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ABSTRACT Potassium channels in the two-pore domain family (K2P) have various structural attributes that differ from those
of other Kþ channels, including a dimeric assembly constituted of nonidentical domains and an expansive extracellular cap.
Crystallization of the prototypical K2P channel, TWIK-1, finally revealed the structure of these characteristics in atomic detail,
allowing computational studies to be undertaken. In this study, we performed molecular-dynamics simulations for a cumulative
time of ~1 ms to discern the mechanism of ion transport throughout TWIK-1. We observed the free passage of ions beneath the
extracellular cap and identified multiple high-occupancy sites in close proximity to charged residues on the protein surface.
Despite the overall topological similarity of the x-ray structure of the selectivity filter to other Kþ channels, the structure diverges
significantly in molecular-dynamics simulations as a consequence of nonconserved residues in both pore domains contributing
to the selectivity filter (T118 and L228). The behavior of such residues has been linked to channel inactivation and the phenom-
enon of dynamic selectivity, where TWIK-1 displays robust Naþ inward flux in response to subphysiological Kþ concentrations.
INTRODUCTION
The two-pore domain Kþ family (K2P) forms a structurally
and functionally distinct class of Kþ channels. These chan-
nels are responsible for background leak Kþ currents that
stabilize the negative resting potential of the cell, and also
play roles in ion homeostasis, hormone secretion, cell devel-
opment, and excitability (1). K2P channels can be modu-
lated by a vast array of regulatory stimuli, such as pH (2),
temperature (3), mechanical stress (4), the presence of poly-
unsaturated fatty acids (5), and volatile anesthetics (6). The
expression of these channels in the heart and brain has
also led to increased exploration of their therapeutic poten-
tial for the treatment of various neuronal and cardiac disor-
ders (5,7).

K2P channels assemble as a dimer of dimers, with each
subunit containing four transmembrane helices (H1–H4)
and two pore loops (P1 and P2). The recent crystallization
of multiple K2P channels (TWIK-1 (8), TRAAK (9,10),
and TREK-2 (11)) has greatly advanced our understanding
of this unique architecture, exhibiting various conserved
features throughout the family. For example, an extracel-
lular cap (EC) between H1 and P1 is present, extending
35 Å above the transmembrane helices, with the apex
of each subunit connected by a disulphide bond. An unre-
Submitted December 30, 2015, and accepted for publication July 11, 2016.

*Correspondence: carmen.domene@kcl.ac.uk

Editor: Emad Tajkhorshid.

http://dx.doi.org/10.1016/j.bpj.2016.07.009

� 2016 Biophysical Society.

This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
stricted pathway at the cytoplasmic entrance is also
observed throughout, revealing apertures of comparable
dimension to other Kþ channels that are considered open.
This is in line with experimental studies suggesting that
structural changes at or near the selectivity filter (SF)
form the predominant gating mechanism across the K2P
family, which shares its canonical structure with other Kþ

channel families.
With regard to the electrophysiological properties of the

K2P channels, in asymmetrical Kþ concentrations, almost
all K2P subfamilies (TREK, TALK, TASK, THIK, and
TRESK) conform to the typical properties of leak Kþ cur-
rents, demonstrating outward (or open) rectification. The
functional properties of the TWIK family have remained
elusive due to low levels of activity recorded in physiological
Kþ gradients (12). This phenomenon was originally attrib-
uted to the sumoylation of a lysine residue in the C-terminal
domain, which could be inactivated by a single-point muta-
tion (13). However, this was later disproved as the primary
mechanism of TWIK-1 silencing (14). The mutation of
consecutive isoleucine residues in the C-terminal domain
was found to induce strong expression of TWIK-1 in the
cell membrane (14); however, meager currents were still re-
corded relative to other K2P channels in the same conditions
(15,16). Such observations led to the proposal that the prohi-
bition of ionic current is an inherent property of TWIK-1
(17). Furthermore, reports have suggested that TWIK-1
does not exhibit such open rectification. Various mutant
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channels were found to both increase the conductance and
shift the rectification properties to those of other K2P chan-
nels, indicating a convoluted regulation mechanism.

