESDs of its diagonal blocks, the asymptotic stability
criterion σ

√
c(S − 1)/n < m (limit when d → ∞ of inequality 1.7) results from the fact that V

[
A
]
= V [A] /n.

However, this proof is weaker than the one given in section 1 because it relies on large n values.

4 Mixed Jacobian with homogeneous dispersal

We now assume that matrix A has elements aijk de�ned by:

aiik = 0

aijk ∼ B(c)× [αij + βijk]

αij ∼ N
(
0, σ2

0

)
βijk ∼ N

(
0, σ2

E

)
(4.1)
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In other words, each non-diagonal entry of A is zero with probability 1 − c or, with probability c, is equal to the
sum of two Gaussian distributions, one common to all patches (the α term) and one idiosyncratic to each species
and patch (the β term). In matrix notation, we will note:

A =


A0 +A1 0 ... 0

0 A0 +A2 ... 0
... ... ... ...
0 0 ... A0 +An

 (4.2)

where A0 corresponds to the α terms in equation (4.1).

4.1 Stability criterion obtained at large d and large n

From equation (2.4) and (3.2) applied, respectively, to A0 and the set of blocks {A1,A2, ...,An}, and taking large
n and d values, we obtain the following stability criterion:√

c(S − 1)

[
σ2
0 +

σ2
E

n

]
< m (4.3)

4.2 Stability criterion at large d

Another way of looking at the eigenvalues of J when A is de�ned by equation (4.3) is to consider A0 as belonging
to the �deterministic part� of J. If {λ1, λ2, ..., λS} refer to the eigenvalues of A0 and we also write A0 for the
nS × nS matrix that has A0 as diagonal blocks (and 0 everywhere else), the support of the ESD of D−M+A0 +
(A−A0) /σE

√
c(S − 1) is given by:

1

nS

S∑
k=1

1

|z +m− λk|2
+
n− 1

nS

S∑
k=1

1∣∣∣z +m+ nd
n−1 − λk

∣∣∣2 ≥
1

σ2
Ec(S − 1)

(4.4)

When d→∞, the approximation of the left-hand side of inequality (4.4) at the �rst available order in 1/d yields:

1

nS

S∑
k=1

1

|z +m− λk|2
+

1

d2

(
n− 1

n

)3

≥ 1

σ2
Ec(S − 1)

(4.5)

4.2.1 Conservative criterion

From inequality (4.5), we can obtain a conservative estimate of the stability criterion by virtually allowing all λ's
to concentrate at the value with the highest real part (call it λ∗). Inequality (4.5) thus becomes:

1

n

1

|z +m− λ∗|2
+

1

d2

(
n− 1

n

)3

≥ 1

σ2
Ec(S − 1)

(4.6)

which yields the following stability criterion (analogous to inequality [1.7]):

σE
√
c(S − 1)√
n

[
1 +

(n− 1)
3
σ2
Ec(S − 1)

2d2n3

]
<

√
[m−< (λ∗)]

2
+ = (λ∗)

2
(4.7)

The support of the ESD of A0 is such that its eigenvalue with highest real part always obeys:

< (λ∗) ≤ σ0
√
c(S − 1) (4.8)

Plugging inequality (4.8) into inequality (4.7), assuming = (λ∗) = 0 and taking the left-hand side of the inequality
to its maximum value, we obtain the following (conservative) stability criterion:

σE
√
c(S − 1)√
n

[
1 +

(n− 1)
3
σ2
Ec(S − 1)

2d2n3

]
+ σ0

√
c(S − 1) < m (4.9)

When taking only members of order zero in 1/d, this leads to inequality (4.3).
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4.2.2 Asymptotically exact criterion

Taking the limit of a very large S in inequality (4.4), one can transform the �nite sum over λk into an integral over
the uniform distribution on the disk of radius σ0

√
c(S − 1):

1

nπσ2
0c(S − 1)

