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Data

AMD Training Data

The reactions used in the training data set are included in a comma-separated values text
file: TrainingA MDRegistryNumbers.csv. This file includes the reaction registry and molecule
registry numbers from the December 2014 Accelrys Metabolite Database (AMD) release.
Four binary indicator columns designate molecules labeled reactive or nonreactive to cyanide,
DNA, glutathione (GSH), and protein. Molecules with unknown reactivity have missing
values for that target(s).

Labeling of Site of Reactivity Training Data

Each reaction in the AMD contains the structures of both the starting molecule and the
product. The product structures enabled sites of reactivity to be labeled on the starting
molecules. For example, the structure of the cyanide conjugate enabled the site of reactivity
to be labeled on a nefazodone metabolite (Figure 1). First, the maximum common substruc-
ture was calculated between the cyanide conjugate and the nefazodone metabolite. Second,
the connectivity distance matrix was calculated for the nefazodone metabolite. Third, for
the cyanide conjugate, the atom within the maximum common substructure closest (by con-
nectivity) to the cyanide group was identified. Fourth, this atom was mapped back to the
respective atom within the maximum common substructure in the nefazodone metabolite.
Similar algorithms were developed for labeling DNA, GSH, and protein sites of reactivity.

Unreactive Epoxide Training Data

While epoxides are generally quite reactive, they can be stabilized in certain cases, such
as by the presence of electron-donating groups on epoxide carbons.! A shortcoming of our
previous method for predicting GSH reactivity was that it predicted all epoxides reactive.?
To address this, we supplemented our training data with 63 naturally occurring® and known
nonreactive! epoxides. We hypothesized that epoxides found in nature are less likely to be
reactive, for if they were very unstable, then they would likely not be observed. The SMILES
strings for all 63 epoxides are included in the text file TrainingNegative Epoxides.smi.

AMD External Test Data

After assembling the training data, a new version of the AMD was released with several
new reactions, which was tapped for possible new molecules as a test data set. This yielded
14 new molecules that reacted with GSH. The reactions used in this external test set are
included in a comma-separated values text file: TestAMDRegistryNumbers.csv. This file
includes the reaction registry and molecule registry numbers from the June 2015 Accelrys
Metabolite Database (AMD) release.

To quantify how similar the external test set was to the training set, we first calculated
path based fingerprints (with depth 8) for each of the external test set and training set
molecules. Second, we calculated the MinMax similarity (a variant of Tanimoto suitable for



count fingerprints) of each fingerprint of the external test set and each fingerprint of the
training set.* Third, for each molecule in the external test set, we recorded its maximum
similarity score to any molecule in the training set. Across all 14 external test set molecules,
this procedure yielded an average maximum similarity of 0.396 +0.235. A similar procedure
to measure the internal diversity of the training set was also performed, yielding an average
maximum similarity of 0.701 £ 0.224. This result implies that the test set is somewhat dis-
similar from the training set, which is encouraging because the model successfully generalized
to these new molecules (Figure 2 and Figure S7).

Descriptors

The reactivity model used 15 molecule-level (Table S1) and 194 atom-level (Table S2) topo-
logical descriptors, each of which describes a chemical property of an atom or the molecule
containing an atom. This descriptor set was based on a previous set of topological de-
scriptors, with several expansions.?®% New descriptors included AlphaBetaUnsat, AmideN-
itrogen, AromaticNeighbors, ATOMS, BN_b_d, CarboxylOxygen, CorrectedBondRad, Cor-
rectedVdwRad, ElectronAffinity, ElectronNeg, Epoxide, HbondAcceptor, HbondDonor, HY-
DROGENS, Ionization, LonePair_d, Mass, MaxBonds, MichaelAcceptor, Michael Acceptor-
Substituted, NA_d_e where 1) d =4 and e = C, N, O, P, S, F, Cl, Br, or I, or 2) d = 0-3
and e = F, Cl, Br, or I, hyb_d_e, NitroOxygen, PA_d_e where 1) d =4 and e = C, N, O, P,
S, F, Cl, Br,or I, or 2) d = 0-3 and e = F, Cl, Br, or I, PartialCharges, PhosphateOxygen,
RINGS, SulfateOxygen, and TotalBondOrder

Table S1: Molecule-level topological descriptors used by the XenoSite Reactivity Model.

