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ABSTRACT Ductile materials can absorb spikes in mechanical force, whereas brittle ones fail catastrophically. Here we
develop a theory to quantify the kinetic ductility of single molecules from force spectroscopy experiments, relating force-spike
resistance to the differential responses of the intact protein and the unfolding transition state to an applied mechanical force.
We introduce a class of unistable one-dimensional potential surfaces that encompass previous models as special cases and
continuously cover the entire range from ductile to brittle. Compact analytic expressions for force-dependent rates and
rupture-force distributions allow us to analyze force-clamp and force-ramp pulling experiments. We find that the force-transmit-
ting protein domains of filamin and titin are kinetically ductile when pulled from their two termini, making them resistant to force
spikes. For the mechanostable muscle protein titin, a highly ductile model reconciles data over 10 orders of magnitude in force
loading rate from experiment and simulation.
INTRODUCTION
Proteins in muscle fibers, blood, or the cytoskeleton are
subject to fluctuating forces. These forces can induce
changes to their structure that range from reversible elastic
deformations to dissociation of complexes and mechanical
unfolding. According to the classical phenomenological
theories (1–3), the rate of a conformational transition
is expected to increase exponentially with force,
kðFÞzk0 expðbFxzÞ, with k0 as the intrinsic rate at zero
force, xz as the distance to the transition state, and b ¼ 1/
kBT. As a consequence of the steep rise of the rupture rate
with force, even transient force spikes can be highly desta-
bilizing and carry the risk of quasi-irreversible damage from
unfolding and eventual aggregation. Fig. 1 illustrates this
problem with actual data (4,5) for the ddFLN4 domain of fil-
amin, a protein forming force-transmitting bridges in the
actin network of the cytoskeleton. If the rise of the unfolding
rate kðFÞ with force F were strictly exponential as for
the Bell’s model (3), a transient 1-ms force spike exceeding
50 pN would trigger unfolding with near certainty. However,
at high force, the actual kðFÞ drops below the Bell extrapo-
lation. As a consequence, ddFLN4 is kinetically ductile,
withstanding forces of nearly 80 pN for ~1 ms on average.
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By contrast, the Bell rate extrapolated to this force would
predict unfolding within 10 ms. Here, we develop the theo-
retical framework to relate the kinetic ductility reflected in
the subexponential force dependence of kðFÞ to the free en-
ergy landscape governing protein unfolding. We then use
the theory to examine the force-spike resistance of different
mechanoproteins.

Rupture rates, free energies of activation, and barrier
locations can, in principle, be extracted quantitatively
from single-molecule force spectroscopy experiments
with the help of statistical mechanics. In microscopic
theories (4,6–12), molecular rupture under force is
described in terms of diffusive dynamics on a unistable
potential surface, for which the force dependence of the
rupture rate can be found using Kramers theory (13).
For constant loading rate, it appears that the rupture-
force distribution, pðFÞ, can be expressed in terms of
elementary functions only for two special cases of poten-
tials: the linear-cubic (7,9) and the harmonic-cusp poten-
tial (8). Dudko et al. (10) noted that for these two
potentials and for Bell’s model, kðFÞ and pðFÞ can be
written in a unified way by introducing a parameter n.
Specifically, values of n ¼ 1, 2/3, and 1/2 correspond to
the Bell limit, and the linear-cubic and harmonic-cusp
potential, respectively.

It was mentioned that n could be treated as an adjustable
parameter (10), but no specific form of the potentials was
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FIGURE 2 Free energy profiles. (A)G0ðxÞ for different kinetic brittleness
m¼ 0, 1/2, 2/3, and 1 with symmetric wells and barriers (q¼ 0). (B) Asym-

metric potentialsG0ðxÞ for m¼ 1/2 and q¼ 0,5p=6, and5p=2, shifted by

ðsinqÞ=2 along x to line up the extrema. For m¼ 2/3 and q¼ 0 , G0ðxÞ is the
linear-cubic potential. For m ¼ 1/2, it is the harmonic-cusp potential when

q ¼ �p=2, and the matched-harmonic potential when q ¼ 0. As m/1,

G0ðxÞ becomes the saw-tooth potential. To see this figure in color, go

online.

