Supplementary materials

Functional brain networks related to individual differences in human intelligence at rest

Luke J. Hearne^{1*}, Jason B. Mattingley^{1,2}, Luca Cocchi^{1,3}

¹ Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
² School of Psychology, The University of Queensland, Brisbane, Australia.
³ QIMR Berghofer Medical Research Institute, Brisbane, Australia

Corresponding Author: * l.hearne@uq.edu.au

Sample							
Author	Ν	Males	Age	Behavioural	Brain-behaviour	Analysis type	Regions of interest
			(M±SD)	measure	relationship		-
Van den Heuval et al.	19	74%	29±7.8	WAIS	Correlation	Global efficiency	Whole brain
Wang et al.	59	49%	24.6±3.5	WAIS (Chinese)	Correlation	Regional Homogeneity	Whole brain
Cole et al.	94	42%	22±4.7	RAPM and CCFT	Correlation	Global brain connectivity	LPFC
Yuan et al.	284	46%	22.8±2.4	RPM	Correlation	Regional Homogeneity	Whole brain
Santarnecchi et al.	98	50%	34±14	WASI	Between-group: high, average and	Global efficiency	90 AAL atlas regions ^a
					low defined by clustering analysis		
Pamplona et al.	29	52%	26.8±5.8	WAIS (Portuguese-	Correlation	Local efficiency	82 AAL atlas regions ^a
				Brazil)			

Supplementary Table 1. Characteristics of studies utilizing complex graph metrics included in the supplementary resting-state meta-analysis.

Note: ^aMNI centroids were used as regions of interest in the case of the AAL template. CCFT = Cattell Culture Fair Test, RPM = Ravens Standard Progressive Matrices, RAPM = Ravens Advanced Progressive Matrices, WAIS = Wechsler adult intelligence scale, WASI = Wechsler abbreviated scale of intelligence, LPFC = lateral prefrontal cortex, AAL = Automated Anatomical Labeling.

Supplementary Figure 1. Regions of the brain that demonstrated global or local graph properties at rest that were associated with intelligence. a. Efficiency metrics b. Regional homogeneity.