In particular, TWIK-1 was the first channel to display
variable selectivity in response to external stimuli such as
lowered Kþ concentrations (18), increased NH4

þ and Rbþ

concentrations (19), and acidification (20). Hypokalemia
(when extracellular Kþ concentrations are lower than
3.5 mM) is observed in up to 20% of hospitalized patients
and has been associated with an increased risk of sudden
cardiac arrest (21). The adjusted selectivity of TWIK-1 in
these conditions indicates the presence of an inward Naþ

current in response to the Naþ concentration gradient, and
this property is known to depolarize cardiomyocytes and
potentially contribute to cardiac arrhythmia (7,22). As a
consequence, TWIK-1 has emerged as a putative drug target
for antiarrhythmic drugs (23). In-depth exploration of
the molecular determinants of conduction, selectivity, and
gating in TWIK-1 will likely contribute to the development
of targeted therapies.

Previous molecular-dynamics (MD) studies of TWIK-1
identified a hydrophobic cuff in the inner pore that is respon-
sible for a cyclical dewetting process and consequently an
unfavorable barrier to conduction (24). This effect was sug-
gested to be influenced by the presence of lipid molecules in
proximal fenestrations (25), and was supported by studies
involving gain-of-function mutagenesis of such residues to
hydrophilic components (24). However, the behavior of
the SF and its implications for the mechanism of conduc-
tion, selectivity, and gating have not yet been examined.
Therefore, we conducted an MD study utilizing the crystal
structure of TWIK-1 to obtain insight into these phenomena.
MATERIALS AND METHODS

System setup

The crystal structure of TWIK-1 was retrieved from the Protein Data Bank

(PDB: 3UKM) at a resolution of 3.4 Å (residues 19–288) (8). Five potas-

sium ions were resolved in the crystal structure in the internal SF sites

(S1–S4) and S0, suggesting that the structure is representative of an

open, conductive state. Three of these ions were kept in positions S0, S2,

and S4, and those in positions S1 and S3 were converted to water molecules

to represent one of the low-energy conformations identified in previous

studies (26). Crystallographic waters were kept. Missing loops were

modeled using Modloop (27) and combined with the crystal structure.

N- and C-termini were acetylated and methylated, respectively. Residues

C69 of opposing subunits were linked by a disulfide bond. Default proton-

ation states were used for ionizable residues, supported by PropKa calcula-

tions (28). SOLVATE1.0 was used to solvate the protein and fill cavities

present in the structure. A preequilibrated lipid bilayer of 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC) molecules was used. The pro-

tein was aligned to the bilayer normal and inserted into the membrane. All

lipid molecules within 1.2 Å of protein atoms were removed. The combined

system was then solvated to produce a rectangular water box of dimensions

93� 93� 118 Å. Potassium and chloride ions were added to neutralize the

system to a biologically relevant ion concentration (150 mM) using the

Autoionize Plugin of VMD (29). All water molecules deemed as overlap-

ping (distance < 1.2 Å) with the protein, lipids, and ions were removed,
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resulting in a system size of ~90,000 atoms. Trajectories of 200 ns were pro-

duced and denoted as HSE (d position in H122 protonated, D230 unproto-

nated), HSEP (d position in H122 protonated, D230 protonated), HSD

(ε position in H122 protonated, D230 unprotonated), HSDP (ε position

in H122 protonated, D230 protonated), HSP (both d and ε positions in

H122 protonated, D230 unprotonated), and HSPP (both d and ε positions

in H122 protonated, D230 protonated).
MD simulations

NAMD2.9 was employed to calculate trajectories (30). We used the

CHARMM36 force field for the protein, CHARMM36 for lipids (31), the

TIP3P model for water (32), and the CHARMM NBFIX parameters for

ions (33,34). The particle mesh Ewald method was used for the treatment

of periodic electrostatic interactions, with an upper threshold of 1 Å for

grid spacing (35). Electrostatic and van der Waals forces were calculated

every time step. A cutoff distance of 12 Å was used for van der Waals

forces. A switching distance of 10 Å was chosen to smoothly truncate the

nonbonded interactions. Only atoms in a Verlet pair list with a cutoff

distance of 13.5 Å (reassigned every 20 steps) were considered (36). The

SETTLE algorithm was used to constrain all bonds involving hydrogen

atoms, to allow the use of a 2 fs time step throughout the simulation

(37). The Nose-Hoover-Langevin piston method was employed to control

the pressure with a 200 fs period, 50 fs damping constant, and a desired

value of 1 atmosphere (38,39). The system was coupled to a Langevin ther-

mostat to sustain a temperature of 310 K throughout, to maintain the model

membrane above its gel transition temperature.
Equilibration protocol

The systems were subjected to 1000 steps of minimization and equilibrated

for a total of 3.5 ns. The duration of each equilibration step was 500 ps

with a gradual reduction of restraints throughout: 1) protein atoms, ions

in the SF, lipid headgroups, and water molecules within protein cavities

restrained; 2) protein atoms, ions in the SF, and water molecules within pro-

tein cavities restrained; 3) protein atoms and ions in the SF restrained;