FIGURE 1 Resistance of proteins to transient force spikes. The force-

dependent unfolding rates kðFÞ of the filamin domain ddFLN4 (green sym-

bols) drop below the exponential Bell model extrapolated from low force

(red line). Rates kðFÞ are from AFM measurements (4) cast into a master

curve (5). As a result, larger force spikes (black arrow) into the critical

regime (blue-shaded) can be tolerated. (Blue line) Fit to the experimental

data of the kinetically ductile model (m ¼ 0 from Eq. 2). (Yellow arrow)

Increased resistance to force spikes. To see this figure in color, go online.
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given for general n. Lin et al. (11) considered polynomial
approximations to the potential in the brittle regime (n R
1/2) that lead to the activation free energy of Dudko
et al. (10). Hyeon and Thirumalai (12) constructed explicit
potentials for n ¼ n/(n þ 1) ¼ 1/2, 2/3,. with n ¼ 1,2,.
that generalize the linear-cubic and harmonic-cusp models,
and concluded that no physically reasonable potentials
exist for 0 % n < 1/2. The ductile regime requiring a
parameter from Dudko et al. (10) of n < 1/2 has thus
been associated with complex, multibarrier free energy
landscapes (12,14).

Here, we show that single-barrier potentials exist also in
this ductile regime. The theory of force-induced rupture
built on our newly introduced class of unistable potentials
is fully analytical, and the potentials used in previous
microscopic models are encompassed as special cases.
By extending the range of potential surfaces, we can
describe rupture kinetics from the ductile to the brittle ex-
tremes. We find that the regime corresponding to n z 0 re-
sults in kinetically ductile behavior described by a gradual
stretching under force before eventual rupture. At the other
extreme of brittle rupture, n z 1, the system does not yield
significantly before breaking catastrophically. With the
rupture-rate theory based on the new potentials, we
examine the force-spike resistance of folded domains of
the mechanoproteins titin, filamin, and gelsolin, which
cover a broad range of mechanostabilities. For titin and fil-
amin, the single-molecule pulling data (and molecular sim-
ulations in the case of titin) are consistent with high kinetic
ductility.
MATERIALS AND METHODS

Free energy surfaces

To extend the range of the analytic theory into the kinetically ductile

regime, we consider a new class of smooth unistable potentials with contin-

uous first derivatives,

G0ðxÞ ¼ DGzx
mxz

"
1� ð1� mÞ

�
2x2=xz

jx j þ xsinq

�m=ð1�mÞ#
; (1)

as illustrated in Fig. 2. The variable x˛ð�N;NÞ is the pulling coordinate,

xzhxzðF ¼ 0Þ is the distance from the well bottom to the barrier top

without force, and DGzhDGzðF ¼ 0Þ is the activation free energy in the

absence of force. The continuous parameters of kinetic brittleness,

m˛ð0; 1Þ, and well-barrier asymmetry, q˛ð�p=2;p=2Þ, determine the

shape of the potential with fixed activation free energy and distance to

the transition state.

The class of potentials defined in Eq. 1 encompasses all previous micro-

scopic models as special cases. For m ¼ 2/3 and q ¼ 0, we recover from

G0ðxÞ the linear-cubic potential (7,9,10), and for m ¼ 1/2 and q ¼ 0 the

matched-harmonic. For m ¼ 1/2 and q/� p=2, G0ðxÞ reduces to the har-

monic-cusp model (8). In the Bell limit m/1, we recover the saw-tooth po-

tential (15) from G0ðxÞ. At a constant force F, the free energy is

GðxÞ ¼ G0ðxÞ � Fx (Fig. 3 A).
Kinetic ductility

The kinetic ductility of individual molecules is defined in terms of the

response of the distance to the transition state xzðFÞ to force before

rupture (16) (Fig. 3). Perfectly brittle molecules rupture under force

without any preceding drop in xzðFÞ, whereas for a perfectly ductile

molecule, barring thermal fluctuations, xzðFÞ would shrink indefinitely

with F. This definition of brittleness differs from that adopted in some

earlier studies, namely that brittle molecules have short distances to

the transition state, such that the rupture rate depends relatively weakly

on force. This latter definition requires a somewhat arbitrary choice of

length scale to separate brittle from ductile. As we will show, under

the definition of Hyeon and Thirumalai (16), even proteins with rela-

tively short distances to the transition state can emerge as being ductile

when being probed over a wide range of forces, making them resistant to

transient force spikes.