Label Definition

ATOMS number of heavy atoms

Ba number of aromatic bonds

Bp number of double bonds

Bg number of single bonds

Bt number of triple bonds

BONDS total number of bonds

HBA; number of hydrogen bond acceptors Pybel SMART'S string 1
HBA> number of hydrogen bond acceptors Pybel SMARTS string 2
HBD number of hydrogen bond donors

HYDROGENS  number of hydrogens

logP octanol/water partition coefficient

MR molar refractivity

MW molecular weight

RINGS number of rings

TPSA topological polar surface area

Table S2: Atom-level topological descriptors used by the XenoSite Reactivity Model.

Label Definition Depth/Range Total Number

AlphaBetaUnsat binary value indicating whether a neighboring atom has an 0-1 1
unsaturated bond to a third atom

AmideNitrogen binary value indicating whether a nitrogen is part of an amide 0-1 1

Aromatic binary value indicating whether atom is aromatic 0-1 1

AromaticNeighbors number of aromatic neighbors for atom 0-3 1

BN_b_d number of bonds of type b depth d bonds away = single, aromatic, 8

b
double, triple
d =12



CarboxylOxygen
CorrectedBondRad
CorrectedVdwRad

ElectronAffinity
ElectronNeg
Epoxide
HbondAcceptor

HbondDonor
hyb_d

hyb_d_e

Hydrogens

Tonization

LonePair_d

Mass

MaxBonds

MaxInvRingSize

Michael Acceptor

Michael AcceptorSubstituted

NA_d_e

NitroOxygen

NRings
PA_d_e

PartialCharges
PhosphateOxygen

Ring,
Rotors
Span

SpanInverted
SpanNormalized

SulfateOxygen

TotalBondOrder

binary value indicating whether atom is an oxygen in a car-
boxyl group

scales the covalent radius by 0.95 for sp22 and 0.90 for sp
hybrids

scales the van der Waals radius by 0.95 for sp? and 0.90 for
sp hybrids

the electron affinity of this element

the Pauling electronegativity (eV) of this element

binary value indicating whether atom is in a epoxide

binary value indicating whether atom is a hydrogen-bond ac-
ceptor

binary value indicating whether atom is a hydrogen-bond
donor

total number of atoms of hybridization hyb depth d bonds
away

number of atoms of hybridization hyb depth d bonds away of
type element e

number of hydrogens bound to atom

the ionization potential (eV) for this element

number of lone pairs depth d bonds away

the average atomic mass for this element

the maximum expected number of bonds for this element
maximum inverted ring size

binary value indicating whether atom is in a Michael acceptor
binary value indicating whether atom is in a substituted
Michael acceptor

number of atoms depth d bonds away of type element type e

binary value indicating whether a neighboring atom has an
unsaturated bond to a third atom

number of rings containing atom

percentage of atoms depth d bonds away of element type e

Gasteiger partial charge of atom

binary value indicating whether atom id an oxygen in a phos-
phate group

within ring of size n

number of rotatable bonds for atom

(maximum path length from current atom) / (maximum path
length from all atoms within the molecule)

1/(1 + Span)

Span/(maximum span within molecule)

binary value indicating whether atom is an oxygen in a sulfate
group

sum of all bond orders for bonds connected to atom

0-1
0.57-1.39
1.40-2.05

-0.07-3.61
2.0-3.98
0-1

0-1

0-1

hyb = sp, sp?, or sp>

d =04

hyb = sp, sp?, or sp>

d =04

e =C,N,and O or S if
hyb # sp

0-3

8.30-17.42

d =04

10.81-200.59

1-6
0-0.33
0-1
0-1

d =04
e=C, N, O, P S, F,
Cl, Br,or I

0-1

0-4

d=14
e=C, N, O, P S F,
Cl, Br, or I

-0.78-0.58

0-1

n = 3-8
0-4
0-16
0.058-1
0-1

0-1

1-6

=
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Results

Several experiments were performed during model construction, optimization, and analy-
sis, the results of which are here presented. First, we used an expanded set of topological
molecule-level (Table S1) and 194 atom-level (Table S2) descriptors, which significantly im-
proved over previously used topological descriptors (Figure S1). Second, we jointly modeled
several types of reactivity in a multitask learning format, which we hypothesized would im-
prove predictions on the smaller data sets through transfer learning. “® Indeed, the multitask
model outperformed the individual modeling approach, especially at predicting protein sites
of reactivity (Figure S2). Third, a modular input layer (Figure 5) was used to group related
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descriptors, rather than a traditional three-layer neural network structure. The modular
structure enabled reduction of the total number of weights in the model by 50%, while re-
taining the same performance (Figure S3). This weight-reduced, modularly-structured model
outperformed a traditionally-structured model with the same number of weights. Fourth, we
tested whether supplementing the topological descriptors with quantum chemical descriptors
improved performance. We found that a topology-only model matched the performance of
a model that included both topological and quantum chemical descriptors (Figure S4), so
we did not include the quantum chemical descriptors in the final model. Fifth, to analyze
the inner workings of our final model, we performed a permutation sensitivity analysis, a
method we have previously used to analyze similar networks (Figure S5).2%9 Sixth, we found
that including nonreactive epoxides in training improved the model’s ability to distinguish
between reactive and nonreactive epoxides (Figure S6).