4) protein backbone atoms, SF atoms, and ions in the SF restrained;

5) SF atoms and ions in the SF restrained; 6) SF backbone atoms and

ions in the SF restrained; and 7) SF ions restrained only.
RESULTS AND DISCUSSION

K2P channels exhibit a unique architecture (illustrated in
Fig. 1 A) formed from the assembly of two identical sub-
units (denoted A and B). Each subunit consists of two
nonidentical pore domains, with the former including an
expansive EC. Despite the substantial structural variations,
TWIK-1 displays the archetypal conductive SF structure,
which is highly conserved in numerous human and bacterial
Kþ-channel crystal structure analogs (Fig. 2 A). Backbone
carbonyls from each subunit and pore domain within the
subunits assemble in a cage-like structure to form four adja-
cent binding sites (S1–S4) that are capable of binding dehy-
drated Kþ ions. Additional sites are capable of binding
partially hydrated species at the intracellular (SC) and extra-
cellular (S0) exits. The sequence is divergent from the
signature sequence TXGYG, where X represents any hydro-
phobic amino acid; P1 is TTGYG and P2 is TIGLG. On
closer inspection, a degree of asymmetry is observed in
the pore; the distance between the T118 (P1) carbonyls is



FIGURE 1 Extracellular ion transport pathways in TWIK-1. (A) Side view (upper panel) and top view (bottom panel) of the region between the EC (G80)

and the SF (G121), where the position of Kþ ions (orange spheres) was tracked. (B–G) Color maps showing the position of extracellular ions entering the

filter region in simulations HSE, HSD, HSP, HSEP, HSDP, and HSPP, respectively. Ion positions were measured as the x and y coordinates of the center of

mass and then discretized into bins of 0.5 Å. To see this figure in color, go online.
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4.3 Å, compared with 4.8 Å between I226 (P2) atoms.
Furthermore, the SF is known to be influenced by external
pH, with ionizable residues present at the top of the SF in
both P1 and P2. H122, in particular, has been established
FIGURE 2 (A) Crystal structure of the P1 and P2 domains of the TWIK-1 SF,

binding sites are provided on the left. The SF residues T117–G121 and T225–

representing ions and water molecules. Oxygen, nitrogen, carbon, sodium, and

tively. (B–G) Ion trajectories in simulations HSE (B), HSD (C), HSP (D), HSEP

mass of the oxygen atoms of the SF residues that contribute to the binding sites.

individual Kþ ions. Representative snapshots of each ion configuration can be
as the putative proton sensor in TWIK-1, as well as in the
K2P channels TASK-1 and TASK-3, that responds to
changes in extracellular pH (17). How these features influ-
ence the dynamics of the SF and hence ion permeation on
with the initial ion configuration used in all simulations. Definitions of the

G229 are displayed in licorice representation, with van der Waals spheres

potassium atoms are shown in red, blue, cyan, yellow, and orange, respec-

(E), HSDP (F), and HSPP (G). The black traces correspond to the center of

The blue, red, yellow, and pink trajectories correspond to the trajectories of

found in Fig. S3. To see this figure in color, go online.
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an atomistic level is currently unknown. To address this
issue, we performed multiple independent MD simulations
to gain insight into the properties of the TWIK-1 SF, as out-
lined in Materials and Methods.

In all systems, the root mean-square deviations of the
transmembrane domain (Fig. S1 in the Supporting Material)
and the EC (Fig. S2) show initial jumps associated with
the release of restraints present in the initial equilibration
procedure, and remain under 2.5 Å and 3.5 Å, respectively,
throughout, suggesting that the channel is stable and repre-
sentative of the determined structure. It is well established in
the literature that cytoplasmic gating does not modulate ac-
tivity in K2P channels. In agreement with this, the cyto-
plasmic gate does not undergo any significant constriction
throughout our simulations, and the slide helix remains par-
allel to the membrane normal.
Ion transport to the SF