For the class of unistable potentials defined in Eq. 1, the distance to

the transition state depends on force as xzðFÞ ¼ xzð1� F=FcÞð1�mÞ=m
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FIGURE 3 Brittle and ductile responses to force. (A) Free energy pro-

files, GðxÞ ¼ G0ðxÞ � Fx, in the absence (F ¼ 0; solid) and presence of a

constant force (F > 0; dashed) for brittle (m/ 1) and ductile (m/ 0) sys-

tems with symmetric wells and barriers (q ¼ 0). (B) Normalized distance

from the equilibrium position to the transition state, xzðFÞ=xz, as a function
of the reduced force, Fxz=DGz, for m ¼ 0, 1/2, 2/3, and 1, for the class of

potentials shown in Fig. 2. (Open circles) Disappearance of the barrier at

the critical force. To see this figure in color, go online.
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(Fig. 3 B), where the critical force Fc ¼ DGz=mxz is the maximum

sustainable force in the absence of thermal fluctuations. The value

m ¼ 1/2 separates the kinetically ductile and brittle regimes with

convex and concave xzðFÞ, respectively (Fig. 3 B). In the kinetically brittle
limit (m/ 1), the saw-tooth potential perfectly maintains its distance to the

transition state under force, xzðFÞ ¼ const:, before collapsing

catastrophically at the critical force. By contrast, in the fully ductile

limit (m / 0), the potential becomes G0ðxÞ ¼ ðDGzx=xzÞ½1� lnð2x2=xz=
ðjx j þ x sinqÞÞ�, and the metastable minimum persists for all finite

forces, with the distance to the transition state decreasing exponen-

tially with force, xzðFÞ ¼ xzexpð�Fxz=DGzÞ. In practice, for any

m > 0, the barrier eventually disappears. Moreover, in a thermal system,

barriers <kBT are in essence negligible because of thermal fluctua-

tions, and so the unruptured state does not persist to large force even

when m ¼ 0.
Rupture-rate theory

We use Kramers theory (13) to calculate the force-dependent rate of

molecular rupture kðFÞ, as modeled by the escape from the metastable

minimum on the force-dependent free energy surface GðxÞ. For a

smooth free energy profile near the extrema, one can expand GðxÞ
about the force-dependent minimum ðxmÞ and maximum ðxMÞ to sec-

ond-order. For sufficiently high barriers, Kramers theory (13) leads

to the expression kðFÞ ¼ bD½G00ðxmÞjG00ðxMÞ j �1=2exp½�bDGzðFÞ�=2p,
where D is the diffusion coefficient and the force-dependent

activation free energy is DGzðFÞ ¼ GðxMÞ � GðxmÞ. In this way, we

find independent of the value of q

kðFÞ ¼ k0

�
1� mFxz

DGz

�2� 1
m

e
bDGz

�
1�

�
1�mFxz

DGz

�1=m�
; (2)

where k0 is the rate at zero force. For fixed DGz and xz and decreasing m,

the range of forces for which Eq. 2 is valid, increases. In fact, kðFcÞ ¼ 0

for m> 1=2 (which is pathological). However, for m< 1=2, kðFÞ/N
as F/Fc (which fortuitously is more physically reasonable). In

the fully ductile limit m / 0, the rate becomes kðFÞ ¼
k0 exp½bDGzð1� e�Fxz=DGz Þ þ Fxz=DGz�.
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The force-dependent activation free energy implicit in Eq. 2,

DGzðFÞ ¼ DGzð1� mFxz=DGzÞ1=m, is identical for all q to that proposed

by Dudko et al. (10) when m / n. However, the preexponential factors

differ except when m ¼ 2/3, and this is why we use m instead of n. The

reason for this is that the preexponential factors from Dudko et al. (10)

for n other than 1/2 and 2/3 were not derived from Kramers rate theory using

an explicit free energy surface. In addition, for n ¼ 1/2, Dudko et al. (10)

used a cusp-shaped potential surface, corresponding to m ¼ 1/2 and

q ¼ �p=2 here. For such potentials, when the second derivatives do not

exist at the extrema, the preexponential factor should not be calculated as

above, but in a different way (see section 3.5.3 of Hummer and Szabo

(17)). For the harmonic-cusp model (8,10,18), m ¼ 1/2 and q/5p=2,

one then obtains a preexponential factor of ð1� Fxz=DGzÞ instead of 1,

in agreement with Dudko et al. (10).