Performances of Previous Topological Descriptors and New Topo-
logical Descriptors

From the structure of each molecule, an in-house python script calculated 15 molecule-level
(Table S1) and 194 atom-level topological descriptors (Table S2), each of which describes
a chemical property. These descriptors were used as input to the reactivity model, which
learned a mapping between the descriptors and sites of reactivity or molecule reactivity.
The majority of these topological descriptors have been shown to be useful for the XenoSite
metabolism,? GSH reactivity,? and epoxidation models.® This study used an expanded set of
topological descriptors, which in 10-fold cross-validated experiments improved performance
over the previous set of descriptors, for cyanide, DNA, GSH, and protein (Figure S1). Two
metrics were used to assess performance. First, the “average site AUC” was computed
by calculating the area under the ROC curve (AUC) for each molecule and averaging the
AUCs for each molecule in the data set.?® Second, the “top-two metric” was computed,
which is standard for assessing sites of metabolism predictions.?>1%!! This metric considers
a molecule as correctly predicted if any of its sites of reactivity are predicted in the first or
second rank positions.

Individual vs Multitarget Training

A single model was built to collectively predict reactivity to cyanide, DNA, GSH, and protein,
instead of modeling each type of reactivity individually. We hypothesized that by modeling
several times of reactivity in concert, we would improve predictions on the smaller data
sets through transfer learning. Indeed, the multitask model outperformed the individual
modeling approach, especially at predicting protein sites of reactivity (Figure S2).

Effect of Modular Neural Network

A biologically-inspired modular network architecture was used'?™'6 (Figure 5). Its modular
input layer allowed incorporation of a prior: knowledge, guiding discovery of meaningful
interactions among input descriptors. Each module was a fully connected network between a
group of input descriptors and a subset of nodes in the first hidden layer. If there were strong
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Figure S1: An expanded set of topological descriptors improved over previously
used topological descriptors. The reactivity model used 15 molecule-level (Table S1)
and 194 atom-level topological descriptors (Table S2), each of which describes a chemical
property. An in-house python script calculated these descriptors from the structure of each
molecule. The majority of our topological descriptors have been shown to be useful for
the XenoSite metabolism, reactivity, and epoxidation models.?*>% To evaluate the value of
these new descriptors, we used them as input to a traditionally-structured neural network
with one hidden layer, and compared the 10-fold cross-validated performances to those of
the old set of topological descriptors inputted to the same network structure. Measured by
the average site AUC metric, the models built with the new set of topological descriptors
significantly outperformed the old descriptors across all four nucleophiles. By the top-two
metric, the performances of the new descriptor set were significantly higher than the per-
formances of the old descriptors for DNA, glutathione (GSH), and protein. The average
site AUC metric measures how often reactive atoms were ranked above nonreactive atoms
within reactive molecules, and the top-two metric represents the percentage of time a reac-
tive atom is found in the top-two rank positions within a molecule. The models with the
new topological descriptors had the same total number of weights as the models with the
old topological descriptors, which was achieved by decreasing the number of hidden nodes
in the new topological descriptor model to offset the greater number of input descriptors.
Results significantly different by paired ¢-tests are indicated by asterisks.
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Figure S2: Multitask learning improved over individual models. Jointly model-
ing several types of reactivity in a multitask learning format improved predictions through
transfer learning,”® especially at predicting protein sites of reactivity. The predictive per-
formances of 10-fold cross-validated scores produced by training individual models for each
nucleophile are compared to those of a single model that outputs predictions for all four
nucleophiles. This multitask model had the same total number of weights as the individual
models combined. Results significantly different by paired ¢-tests are indicated by asterisks.

correlations between the grouped descriptors, the connected nodes in the first hidden layer
were able to capture the information in a more parsimonious manner than a traditionally-
structured three-layer model. From our previous work, we observed that the contribution of
each descriptor to the final model depended not only on what kind of physical, chemical or
quantum mechanic characteristic it represented, but also on the location of the atom or bond
it depicted.®>® We hypothesized that the impact of neighboring chemical entities (atoms,
bonds, or hybridization systems) could be described by a small number of core features.
With this in mind, we combined descriptors by their distances to the atom of interest into
identity and hybridization neighborhood groups (Table S3). Compared to a traditionally
structured model, the modular input layer enabled reduction of the number of parameters of
the model by 50%, while retaining accuracy (Figure S3). This is advantageous, because using
the simplest possible model-—the one with the fewest total number of weights—improves

generalization potential by reducing the chances of overfitting.
Table S3: Descriptor groups in the modular multi-target neural network.