K2P channels possess an extracellular domain that is
distinct from other Kþ channel families, extending ~35 Å
above the transmembrane domain. The geometry of this
region imposes obvious steric constraints on the diffusion
pathway to the central pore (Fig. 1 A). In addition, the resid-
ual composition is predominantly negatively charged,
providing a sink for surrounding cations. To gain insight
into the transport of ions in this region, we tracked the
x and y positions of ions entering the region between the
SF and the turret above, excluding occupancy of the S0–
S4 sites. The bounding box was defined by z coordinates
of the Ca atoms of G80 in the EC and residue G121 at
the mouth of the SF, with the x-y coordinates restricted by
the region occupied by the transmembrane helices. Density
plots of ion distribution, displayed in Fig. 1, B–F, show that
bidirectional diffusion of ions occurs through side portals
of the protruding domain. Negligible diffusion is seen in
Fig. 1 G, corresponding to the HSPP simulation in which
both H122 and D230 are protonated.

The density plots in Fig. 1 pinpoint three unique regions
of increased ion density. First, the region above the SF, de-
noted 1 in Fig. 1 E, is consistently a high-occupancy region,
with the exception of the HSPP simulation. The charged na-
ture of the SF and above extracellular helices, in addition to
contacts with surrounding residues, all contribute to binding
in this region, with subtle differences dependent on the filter
conformation. A central site can be occupied between the
carbonyls of G121 and G229 in both subunits, at the upper
bounds of the S0 site. Additional instances are also observed
in which ions can be found in off-axis sites interacting with
H122 (protonated in the d or ε position), G121, G229, D230
(unprotonated), S86 (EC), or N87 (EC) residues.

A site was identified in the HSDP simulation (labeled 2
in Fig. 1 F) occupying a region directly behind the P1 SF
sequence, with ions predominantly interacting with N101,
H122, N242, and E235. An additional site in close prox-
778 Biophysical Journal 111, 775–784, August 23, 2016
imity to this (denoted 3 in Fig. 1 G) was also found in the
HSPP simulation. This site is present between the P1 SF
sequence and P-loop helix, and is defined by direct interac-
tions with E207 (H3-P2 loop), V232 (P2-H4 loop), E235
(P2-H4 loop), and extracellular water molecules. The close
proximity of these sites to the SF may have implications for
the conformation of the SF and hence ion permeation.
Ion-binding sites in the SF

To probe the behavior of ions within the SF, we tracked the
positions of the four ions in contact with the SF for the
longest period of time (Fig. 2, B–G) and analyzed their
behavior. No complete permeation events were observed
within any trajectory. However, individual ion movements
provide insight into the stability of the Kþ binding sites
and the behavior of ions within them. A comparison of the
conduction profiles of all of the simulations reveals that
the S2–S4 Kþ configuration, as well as the structure
observed in the crystallographic data, shows variable stabil-
ity in the TWIK-1 SF and is sustained for ~5–200 ns. This is
in spite of the absence of a concentration gradient or an
applied voltage.

With the exception of HSPP, the ion occupying the S4 site
is generally stagnant for the timescale of our simulations
in the absence of additional ions, due to the consistent coor-
dination to backbone carbonyls and side-chain hydroxyl
groups of T117 and T225, resulting in a coordination num-
ber of 7 or 8 throughout. In contrast, the ion that originally
occupies S2 is subject to reduced coordination at both the
upper and lower bounds of the site, and abstraction from
this site is observed in all simulations except HSD. T118
in P1 shows increased conformational freedom, resulting
in prolonged periods where ion contacts cannot be formed
and hence elevation of the ion in the site, which conse-
quently reduces the coordinating ability of I226 in the
equivalent position in P2. Additionally, structural changes
originating from the top of the P2 SF sequence also lead
to reduced coordination of G227, further contributing to
the instability of the occupying ion. In the case of HSD,
conformational changes at the top of the P1 domain of the
SF result in a constriction at the S0 site and the removal
of multiple carbonyls from the S1 site, rendering the S2
site the most favorable for an ion in this region of the SF.
Qualitatively, these observations are in agreement with
the crystallographic data, which demonstrate ion density
in S1 to S4 sites.