For soft linkers under the quasi-adiabatic assumption (see, e.g., Hummer

and Szabo (8)), the distribution of rupture forces is

pðFÞ ¼ kðFÞ
_F

e
�
R F

0
dF0kðF0Þ

�
_F

; (3)

where _F ¼ dF=dt is the force loading rate. For kðFÞ, in Eq. 2, it is valid for

forces F well below Fc with activation barriers DGzðFÞTkBT. For a linear

increase of the applied force with time t, FðtÞ ¼ _Ft with _F constant, we

obtain

pðFÞ ¼ kðFÞ
_F
e
L0

�
G½3m�1;bDGz��G

�
3m�1;bDGz

�
1�mFxz

DGz

�1=m��
;

(4)

where L0 ¼ k0ðbDGzÞ2�3mebDG
z
=b _Fxz and G½s; x� ¼ RN

x ts�1e�tdt is the

incomplete G-function. The average rupture force hFi ¼ R
FpðFÞdF is

approximately

hFizDGz

mxz

�
1�

�
lnL

bDGz

�m�
1þ mð3m� 2ÞlnðlnLÞ

lnL

��
;

(5)

where L ¼ L0e
g and gz0:5772 is the Euler-Mascheroni constant. For m

/ 0, we find hFi ¼ ðDGz=xzÞ½lnðbDGz=lnLÞ þ 2lnðlnLÞ=lnL�. Equation
5 can be obtained from Garg’s (7) asymptotic expansion by replacing

ðlnL0Þmð1þ mg=lnL0Þ with ðlnL0 þ gÞm.
Practical considerations

To combine different force spectroscopy experiments and simulations,

rupture forces should be compared as a function of force loading rate,

not of pulling velocity, because the effective spring constants in different

experiments and simulations vary widely as a result of having used

different pulling springs and/or molecular constructs with multiple do-

mains and linkers. The relevant force loading rate is obtained as the prod-

uct of the pulling speed v (in meters per second) and the effective spring

constant keff of the combined molecular construct and pulling spring,
_F ¼ keffv. The value keff can be obtained from a wormlike-chain fit of

the force-extension curves (5). More simply, in a plot of the force as a

function of the entire extension (including the stretched pulling spring),

the slope at rupture gives keff directly. As a function of the molecular

extension (not including the stretched pulling spring), the slope k has to

be combined with the spring constant ks of the pulling apparatus (8),

keff ¼ ksk=ðks þ kÞ. For the titin I91 and gelsolin domains, the slopes

were obtained in this way from the published (19–22) force extension

curves just before rupture.
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Model parameter interdependence is another concern. If the experimental

data set is sufficiently large, it is possible to extract accurate values of the

activation barrier, distance to the transition state, intrinsic rupture rate, and

brittleness. However, if the data cover only a limited range, a wider range of

models is consistent with experiment. For the titin I91 domain, the range of

possible parameters and their interdependence are illustrated in Fig. S1 in

the Supporting Material, which shows c2 surfaces for m ¼ 0.3 fixed as a

function of lnðk0Þ and xz (top), and of DGz and xz (bottom). The remaining

parameters, DGz and k0, were optimized. The best solutions show a linear

correlation between the fitted lnðk0Þ and xz. These uncertainties can be

reduced by incorporating prior knowledge, e.g., by assuming a physically

reasonable value of the preexponential factor kpre ¼ k0 expðbDGzÞ.
RESULTS AND DISCUSSION

Titin

We focus first on the prototypical mechanostable protein ti-
tin from muscle fibers. Fig. 4 shows the mean unfolding
forces of the titin I91 domain (I27 according to another
numbering scheme) when pulled from its two termini, as a
function of the force loading rate _F from regular (19) and
high-speed atomic force microscopy (hsAFM) experiments
FIGURE 4 Titin unfolding. Mean rupture force of the titin I91 domain,

when pulled from its two termini, as a function of the logarithm of the force

loading rate from hsAFM (red squares) (20) and regular AFM experiments

(blue circles) (19), and from MD simulations (black triangles) (21). Error

bars indicate SDs. The analytic expression for hFi in Eq. 5 was fitted

only to hsAFM data (solid squares) (19). The point at the highest loading

rate (open square) was not included in the fit because it proved difficult

to estimate all the relevant correction factors (in particular the very large

viscous drag correction, and the linker correction (see Cossio et al. (23)