ˆ
|λ|≤σ0

√
c(S−1)

dλ

|z +m− λ|2
+

n− 1

nπσ2
0c(S − 1)

ˆ
|λ|≤σ0

√
c(S−1)

dλ∣∣∣z +m+ nd
n−1 − λ

∣∣∣2 ≥
1

σ2
Ec(S − 1)

(4.10)
With dλ = rdrdθ as the natural measure of surface for the disk, the �rst integral becomes:

ˆ
|λ|≤σ0

√
c(S−1)

dλ

|z +m− λ|2
=

ˆ σ0

√
c(S−1)

r=0

ˆ 2π

θ=0

rdrdθ

|z +m− reiθ|2
(4.11)

Given the value of the integral when z ∈ R− and z > −m+ σ0
√
c(S − 1):

ˆ
|λ|≤σ0

√
c(S−1)

dλ

|z +m− λ|2
= π log

 (m+ z)
2[

m+ z + σ0
√
c(S − 1)

] [
m+ z − σ0

√
c(S − 1)

]
 (4.12)

The same result can be obtained for the second integral:

ˆ
|λ|≤σ0

√
c(S−1)

dλ∣∣∣z +m+ nd
n−1 − λ

∣∣∣2 = π log


(
m+ nd

n−1 + z
)2

[
m+ nd

n−1 + z + σ0
√
c(S − 1)

] [
m+ nd

n−1 + z − σ0
√
c(S − 1)

]


(4.13)
Hence, the admissibility criterion for z is given by:

log

(
(m+z)2[

m+z+σ0

√
c(S−1)

][
m+z−σ0

√
c(S−1)

])
+(n− 1) log

(
(m+ nd

n−1+z)
2[

m+ nd
n−1+z+σ0

√
c(S−1)

][
m+ nd

n−1+z−σ0

√
c(S−1)

]) ≥ nσ2
0

σ2
E

(4.14)

The corresponding stability criterion, at �rst available order in 1/d, is thus given by:

σ0
√
c(S − 1)e

nσ20
4σ2
E√

2 sinh
[
nσ2

0

2σ2
E

] +

σ0
√
c(S − 1)e

nσ20
4σ2
E√

2 sinh
[
nσ2

0

2σ2
E

]


3 (n− 1)3e
−nσ

2
0

σ2
E

2d2n2

 < m (4.15)

Inequality (4.15) is less conservative (i.e. more accurate) than inequality (4.9) because the following inequality
always holds for positive x, y and z (it proves that sometimes inequality [4.15] can be true while inequality [4.9] is
false):

xe
x2

4y2√
2 sinh

[
x2

2y2

] +
 xe

x2

4y2√
2 sinh

[
x2

2y2

]


3

ze
− x2
y2 < y + y3z + x (4.16)

For small σE , inequality (4.15) yields inequality (2.6):

σ0
√
c(S − 1) < m (4.17)

For small σ0, inequality (4.15) yields inequality (1.7):

σE

√
c(S − 1)

n
+

(
σE

√
c(S − 1)

n

)3(
(n− 1)3

2d2n2

)
< m
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4.2.3 Variance-covariance interpretation of the criteria

Current formulation of A yields a total variance in patch k equal to:

V [Ak] = V [aijk] = E
[
a2ijk

]
= c

(
1− 1

S

)(
σ2
0 + σ2

E

)
(4.18)

and a covariance across sites equal to:

C [Ak,Al] = C [aijk, aijl] = E [aijkaijl] = c

(
1− 1

S

)
σ2
0 (4.19)

The variance of the average over A, A = 1
n

∑
kAk is given by:

V
[
A
]
=

1

n2
V

[∑
k

Ak

]
=

1

n
V [Ak] +

n− 1

n
C [Ak,Al] (4.20)

Plugging equations (4.18) and (4.19) into equation (4.20) yields:

V
[
A
]
= c

(
1− 1

S

)(
σ2
0 +

σ2
E

n

)
(4.21)

Thus, the conservative stability criterion given in inequality (4.9), taken at order 0 in 1/d for large d, can be
rewritten as : √

SV
[
A
]
< m (4.22)

or equivalently, using the correlation coe�cient ρ = C [Ak,Al] /
√
V [Ak]V [Al] = σ2

0/
(
σ2
0 + σ2

E

)
:√

SV [Ak]

(
1

n
+
n− 1

n
ρ

)
< m (4.23)

At second order in 1/d, inequality (4.9) can be rewritten as:√
SV [Ak]

(
1

n
+
n− 1

n
ρ

)
+ (S (1− ρ)V [Ak])

√
SV [Ak]

(
1

n
− ρ

n

)(
(n− 1)3

2d2n3

)
< m (4.24)

A similar reformulation of inequality (4.15) yields the asymptotically exact stability criterion at order 2:√√√√SρV [Ak] e
nρ

2(1−ρ)

2 sinh
[

nρ
2(1−ρ)

] +

√√√√SρV [Ak] e
nρ

2(1−ρ)

2 sinh
[

nρ
2(1−ρ)

]
3(

(n− 1)3e−
nρ

(1−ρ)

2d2n2

)
< m (4.25)

4.3 Stability criterion at small d

To obtain a more precise picture of what happens at small d for any value of ρ, a possibility is to take calculations
back from equation (4.14) and to develop the admissibility criterion for small d. Such calculations yield the following
admissibility criterion:

(m+ z)
2

(m+ z)
2 − σ2

0c(S − 1)

1− 2σ2
0c(S − 1)

(m+ z)
[
(m+ z)

2 − σ2
0c(S − 1)

]d
 > eσ

2
0/σ

2
E (4.26)

Substituting 0 for z and looking at the conditions under which zero is not admissible, we �nd:√
σ2
0c(S − 1)eσ

2
0/σ

2
E

eσ
2
0/σ

2
E − 1

(
1− σ2

0c(S − 1)

m [m2 − σ2
0c(S − 1)]

(
eσ

2
0/σ

2
E − 1

)d) < m (4.27)

Now, substituting ρ/(1− ρ) = σ2
0/σ

2
E and σ2 = σ2

0 + σ2
E , we obtain the equivalent stability condition:

σ
√
c(S − 1) <

√
eρ/(1−ρ) − 1

ρeρ/(1−ρ)

(
m+

ρσ2c(S − 1)d(
eρ/(1−ρ) − 1

)
[m2 − ρσ2c(S − 1)]

)
(4.28)
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This equation can be further simpli�ed by assuming that the criterion can be written as σ
√
c(S − 1) < εm+ γd at

low d and solve for the lowest values of ε and γ. The equation obeyed by ε is:(
1− ε

α

) (
1− ρε2

)
= 0 (4.29)

where α =
√

eρ/(1−ρ)−1
ρeρ/(1−ρ)

. Thus, either ε = 1/
√
ρ or ε = α. However, it is simple to show that α < 1/

√
ρ in all cases,

so we settle for ε = α.
The equation obeyed by γ is given by: [

3ε2ρ

α
− 2ρε− 1

α

]
γ + βε2 = 0 (4.30)

where β = ρ/
(
eρ/(1−ρ) − 1

)
. Plugging ε = α and solving for γ, we �nd γ = α3β/(1−α2ρ). Thus, the �nal stability

criterion at low d becomes:

σ
√
c(S − 1) <

√
eρ/(1−ρ) − 1

ρeρ/(1−ρ)
(m+ d) (4.31)

The coe�cient in front of m + d varies between 1 and 1.14 when ρ stays between 0 and 1, thus leading to an
approximate criterion in the form of equation (1.8). This coe�cient equals 1 for ρ = 0 and for ρ = 1, and is
maximal for ρ ≈ 0.65.