In the HSE, HSDP, and HSPP simulations, the S1–S4
conformation is sustained for ~100–200 ns. Due to the
increased conformational freedom of the upper region of
the filter in both the P1 and P2 domains, the ion in S1 is sub-
ject to coordination by carbonyls from two G119 residues.
The remaining contributions come from Y120 and G227
residues and additional water molecules depending on the
conformation of the SF, which generally exhibits a full
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coordination shell despite divergence from the canonical
structure. Furthermore, transient constrictions in the S0 re-
gion of the P1 domain, similar to those observed in the
HSD simulation, likely contribute to ion maintenance in
this site, and expulsion to the extracellular solution is only
permitted in the absence of these constrictions.
Structure of the SF

Experimental evidence indicates that the Kþ channel SF can
adopt multiple conformations in addition to the stereotypi-
cal conductive conformation (40). Certain voltage-gated
Kþ channels have shown Naþ conductance in the absence
of internal Kþ ions, suggesting that the SF can adopt
different open conformations with shifting selectivity (41–
46). In the case of TWIK-1, inward rectification of Naþ

and outward rectification of Kþ have been measured in
low extracellular Kþ concentrations and acidic conditions,
even though it exhibits the attributes of a highly selective
channel in normal physiological conditions (18), albeit
with low conductance properties. These results indicate
that TWIK-1 has at least three distinct SF conformations:
one conductive, one inactivated, and one with altered selec-
tivity properties. Therefore, we focused our attention on
characterizing the conformations of the TWIK-1 SF in
response to the range of ionic configurations we identified.

The crystal structure is representative of a typical conduc-
tive conformation that consists of four contiguous binding
sites and is capable of providing a full coordination shell
to dehydrated Kþ ions (47). This structure is observed
initially in the MD trajectories (Fig. 3 A) but diverges
rapidly in all simulations to a number of conformations
that contain defective coordination sites yet maintain the
general framework of the SF and can be considered partially
conductive. This is due to an amalgamation of distinctive P1
and P2 conformations (Fig. 3 B). The disparity compared
with the typical structure in P1 is localized in the region
of T118, which exhibits rotational freedom, causing lateral
expansion of the S2 and S3 sites. Crystallization of the non-
inactivating E71A KcsA mutant revealed remarkable simi-
larities to the structure of P1 in this region (48). In the P2
domain, the canonical structure is lost in the upper region,
with residue D230 exhibiting a dynamic behavior, both in
protonated and unprotonated forms. A consequence of this
higher mobility is a reduced ion coordination by protein
atoms in binding sites S0–S2. The functional state of this
conformation cannot be attained in our simulations, but as
all sites remain viable to accommodate Kþ ions, it is likely
that conduction, even if less favorable, can still occur in this
state. This is observed in all simulations except HSD, where
a constriction in the S0 site is observed in the P1 domain
(Fig. 3 C), occluding water and ions from entering the SF
from this angle for the remainder of the simulation. The
predominance of such states throughout the simulation
may have implications for the low conductance properties
of TWIK-1 relative to other K2P channels.

The vacancy of both the central S2 and S3 sites induces
conformations in which the S2 site is physically occluded
by backbone rearrangements of SF residues (Fig. 3 D).
In the HSE and HSP simulations, this occurs by movement
of T118 and G119 in P1, whereas in the HSEP and HSPP
simulations, this state is observed in I226 and G227 in
P2. In these configurations, ions and water molecules are
excluded from the S2 site for the remainder of the simula-
tion. The S4 and S3 sites are maintained, with diffuse S0
and S1 sites containing multiple molecules as in the previ-
ous conformation. The constriction of the filter shares
similar attributes with the crystal structure of KcsA in low
Kþ concentrations, where the SF is blocked by a constric-
tion involving V76 and G77 residues, and V76 is oriented
away from its optimal position (49). This was confirmed
to be nonconductive (50–52) and suggested to be represen-
tative of a C-type inactivated state (53). It must be noted that
this state is stable on a millisecond timescale, which is un-
attainable during our simulations; therefore, it is possible
that this conformation is an intermediary state that can block
FIGURE 3 Snapshots of the identified SF confor-

mations. The SF residues T117–G121 and T225–

G229 are displayed in licorice representation, with

van der Waals spheres representing ions and water

molecules, and oxygen, nitrogen, carbon, sodium,

and potassium atoms shown in red, blue, cyan,

yellow, and orange, respectively. (A) HSD, 10 ns.

(B) HSDP, 5 ns. (C) HSD, 200 ns. (D) HSEP,

200 ns. (E) HSPP, 200 ns. To see this figure in color,

go online.
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permeation transiently, but does not represent the typical in-
activated state.