and the Supporting Material) required to determine the effective force

loading rate). However, if these estimates are correct and the data value

is proper, the overlap of experiment and MD would be poor. Least-square

fits are shown for m/ 0 with fixed k0 ¼ 10�4 s�1 close to the bulk unfold-

ing rate (blue line), and fixed kinetic prefactor kpre ¼ 106 s�1 (orange), and

for m ¼ 0.4 with both k0 and kpre fixed (dark green). (Inset) The error c2

relative to the best fit as a function of brittleness m. A fit of the perfectly

brittle Bell-Evans model (3,6) for _F< 106 pN=s is shown as a light-green

line. For the best fits ðc2=c2
min < 2:5Þ, the distance to the transition state

and the activation barrier are in the ranges 0:37%xz%0:78 nm and

24%DGz%32 kBT, respectively. To see this figure in color, go online.
(20), and from all-atom molecular dynamics (MD) simula-
tions (21). The dynamic range of the data is enormous
because the I91 domain is exceptionally resistant to force.
Using the harmonic cusp model (8), semiquantitative agree-
ment between regular AFM and MD unfolding of titin
I91 has been noted previously (21), although in an extrapo-
lation to small force loading rates the experimental unfold-
ing forces were overestimated by 50–100 pN. More recently,
using the harmonic-cusp model, hsAFM measurements
were shown to be consistent with the first point of low-speed
MD (20), but even then there was a kink in the mean rupture
force at the crossing of the hsAFM and MD regimes. Pecu-
liarly, both of these studies obtained extremely low intrinsic
(i.e., zero force) rates, k0z10�10 � 10�11 s�1, six orders-
of-magnitude smaller than expected from bulk rate mea-
surements (19).

The wide class of potentials introduced here allows us to
examine the effects of model choice on the extracted param-
eters. We find that k0 from 10�10 s�1 to 10�3 s�1 leads to
fits to the hsAFM data of comparable quality, with compen-
sating changes primarily in xz. These large uncertainties
could be reduced by using additional information. For
instance, if we fix k0 ¼ 10�4 s�1, close to the equilibrium
unfolding rate (19), we obtained excellent fits to the hsAFM
data (20) for m < 1/2 (see inset, Fig. 4), except for one point
at the highest velocity, which has large uncertainties both in
the force and in the estimated loading rate. These fits to the
hsAFM data agree well also with regular AFM data (19),
and, remarkably, the most ductile model, m / 0, predicts
the simulated rupture forces from MD simulation (21) for
four orders of magnitude in loading rates beyond the fitting
range. With DGz ¼ 32 kBT and xz ¼ 0:38 nm, the Kramers
high-barrier approximation remains valid over the full force
range (F < 1200 pN).

However, the excellent agreement in Fig. 4 over 10 orders
of magnitude in the loading rate may be somewhat fortu-
itous. At the high speeds used in MD, the quasi-equilibrium
assumption underlying the rupture rate theories may be
violated (23). Another concern is that for m/ 0, the preex-
ponential factor kpre ¼ k0e

bDGz
z1=ð25 psÞ obtained in the

fit appears to be several orders-of-magnitude greater than
what one would expect from measured transition path times
for other biomolecules (24). If we fix both k0 ¼ 10�4 s�1

and kpre ¼ 106 s�1, with bDGz ¼ lnðkpre=k0Þz24, we find
that optimal solutions to the experimental data are still
ductile, 0:3<m< 0:5, but result in lower critical forces Fc

% 500 pN. As a consequence, the rupture-force curves
break down immediately after the last experimental point
(Fig. 4), well before the regime of MD simulations is
reached. This would imply that experiments and MD simu-
lations probe different unfolding mechanisms, with MD un-
folding occurring faster than the characteristic time
1=kpre ¼ 1 ms.

On the other hand, it is possible that for titin unfolding un-
der high force, the preexponential factor is indeed faster
Biophysical Journal 111, 832–840, August 23, 2016 835



FIGURE 5 Filamin unfolding. Force-dependent unfolding rates kðFÞ of
the filamin domain ddFLN4 from AFM measurements (4) (green squares)

when pulled from its two termini. Fits of kðFÞ are shown as lines for m ¼
0 (blue), 1/2 (red), 2/3 (magenta), and the completely brittle Bell model