5 A closer look at the eigenvalues of D

By virtue of the eigenvalue pushback e�ect, increasing dispersal e�ectively makes the system more stable. However,
we have only looked at a dispersal matrix with global species-independent dispersal. A more general formulation
for a symmetric matrix D yields the following non-zero entries when species i has di�usion rate di and di�uses
reciprocally with 2vi patches (the 2 is necessary to obtain fully reciprocal di�usion):

∀i ∈ [1;S] ,∀k ∈ [1;n] , diikk = −2vidi
∀i ∈ [1;S] ,∀k ∈ [1;n] ,∀l(6= k) ∈ [k − vi; k + vi] (modn), diikl = di (5.1)

Another way to visualize this de�nition of D is to introduce the S ×S diagonal sub-matrices Xk and Y de�ned as:

Xk =

 (1− δv1<k<n−v1) d1 0 0
0 ... 0
0 0 (1− δvS<k<n−vS ) dS

 (5.2)

Y =

 2v1d1 0 0
0 ... 0
0 0 2vSdS

 =

n−1∑
k=1

Xk (5.3)

where δ is Kronecker symbol (equal to 1 when the underlying condition is true, 0 otherwise). Then D is given by:

D =


−Y Xn−1 ... X1

X1 −Y Xn−1
. . .

... X1
. . .

. . .

Xn−1
. . .

. . . −Y

 (5.4)

By re-arranging indices in matrix D so that the �rst n rows and columns describe the dispersal of species 1,
the rows and columns from n+ 1 to 2n describe the dispersal of the second species, etc., the following congruence
relationship emerges:

D ≡

 D1 0 0

0
. . . 0

0 0 DS

 (5.5)
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where the n× n sub-matrix block Dk is described by:

Dk =


−2vkdk (1− δvk<n−1<n−vk) dk ... (1− δvk<1<n−vk) dk

(1− δvk<1<n−vk) dk −2vkdk
. . .

...
...

. . .
. . . (1− δvk<n−1<n−vk) dk

(1− δvk<n−1<n−vk) dk ... (1− δvk<1<n−vk) dk −2vkdk

 (5.6)

Dk is a symmetric circulant matrix (i.e. arranged by n-periodic bands) with 2vk + 1 non-zero entries per row and
per column. Using the same congruence transform, we have:

D−M ≡

 D1 −mIn 0 0

0
. . . 0

0 0 DS −mIn

 (5.7)

Recalling the general form of inequality (1.6), we know that the limit support of J depends on the ESD of
its deterministic part (i.e. D −M), so that if {λ1, λ2, ..., λL} are the eigenvalues of D −M with multiplicities
{ω1, ω2, ..., ωL} (with

∑
k ωk = nS) and A is heterogeneous among patches (with variance cσ2), then the limit

support of the ESD of J/σ
√
cS is given by:

ˆ
|z − u|−2 dµ(u) = 1

nS

L∑
k=1

ωk

|z − λk|2
≥ 1 (5.8)

Because all the eigenvalues of a Hermitian matrix are real, the stability criterion becomes:

Sup

[
z ∈ R

∣∣∣∣∣σ2c

n

L∑
k=1

ωk

(z − λk)2
≥ 1

]
< 0 (5.9)

In the case of matrix Dk −mIn, its eigenvalues, noted (ζjk)j∈[0;n−1], are real and given by:

ζjk = −2vkdk −m+

n−1∑
l=1

(1− δvk<l<n−vk) dke−
2iπjl
n

= −m− 4dk

vk∑
l=1

[
sin

(
πjl

n

)]2
(5.10)

For all k, ζ0k = −m. Based on Gershgorin circle theorem, −m is also the highest possible eigenvalue of Dk −mIn,

and its multiplicity is necessarily 1 (to have ζjk = −m, you need sin
(

2πjl
n

)
= 0 for all l ∈ [1; vk], meaning that

jl ≡ 0mod(n) for all l ∈ [1; vk], and thus j = 0 is the only admissible solution).
Merging the spectra of all Dk −mIn, inequality (5.9) becomes:

Sup

z ∈ R

∣∣∣∣∣∣∣∣∣
σ2c

n

S∑
k=1

n−1∑
j=1

1(
z +m+ 4dk

∑vk
l=1

[
sin
(
πjl
n

)]2)2 +
σ2cS

n (z +m)
2 ≥ 1

 < 0 (5.11)

One quick and dirty way to get a conservative upper bound for the admissible z in equation (5.11) is to lump
the mass of the ESD of each Dk −mIn at −m (with mass 1/n) and at the second highest eigenvalue (with mass

(n− 1) /n). To do that, we need a lower bound for
∑vk
l=1

[
sin
(
πjl
n

)]2
valid for all j 6= 0. Let γk > 0 be such a

lower bound and let d0γ0 = Min
k

[dkγk]. The implied stability criterion becomes:

Sup

[
z ∈ R

∣∣∣∣∣ σ2cS(n− 1)

n (z +m+ 4d0γ0)
2 +

σ2cS

n (z +m)
2 ≥ 1

]
< 0 (5.12)

Geometrically, if the point z0 on the real axis and larger than −m−4d0γ0 where σ
2cS(n−1)/n (z0 +m+ 4d0γ0)

2
=

1/2 is lower than the point zm on the real axis and lower than −m where σ2cS/n (zm +m)
2
= 1/2, then the two
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disks (the one centered on −m and the one centered on −m− 4d0γ0) have null intersection (separability condition)
and the stability criterion becomes approximatively[

1√
n
+

n− 1

32(d0γ0)2n3/2

]
σ
√
cS < m (5.13)

for high d0γ0. Solving equations for z0 and zm, we �nd that separability occurs when

σ
√
2cS

4

[√
1− 1

n
+

√
1

n

]
< d0γ0 (5.14)

Another more subtle approximation may be obtained if we assume that all dkγk are large. Taking a �rst possible
order approximation, we obtain:

S∑
k=1

n−1∑
j=1

1(
z +m+ 4dk

∑vk
l=1

[
sin
(
πjl
n

)]2)2 ≈
S∑
k=1

n−1∑
j=1

1

16d2k

[∑vk
l=1

[
sin
(
πjl
n

)]2]2 (5.15)

Based on equation (5.15), plugged in inequality (5.11), the stability criterion is given by: 1√
n
+

1

32n3/2S

S∑
k=1

n−1∑
j=1

1

d2k

[∑vk
l=1

[
sin
(
πjl
n

)]2]2
σ√cS < m (5.16)

which is consistent with, but slightly more precise than, inequality (5.13).
In case dk = d and vk = v for all species, inequality (5.16) boils down to: 1√

n
+

1

32d2n3/2

n−1∑
j=1

1[∑v
l=1

[
sin
(
πjl
n

)]2]2
σ√cS < m (5.17)

With some algebra

n−1∑
j=1

1[∑v
l=1

[
sin
(
πjl
n

)]2]2 = 16

n−1∑
j=1

1[
1− sin(πj(2v+1)

n )
sin(πjn )

+ 2v

]2
=

16

(1 + 2v)2

n−1∑
j=1

1[
1− sin(πj(2v+1)

n )
(1+2v) sin(πjn )

]2

=
16

(1 + 2v)2

n−1∑
j=1

∞∑
k=0

1 + k

(1 + 2v)k

 sin
(
πj(2v+1)

n

)
sin
(
πj
n

)
k (5.18)

Thus, inequality (5.17) is approximately (low order in 1/(1 + 2v)):[
1√
n
+

n− 1

2d2n3/2(1 + 2v)2

]
σ
√
cS < m (5.19)

which is equivalent to inequality (1.7) when 1 + 2v = n.
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