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Supporting Text

High Speed AFM

The theory of force-ramp experiments based on Main Text Eq. 3 is valid
only when the pulling speed is so slow that the system can relax to equilib-
rium at each instant of time. In addition, the linkers must be sufficiently soft
that the effect of the pulling apparatus is negligible. One can examine the
influence of the linkers and of the AFM tip using the two-dimensional free
energy surface [1]

G(x, q) = Go(x) +
1

2
κL(q − x)2 +

1

2
κS(vt− q)2, (S1)

where x and q are the molecular and measured extensions, respectively; Go(x)
is the molecular free energy profile, v is the pulling velocity, κL and κS are
the spring constant of the linker and cantilever, respectively. The dynamics
is assumed to be diffusive and the diffusion coefficients Dx along x and Dq

along q are in general different.
In a pulling experiment, the rupture force is commonly found from the

extrapolated average force at rupture. When the pulling speed is slow then
this rupture force can be approximated as F = κs(vt− q∪(t)) where t is the
time at which rupture occurs and q∪(t) is the force-dependent minimum (i.e.,
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the value of q for which ∂G/∂x = ∂G/∂q = 0). For larger pulling speeds a
better estimate of the rupture force is to replace q∪(t) by the average value
of q, 〈q(t)〉 before rupture, so the observed force is Fobs = κS(vt−〈q(t)〉). To
find 〈q(t)〉, one can show, for example by averaging the underlying stochastic
differential equations and using the fact the average of the random force is
zero, that

d〈q(t)〉
dt

= −βDq〈∂G∂q 〉,
d〈x(t)〉

dt
= −βDx〈∂G∂x 〉.

(S2)

If we approximate Go(x) by a harmonic potential at its minimum (which
we take as 0 without loss of generality) Go(x) = 1

2
G′′o(0)x2 = 1

2
κMx

2 then
the differential equations for 〈q(t)〉 and 〈x(t)〉 are linear and can be solved
analytically. For the initial conditions 〈q(0)〉 = 〈x(0)〉 = 0, we find that at
long times 〈q(t)〉 = q∪(t)− δ where the lag δ is

δ =
v(κ∪e )2

βκS

(
1

Dxκ2
M

+
1

Dqκ2
ML

)
, (S3)

with (κ∪e )−1 = κ−1
S + κ−1

M + κ−1
L and κ−1

ML = κ−1
M + κ−1

L , so that the average
value of q lags behind its minimum value. The measured rupture force can
then be written as

Fobs(t) ≈ κS(vt− q∪(t)) + κSδ, (S4)

where δ is given by Eq. S3. The effective potential surface experienced
by the molecular coordinate x at time t has its minimum, on average, at
xe∪(t) = κL〈q(t)〉/(κM + κL) = κL[q∪(t) − δ]/(κM + κL). This shift in the
minimum from x = 0 can be interpreted as the result of an effective force
Feff(t) = κMx

e
∪(t) acting on the molecular coordinate x. The difference be-

tween the observed force Fobs(t) and this effective molecular force Feff(t) is
an approximate correction for drag effects,

∆Fdrag ≡ Fobs(t)− Feff(t) = (κS + κML) δ, (S5)

where the time-dependent terms exactly canceled. If this drag correction
∆Fdrag is subtracted from the Fobs then our previous analysis [1] of the re-
lations between the rate at constant force and the rate that determines the
rupture force histogram via Main Text Eq. 3 is still valid within the frame-
work of the quasi-adiabatic approximation. For stiff molecules (κM � κL)
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that relax rapidly (Dx � Dq) the force correction term is

∆Fdrag ≈
v

βDq

(
1 +

κL
κS

)−1

. (S6)

However, for finite Dx/Dq and stiff apparatus and linkers, the drag correction
in Eq. S5 can also exceed v/βDq.

For very high speeds not only the quasi-adiabatic approximation breaks
down but it becomes difficult to define the rupture force when the fluctuations
in q are slow compared to the rupture time. The breakdown of the quasi-
adiabatic approximation has been recently analyzed for the one dimensional
harmonic-cusp potential [2]. It will be interesting to see if this analysis can
be extended to two dimensional free energy surfaces as given in Eq. S1.

Supporting Figures
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Figure S 1: Parameter interdependence in unrestricted fits to hsAFM [3] data
for titin I91 domain. For µ=0.3, the relative χ2 is shown as a function of ln(k0[s−1])
and x‡[nm] (top), and of ∆G‡[kBT ] and x‡[nm] (bottom). Best fits exhibit a clear lin-
ear interdependence with ln(k0[s−1])/x‡[nm] ∼ −26, for 10−10 ≤ k0 ≤ 10−3 s−1, and
0.3 ≤ x‡ ≤ 0.7 nm. The parameter interdependence can be reduced by using additional
information, such as restricting k0 to the bulk unfolding rate 4.9× 10−4 s−1.
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Figure S 2: Ductility of the ddFLN4 domain. We performed restricted fits to the ex-

perimental ddFLN4 unfolding rates, enforcing that the kinetic prefactor, kpre = k0e
β∆G‡

,
is within the range expected from the transition path time measurements [4] for proteins
of comparable size (1/µs−1/100µs). Relative error χ2 (top left) of the fits to the ddFLN4
unfolding rates, activation barrier β∆G‡ (top right), transition state x‡ (bottom left), and
base ten logarithm of the intrinsic rate, log10(k0) (bottom right), as a function of µ. Solid
green circles are for the unrestricted fits (Main Text Fig. 5), and open magenta circles
show the results with the restriction.
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Figure S 3: Ductility of the biotin-streptavidin and LFA-1:ICAM1 complexes.
Mean rupture force of the biotin-streptavidin (top) and LFA-1:ICAM1 (bottom) complexes
[5] as a function of the logarithm of the force-loading rate. Fits of 〈F 〉 are shown as lines
for the best model µ = 0 (blue). The inset shows the error χ2 relative to the best fit.
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