(3) (light green). (Inset) The error c2 relative to the best fit as a function

of brittleness m, with restricted prefactor, 1< k�1
pre < 100 ms (orange), and

without restriction on kpre (green). Minimum activation barriers of

DGzðFÞR1 kBT were imposed over the entire force range,

0<F<Fmax ¼ 91 pN. To see this figure in color, go online.
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than expected from equilibrium folding transitions of pro-
tein G and aWW domain (24). Experiments and simulations
have been interpreted as force-induced unfolding being trig-
gered by local events, such as the shearing of backbone
hydrogen bonds (25) and additional breaking of side-chain
interactions (26). Once these local interactions are broken,
the transition state to unfolding is crossed at the relatively
high forces exceeding 50 pN probed in the titin experiments.
This local nature of the transitions under force is also consis-
tent with the short, xzz0:4 nm, distance to the transition
state. The preexponential factor associated with such local
motions could be considerably faster than the ms dynamics
of folding. In turn, the transition path times to reach the first
structures committed to the unfolded state would be faster
than those seen in equilibrium unfolding experiments in
the absence of force for other proteins (24), possibly
because at the high forces of the titin force-ramp experi-
ments (>150 pN, i.e., >36 kBT/nm) the transition state is
very close to the folded state, so that a structurally small
perturbation of the right direction suffices to carry the pro-
tein over the barrier, beyond which it quickly unravels. A
fast prefactor would rationalize the smooth transition from
hsAFM to MD in Fig. 4, and support the conclusion that
the unfolding transitions in fast MD pulling simulations
with rupture forces F > 400 pN are relevant also in the
experimental force range. In light of the rapid advances in
both experiment and simulation, it should soon be possible
to probe the mechanism in detail.

As noted above, the quasi-adiabatic approximation under-
lying Eq. 3 is expected to break down at sufficiently fast
rupture speeds. Bullerjahn et al. (18) showed that for the
harmonic-cusp potential, analytic formulas for the rupture-
force distribution could be obtained in the limit of high
loading rates, where small force-dependent barriers are
probed. It remains to be seen if their approach can be
extended to the class of potentials introduced here. Also,
with the data at hand we could not account for the fact
that, for multimodule titin constructs, both the effective
spring-constant and the rupture rate depend on the number
of domains that are still folded (8).
Filamin

Filamin is a protein forming force-transmitting bridges in
the actin networks of the cytoskeleton. Its ddFLN4 domain
is much less mechanostable than titin I91, withstanding
forces only up to ~90 pN in AFM experiments (4). In
Fig. 5, we show the experimental rupture-force distributions
(4) cast into a single k(F) master curve (5), and fitted k(F)
curves for m ¼ 0, 1/2, 2/3, and the Bell model (3). To ensure
validity of Eq. 2 over the entire force range F<Fmax ¼ 91

pN, we constrained the fits so that DGzðFÞR1 kBT. Addi-
tionally, we restricted the preexponential factor to the ex-
pected range (24), 1 ms< k�1

pre < 100 ms (inset, Fig. 5). In
all cases, ductile models with m < 0.4 produced acceptable
836 Biophysical Journal 111, 832–840, August 23, 2016
fits, and the extracted parameters fall within relatively nar-
row ranges (DGzz13:2� 14:5 kBT, xzz1:0� 1:5 nm,
and k0z10�3 � 10�2 s�1; see Fig. S2 for fit details).
Gelsolin

Our theory accounts also for brittle rupture, as exemplified
by the sixth domain of gelsolin (G6), a calcium-activated
protein that severs and caps actin filaments (27) (see
Fig. 6), when pulled from its two termini. In its holo (active)
state, the optimal brittleness parameter is mz0:75 in a fit
of the mean rupture forces measured as a function of
force loading rate (22). In its apo (inactive) state, G6
is even more brittle, with m / 1 producing the best fit.
In fact, because Bell’s model is recovered from our
theory when DGz/N for all m, we had to fix DGz, and
characterized the performance of the c2 separately (bottom
inset of Fig. 6). This shows that just two parameters are
sufficient to describe the linear dependence of the ex-
perimental data, and DGz is undetermined. The optimal
distance to the transition state and intrinsic rate are
xzz1:2� 1:4 nm and k0z10�2 � 10�1 s�1; and
xzz1:6� 2:0 nm and k0z5� 10�6 � 5� 10�5 s�1 for
the apo and holo states, respectively. The activation free en-
ergy for the holo state is DGz ¼ 22� 24 kBT, and the cor-
responding preexponential factor is within the expected
range as 6� 105 < kpre < 6� 106 s�1. If the preexponential
factor is fixed to 106 s�1 for the apo state, then the cor-
responding activation barrier is DGz ¼ 16� 18 kBT. The