Finally, in the HSPP simulation, a novel, to our knowl-
edge, structure of the SF was observed in which all binding
sites were depleted of ions but the SF remained open
(Fig. 3 E). Previous computational studies suggested the
existence of a pathway behind the SF (54) for water trans-
port in collapsed Kþ channels (55). However, these results
demonstrate an atomistic representation of the Kþ SF that
can stably occupy water in the absence of ions and poten-
tially allow water permeation directly through the SF. These
observations provide insight into the unique behavior of
the SF of TWIK-1 as a consequence of a single sequence
difference in each domain.
Structural changes in P1

Compelling experimental evidence suggests that the
hydrogen (H)-bond network behind the SF plays an integral
role in determining the structure of the SF, influenced by the
presence of structural water molecules and the orientation of
local residues (56). Therefore, we analyzed the atomic inter-
actions that stabilized the observed conformations. An ex-
amination of T118 is of particular importance due to its
confirmed role in the variable selectivity of TWIK-1 in
response to low extracellular Kþ concentrations (18). To
understand the interrelation between the behavior of this
residue and the ionic configurations, we characterized
its conformation throughout our simulations using the J
(backbone) and X (side chain) dihedral angles (Fig. 4, A
and B). Overall, the J backbone conformations could
be prorated into seven clusters, with J values centered
at approximately �95�, �45�, 20�, 65�, 110�, 140�, and
170�. These clusters were denoted I–VII in ascending order.
In each cluster, the side-chain dihedral angle X could
FIGURE 4 (A) Heat map ofJ and X angles of T118 throughout all simulation

(from left to right): II (g�)/conductive, IV (g�)/flipped, V (g�)/inactivated, III (

state. The upper and lower panels represent the front and side views of the SF, res

and S222 are shown in cyan and orange, respectively, with red spheres represen
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occupy three rotameric states, gþ, g�, and t, corresponding
to average X angles of 36�, �41�, and �176�, respectively
(57). These conformations will be referred to by these clas-
sifications henceforth, and the structures of the most highly
populated conformations are shown in Fig. 4 B.

Conformation II (g�) is representative of the crystal
structure with the carbonyls poised for ion binding, and
therefore can be considered to be conductive. This confor-
mation is one of the least populated conformations in our
simulations, displaying a complex H-bond network as a
means of stabilization for a fully conductive filter. T118
and G119 act as H-bond donors to the T113 carbonyl on
the pore helix, and the T118 side chain is capable of
H-bonding with both S116 and S222 side chains. The re-
maining filter residues interact with up to two structured
water molecules, which in turn contact the side chains of
T113, H122, and T123.

In the additional T118 conformations we identified, the
backbone carbonyl deviates from this orientation; hence,
the extent to which T118 can bind permeant ions in S2
and S3 is compromised. Conformation IV (g�) represents
a flipped state, with the carbonyl perpendicular to the pore
axis. Further rotation of T118 results in a blocked conforma-
tion, V (g�). Backbone atoms in this region physically
occlude the permeation axis, resulting in complete removal
of the S2 site and blockage of the SF. Such conformations
have been established as part of the normal functioning of
Kþ channels via MD simulations, depending on the ion
occupation of the SF. The H-bond network is highly
conserved with regard to conformation II (g�), with mini-
mal reorientations involving the T113 carbonyl and water
molecules that now interact with the T118 backbone. In
conformation III (t), the carbonyl is rotated ~75� relative
to the crystal structure, displaying an H-bond between the
side-chain hydroxyl and backbone carbonyl of T118, and
s. (B) Snapshots of the full P1 SF in the most populated T118 conformations

t)/open conformation (I), and VII (t)/open conformation with H122 in the up

pectively. SF residues T117–H122 and H-bond partner residues S113, T123,

ting water molecules. To see this figure in color, go online.



FIGURE 5 Snapshots of the observed P2 conformations in licorice repre-

sentation, using the coloring scheme defined in Fig. 2 for P2 residues, and

the carbon atoms of additional H-bonding residues shown in orange. (A)

Conductive conformation. (B) Conformation with S2–S4 sites maintained,

with disruption in the upper sites. To see this figure in color, go online.
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conserved H-bonding properties elsewhere. As hydrophobic
residues usually occupy this position, this conformation ap-
pears to be unique to TWIK-1 and, to the best of our knowl-
edge, has not been characterized in previous computational
studies.