Group Input Nodes Number of ! H nodes
Atom Element NA_d_e withd =0 3
Atom Hybridization hyb_d_e with d =0 3
Atoms One Bond Away NA_d_e and PA_d_e withd=1 3
Atom Hybridization One Bond Away hyb_d_e with d =1 3
Atoms Two Bonds Away NA_d_e and PA_d_e withd=2 3
Atom Hybridization Two Bonds Away hyb_d_e with d = 2 3
Atoms Three Bonds Away NA_d_e and PA_d_e withd =3 3
Atom Hybridization Three Bonds Away  hyb_d_e with d =3 3
Atoms Four Bonds Away NA_d_e and PA_d_e withd =4 3
Atom Hybridization Four Bonds Away hyb_d_e with d = 4 3
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Figure S3: Use of a modular input layer enabled reduction of the total number
of weights by 50%, while retaining accuracy. By varying the number of hidden nodes in
each model, these charts plot model performance as a function of the total number of weights.
Top, the cross-validated performances of neural network models built with either a modular
input layer (MIL) or a traditional structure (TS) are evaluated by both the average site AUC
and top-two metrics. Each data point represents the mean cross-validated performance of
all four nucleophilic targets, with 10 iterations of 10-fold cross validation. Originally, the
TS model used 20 hidden nodes, which ensured weight-controlled experiments in Figure S2.
Due to its different structure, the MIL model required 39 hidden nodes to have the nearest
possible total number of weights (4264) to that of the TS model with 20 hidden nodes (4284
total weights). For this number of parameters, the MIL model only slightly outperformed
the TS model. However, the MIL model allowed greater reduction of weights than the TS
model. For example, a MIL model with 17 hidden nodes matched the performances of the
MIL model with 39 hidden nodes, despite only having about half as many weights (2108).
In contrast, the TS model performances decreased steadily as the number of weights were
reduced. For all future experiments, the MIL model with 17 nodes was selected as the model
that optimizes performance versus simplicity. Bottom row, performances are broken down
for all four nucleophilic targets individually for both the MIL and TS models. On each
graph, the models with 17 hidden nodes (17HN) and 39 hidden nodes (39HN) are indicated
by vertical lines.



Effect of Adding Quantum Chemical Descriptors

In our previous reactivity study, we noted that our GSH reactivity model primarily relied
upon topological descriptors instead of quantum chemical descriptors.? Consequently, this
study began by only using topological descriptors, and we later tested whether adding the
quantum chemical descriptors from the previous study boosted model performance (Figure
S4).2 The same total number of weights were used in both models, so that any difference in
their performances was solely due to the different descriptor sets. As measured by both the
average site AUC and top-two metrics, there was no significant difference in performance
between the two descriptor sets. Therefore, we concluded that there was no need to include
quantum chemical descriptors, and proceeded with a topology-only model. Eliminating
quantum chemical descriptors offered several advantages for the final model. First, they
are significantly quicker to compute. Second, our model no longer depends on the exact
3D conformation of the molecule. Most commonly, chemical information is disseminated in
SMILES format, which only contains 2D information. By eliminating the need to calculate
3D coordinates, using topology-only models removes one layer of extrapolation required
to make predictions. Third, the same SMILES string or molecule will always receive the
exact same predictions by the topological model, in contrast to the previous GSH model
that included quantum chemical descriptors, and therefore could produce slightly different
predictions depending on the exact conformation of an input molecule.
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Figure S4: A topology-only model matched the performance of a model sup-
plemented with quantum chemical descriptors. The cross-validated predictions of a
model exclusively trained on topological descriptors are compared to those of a model trained
with both topological and quantum chemical descriptors. The inclusion of quantum chemi-
cal descriptors did not improve performance compared to only using topological descriptors.
The same total number of weights were used for both models. No results were significantly
different by paired t-tests. For example, the p-values of the cyanide average site AUC and
top-two results were 0.58 and 0.32, respectively.