FIGURE 6 Brittleness of the sixth domain of gelsolin along its end-to-

end distance. Mean rupture force of the G6 gelsolin domain as a function

of the logarithm of the force loading rate, in the absence (apo state; green)

and presence of calcium ions (holo state; yellow). Fits of hFi are shown as

lines for m ¼ 0 (blue), 1/2 (red), 2/3 (magenta), and the brittle Bell-Evans

model (3,6) (light green). (Inset) The error c2 relative to the best fit. Brittle

models are found to be optimal. Note that in the brittle limit, hFi grows lin-
early with _F, and one cannot extract DGz as a third parameter beyond k0 and

xz. Because for DGz/N, the fully brittle behavior is obtained from our

theory for all m, in fits of the apo state data DGz was fixed at different values
to ensure numerical convergence. To see this figure in color, go online.
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difference in the force response of G6 and ddFLN4 is strik-
ing. Although both proteins can withstand forces up to ~80
pN and exhibit comparable transition state distances, G6
and ddFLN4 are at opposite ends of the brittleness spectrum.
However, the range of forces probed is relatively small in
the case of G6, and as a result m could not be determined
with high statistical significance.
CONCLUSIONS

The potentials introduced in Eq. 1 lead to analytic expres-
sions for the force-dependent rupture rate kðFÞ in force-
clamp experiments, and the rupture-force distributions
pðFÞ and the mean forces hFi in force-ramp experiments.
These potentials can account for the widely varying re-
sponses of molecular constructs to force, from the brittle
response of the gelsolin G6 domain to the ductile titin I91
and filamin ddFLN4 domains. In the ductile regime, rela-
tively high peak forces can be sustained by each domain if
the force is ramped up rapidly, as indicated by the sharp
rise of hFi with _F in Fig. 4 for titin, far exceeding the linear
increase with ln _F expected for a perfectly brittle material
described by the Bell model (3,6). In this way, ductility
could limit the damage induced by force spikes (28), e.g.,
in muscle fibers (29,30), where variations in the mechanical
stabilities of the individual domains are expected to limit
damage (31).
A need to account for the ductile regime has emerged also
from earlier theoretical and molecular simulation studies of
protein unfolding. Stretching forces required to destabilize
some folded states were thermodynamically larger than pre-
viously expected (32), and both all-atom and coarse-grained
simulations showed a nonlinear dependence of the activa-
tion barrier on force, indicative of kinetically ductile
behavior (33–35).

Determining the brittleness of individual molecules
has become possible by analyzing force spectroscopy
measurements over a broad force range using the new
potential surfaces. In practice, this requires that a wide
range of forces have been probed because the brittleness
manifests itself in the curvature of lnkðFÞ-versus-F
(e.g., Fig. 1) or hFi-versus-log-loading rate plots (e.g.,
Fig. 4). If the experimental data are limited, many param-
eter sets may be nearly equally consistent with experi-
ment. If one is interested in extrapolated properties,
such as the rate k0 of rupture at zero force, the vari-
ability in the extrapolations for the different parameters
m provide an estimate of the uncertainties associated
with model choice. The range of solutions can be
reduced by making assumptions about the kinetics that
may reflect additional information, as was done here
for titin. In practical applications, we advocate a hierar-
chical approach in which the flexibility of the new
formalism, which includes brittleness as an additional
parameter, is exploited to first construct a wide range of
numerically acceptable models that is then narrowed
down by invoking additional information or imposing
assumed physical constraints. Also, in a Bayesian formu-
lation of the theory (36), prior distributions for the model
parameters can be invoked to express parameter prefer-
ences transparently.

A corollary of Eq. 2 is that the exact shape of the mo-
lecular potential surface cannot be determined uniquely
from force spectroscopy experiments. For the potentials
in Eq. 1, the force-dependent activation barrier and dis-
tance to the transition state do not depend on the well-bar-
rier asymmetry parameter q. Thus, all the potentials in
Fig. 2 B lead to essentially the same force dependence
of the Kramers rate. Resolving the well-barrier asymmetry
would be possible by additional high-precision measure-
ments of the response of the equilibrium extension xðFÞ
to force before rupture.