A prerequisite of the H-bond network described in these
conformations is that H122 must be in a so-called down
state, where the histidine ring is embedded in the small cav-
ity behind the SF. It must be noted, therefore, that H122 can
also occupy an up state, with the ring displaying enhanced
flexibility above the filter. In this case, extracellular water
molecules penetrate the region previously occupied by the
H122 side chain, and interact with selectivity filter residues
to stabilize similar conformations. An additional conforma-
tion is also observed in which T118 is in the region of the
Ramachandran plot corresponding to a b-sheet, with the
T118 side chain occupying the pore and H-bonding
with surrounding water molecules. In this case, H122 is
primarily in the up state, and is predominant throughout
our simulations.

In both conformations III (t) and VII (t), coordinating
atoms in the S2 and S3 sites are removed, providing a direct
link between the behavior of T118 and the structure of the
TWIK-1 SF. The S2 site has been identified as the most se-
lective site in Kþ channels; therefore, these conformations
may represent a potentially nonselective state, as shown
experimentally in reduced Kþ concentrations and extracel-
lular pH (18,20). The importance of the so-called pH sensor,
H122, for the different conformations of P1 suggests a
further association between the latter stimulus and the dy-
namic selectivity phenomenon.
Structural changes in P2

The P2 sequence in TWIK-1 is also not conserved with
respect to other Kþ channels, since the representative
TXGYG sequence is constituted of TIGLG in this channel.
The sampled conformations of this domain display a vari-
able H-bond network involving water molecules and pore
helix (Y217 and I221), SF (I226, G227, and G229), and
loop (D230 and Y231) residues. Favorable hydrophobic in-
teractions between the bulky side chains of I226 and L228
can also be identified. The lower region of the P2 filter
domain (S2–S4) is highly conserved with respect to other
Kþ channels and thus exhibits paramount stability relative
to P1, demonstrating only conductive and constricted con-
formations. With regard to the upper region of the filter,
the preservation of the S0–S2 sites is dependent on the
maintenance of interactions between Y217 and D230
(Fig. 5). Detachment of these residues (in both protonation
states) propagates structural changes throughout the SF,
notably rotation of L228 and G229, resulting in numerous
structural variants in which the upper sites are removed
and incapable of ion binding. Most commonly, the behavior
of this region is largely determined by dynamic interactions
with surrounding water molecules and cations, as well as
transient interactions with K131.
Comparison with other KD channels

Investigations of SF dynamics have focused largely on the
prokaryotic Kþ channel, KcsA. The crystal structure of
KcsA exhibits a complex network of H-bonds involving
contributions from the SF (G77, Y78, and G79), adjacent
pore helices (W67 and E71), the succeeding extracellular
loop (D80), and an adjacent water molecule, stabilizing
the conductive conformation of the filter (49). In the
nonconductive case, a reorganized H-bond arrangement
was observed that was devoid of direct E71-Y78 and E71-
G77 interactions, which were replaced by three structured
water molecules behind the SF, the presence of which
is thought to control the recovery from slow inactivation
(58). A multitude of structural, functional, and computa-
tional investigations have since indicated that the W67,
E71, D80 triad is crucial in determining the degree to which
C-type inactivation occurs (48,59,60). Crystal structures of
the E71Amutant provided an atomistic description of a non-
inactivating SF. The nonflipped state showed remarkable
similarities to the conductive state of KcsA in spite of low
Kþ concentrations. Remarkably, the W67-D80 interaction
was maintained. In contrast, W67 and D80 occupy alterna-
tive conformational states in the flipped state, with the latter
extending above the SF, resulting in a novel, to our knowl-
edge, SF framework in which the S2 and S3 sites are merged
due to rotations of V76.

Residues that occupy equivalent positions in TWIK-1
play an integral role in the conformations we observed,
despite their low conservation. In P1, T113 and H122
occupy the positions of E71 and D80 in KcsA, undergoing
interactions with each other and SF residues mediated by
water molecules. This network, in addition to specific
T118 interactions, typically serves to maintain conductive
Biophysical Journal 111, 775–784, August 23, 2016 781
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and nonconductive states with the SF, and it also stabilizes
partially conductive conformations. These open states epit-
omize the flipped E71A mutant, with T118 and H122
mimicking the flexible nature of V76 and D80, respectively.
In P2, the W67-D80 interaction is conserved in Y217 and
D230 in the conductive conformation, but is primarily de-
tached in the remaining conformations, with swelled S0
and S1 sites. This is consistent with the position of L228,
where KcsA contains Y78, suggesting that the presence of
this residue may destabilize this region.