Descriptors Driving Prediction Performance

To investigate the inner workings of the reactivity model, we used a permutation sensitivity
analysis. 2% This procedure identifies the descriptors heavily relied upon by the model. First,
using the full training data set, a baseline model is built, and its performance calculated on
this same training data. Performance is measured by the average site AUC metric, but a
top-two analysis was also performed with similar results (data not shown). Secondly, the
importance of groups of descriptors (Table S4), and individual descriptors, was quantified by
calculating the fall in the model’s performance on training data after shuffling the descriptor
values randomly. This procedure was performed 10 times for each descriptor category, and
the mean performance drop reported (Figure S5). Permutation sensitivity analysis was
performed both for the final topology-only model and the model that included quantum
chemical descriptors. The relative importance of descriptors for both models were fairly
similar, and none of the quantum chemical descriptors were heavily weighted by the model
that included them in training.

Effect of Adding Unreactive Epoxides

Our previous method for predicting GSH reactivity predicted all epoxides reactive.? While
epoxides are generally quite reactive, they can be stabilized due to specific molecular context.
To improve the model’s ability to differentially predict epoxide reactivity, we supplemented
our AMD training data with 63 naturally occurring® and known nonreactive! epoxides. We
hypothesized that epoxides found in nature are less likely to be reactive, for if they were very
unstable, then they would likely not be observed. We included these nonreactive epoxides
in the training data, and compared the cross-validated scores on all epoxide carbons to the
equivalent predictions of a second model, trained without the nonreactive epoxides scores.
Performance was measured by Epoxide AUC, which reflects how often reactive epoxide car-
bons are ranked above nonreactive epoxide carbons. We found that including nonreactive
epoxides in training improved the model’s ability to distinguish between reactive and non-

reactive epoxides (Figure S6).
Table S4: Descriptor groups used for sensitivity analysis.

Atom Element NA_d_e with d=0

Atom Hybridization hyb_d_e with d =0

Atoms One Bond Away NA_d_e and PA_d_e with d =1
Atom Hybridization One Bond Away hyb_d_e with d =1

Atoms Two Bonds Away NA_d_e and PA_d_e with d =2
Atom Hybridization Two Bonds Away hyb_d_e with d = 2

Atoms Three Bonds Away NA_d_e and PA_d_e with d =3
Atom Hybridization Three Bonds Away  hyb_d_e with d =3

Atoms Four Bonds Away NA_d_e and PA_d_e with d =4
Atom Hybridization Four Bonds Away hyb_d_e with d =4

Bonds Ba, Bp, Bs, Br, and BONDS
HydrogenBonds HBA;, HBA3, and HBD

Ring Information MaxInvRingSize, NRings, and Ring,,
Span Span, SpanInverted, and SpanNormalized

10
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Figure S5: The importance of specific descriptors to the final topology-only
model (left) and the topological and a model that included quantum chemical
descriptors (right). A permutation sensitivity analysis measured the importance of de-
scriptors for each model.2%? This procedure identified the descriptors heavily relied upon
by the model. First, using the full training data set, a baseline model was built, and its
performance calculated on this same training data. Performance was measured by the av-
erage site AUC metric. Second, the importance of groups of descriptors (Table S4), and
individual descriptors, was quantified by calculating the fall in the model’s performance on
training data after shuffling the respective descriptor values randomly. Each chart displays
the 10 most important descriptor or descriptor groups, decreasing in order of importance
from top to bottom. Each data point represents the average model performance drop after
3 iterations of permuting the relevant descriptors.
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Figure S6: Including negative epoxides in training improves the model’s ability
to distinguish between reactive and nonreactive epoxides. Left, training without
negatives (in grey) and predicting on nonreactive epoxides is compared to training with
several negative epoxides (in orange) in the cross-validation procedure. Performance is mea-
sured by epoxide AUC, which reflects how often reactive epoxide carbons are ranked above
nonreactive epoxide carbons. The improved epoxide AUC for the model trained with the
nonreactive epoxides demonstrates that the inclusion of this additional data significantly im-
proved the model’s ability to determine whether epoxides are reactive. Right, two example
epoxides are visualized with the protein reactivity predictions of the model trained with-
out negative epoxides (left column) and with negative epoxides (right column). Top row:
crotepoxide, bottom row: anticapsin.® The model trained without examples of nonreactive
epoxides failed to recognize that these epoxides are unreactive. Results significantly different
by paired t-tests are indicated by asterisks.
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Figure S7: The model generalized to an external test set. Each molecule of the
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