To assess whether the dynamics we observed in the SF are
unique to TWIK-1, we aligned multiple sequences consti-
tuting the SF and the surrounding environment (Fig. 6),
and compared interactions that are known to stabilize the
SF. In Kv1.2, which is representative of the voltage-gated
Kþ channel family, residues D379 and W366 are integral
and display exact conservation with D80 and W67 in
KcsA, respectively. In Kir2.2, which is representative of
the inward-rectifying Kþ channel family, a salt-bridge be-
tween E139 (conserved with E71) and R149 is responsible
for maintenance of the conductive SF structure. This sug-
gests that TWIK-1 cannot be likened to such channel fam-
ilies. With regard to other K2P channels, TRAAK and
TREK-2 demonstrate highly conserved sequences in the
pore region but diverge from TWIK-1 with regard to the
T118, H122, and L228 positions, which contain I, N, and
F residues, respectively. This is consistent with our proposal
that the variability of the SF structure originates from these
residues, and supports experimental evidence indicating that
TWIK-1 is also atypical within the K2P family with regard
to its conduction properties.
CONCLUSIONS

Throughout our computational study, we gained insights
into the highly dynamic behavior of the TWIK-1 SF. Multi-
ple Kþ ions can occupy alternate sites in the SF, bound in a
typical cage-like manner to surrounding carbonyl atoms;
however, we find the behavior of SF is disparate from that
previously recorded.
FIGURE 6 Sequence alignment of the SF region with multiple Kþ chan-

nels. P1 and P2 denote the nonidentical domains observed in K2P channels.

To see this figure in color, go online.
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channels is exemplified at the S2 site, with diverse behaviors
from both nonconserved P domains in the SF converging
here. We identified multiple conformations in P1 that ex-
hibited lateral expansion of the S2 and S3 sites, primarily
depending on the conformational state of T118. Introduction
of this residue into other K2P channels induced the dy-
namic-selectivity phenomenon observed in subphysiologi-
cal conditions in native TWIK-1 channels; therefore, it is
possible that such conformations may have varied selec-
tivity properties. The dependence on the surrounding
H-bond network, in particular the behavior of H122, raises
the possibility that external stimuli, such as Kþ concentra-
tion and pH, can be translated to structural changes in the
SF. In addition, we observed a widening at the extracellular
mouth of the P2 domain, removing the upper sites in the SF.
The protonation state of the residues of the selectivity was
extensively tested. With the exception of a single simulation
(with H122 protonated in the d position and the unproto-
nated state of D230), ions were always observed to leave
the binding site S2. Upon exclusion of ions from S2, we
observed additional conformational states that physically
blocked the SF, similar to what was observed in KcsA in
low Kþ concentrations. Finally, in a simulation in which
both H122 and D230 were in protonated forms and both
ions were lost from the filter, the SF remained in an open
conformation and all sites were filled with water molecules.
TWIK-1 is the first channel, to our knowledge, to display
such noninactivating characteristics in a computational
simulation.

Overall, these results shed light on the conduction proper-
ties of TWIK-1, which exhibits low levels of activity in
physiological conditions, yet a robust inward Naþ current
in subphysiological Kþ concentrations and upon acidifica-
tion. The connection between such properties and the para-
doxical depolarization of cardiomyocytes has potential
implications for the development of channel-based therapies
for associated cardiac disorders.
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Figure S1. Root mean square deviation (RMSD) of the backbone of the 
transmembrane helices of TWIK-1 in simulations: (A) HSE, (B) HSEP, (C) HSD, (D) 
HSDP, (E) HSP and (F) HSPP. 
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Figure S2. Root mean square deviation (RMSD) of the extracellular cap 
corresponding to residues S80 to D103 in simulations: (A) HSE, (B) HSEP, (C) HSD, 
(D) HSDP, (E) HSP and (F) HSPP. 
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Figure S3. Representative snapshots of each ion configuration throughout 
simulations (A) HSE, (B) HSEP, (C) HSD, (D) HSDP, (E) HSP and (F) HSPP. The 
selectivity filter residues T117 to G121 and T225 to G229 are displayed in licorice 
representation, with Van der Waals spheres representing ions and water molecules, 
with oxygen, nitrogen, carbon, sodium and potassium atoms shown in red, blue, 
cyan, yellow and orange respectively. 
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