Brittleness is not a property of the entire protein
because it can depend on the specific linkage used to
apply the force. Proteins are inhomogeneous and aniso-
tropic molecular structures. Consequently, the mechanical
response depends on the direction of force, as demon-
strated experimentally for ubiquitin (37) and green fluo-
rescent protein (38–40) by probing a broad range of
linkages. To illustrate this important point, we show in
Fig. 7 A a schematic two-dimensional free-energy land-
scape for two different pulling directions, one ductile (x)
Biophysical Journal 111, 832–840, August 23, 2016 837



FIGURE 7 Changes in brittleness along different pulling directions. (A)

Schematic representation of a two-dimensional potential surface, at zero

force, as a function of a ductile coordinate x and a brittle coordinate y.

The schematic structures of a folded/unfolded protein and of the two un-

folding transition states are included purely for illustrative purposes, to

indicate a possible change in unfolding mechanism for different pulling di-

rections (i.e., transition states and brittleness could be quite different for

actual three-stranded b-sheet proteins). (White arrows) Linkage of the force

along each coordinate. (B) The potential of mean force along x (blue) and y

(magenta) without force (solid lines), and with force Fx ¼ Fy > 0 (dashed

lines). The brittleness parameter is m ¼ 1/3 along the ductile coordinate x

and m ¼ 2/3 along the brittle coordinate y. To see this figure in color, go

online.
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and the other brittle (y). When force is applied in the
x direction, escape from the single minimum in the bottom
left will occur over the saddle point in the bottom right,
governed by the one-dimensional potential of mean force
along x (Fig. 7 B). As a result, the kinetics of forced
rupture exhibits ductile characteristics. By contrast,
when force is applied in the y direction, the saddle point
in the upper-left gets lowered, and the one-dimensional
potential of mean force along y becomes relevant. Conse-
quently, the kinetics of forced rupture exhibits brittle prop-
erties. High forces will tend to favor transitions over
saddle points in the pulling direction. Because different
rupture channels can differ in their mechanical character-
istics, the brittleness will, in general, depend on the pull-
ing direction, just as DGz and xz do (41).

Our theory assumes that the pulling direction is a good re-
action coordinate, which is typically the case at high force
(41). However, the rupture mechanism may change when
probed over a large range of forces. Such changes can be ac-
counted for by extending the formalism to treat M different
rupture channels i in parallel, each with its effective one-
dimensional free energy surface and corresponding parame-
ters k0i, x

z
i , DG

z
i , and mi,

keffðFÞ ¼
XM
i¼ 1

k
�
F
�� k0i; xzi ;DGz

i ;mi

	
; (6)

or by going to a multidimensional framework (5,42–44). On
the schematic landscape in Fig. 7, a transition from one
dominant mechanism to another would occur for a force
acting on both x and y, say, by pulling along the one o’clock
838 Biophysical Journal 111, 832–840, August 23, 2016
direction. At low forces, rupture would occur over the lower
saddle in the bottom right. At high forces, however, the sad-
dle in the upper-left becomes lower and thus dominant.
Equation 6 approximates the overall rupture rate as that of
the sum of the rates for the two rupture processes (i ¼ 1,
and 2) for x and y, respectively, with effective parameters
k0i, x

z
i , DG

z
i , and mi. The effective intrinsic rate, activation

barrier, and brittleness correspond to the true landscape
along each direction. However, the effective distance to
the transition state is reduced as a result of the projection
of the force onto each coordinate.

But before invoking more complex rupture scenarios, it
is important to show that the available data are indeed
inconsistent with the predictions of the simple single-bar-
rier potentials introduced here. Classic examples where
this is the case are the biotin-avidin and LFA-1:ICAM1
complexes (12). On the other hand, it is interesting that
biotin-streptavidin and LFA-1:ICAM2 complexes can be
described rather well by our single-barrier models (see
Fig. S3). The Src SH3 domain (44) is a more recent
example where it is justified to invoke multiple pathways.
In this case, the observed unfolding rate increases faster
than exponentially with increasing force, whereas in a sin-
gle-barrier model the behavior is predicted to be just the
opposite (e.g., Fig. 5). Conversely, when our single barrier
one-dimensional potentials work well over a broad range of
forces, the molecular extension, at least in this range, is
likely to be a meaningful coordinate. The usefulness of
one-dimensional descriptions has been recently shown for
the PrP protein by Neupane et al. (45) using transition
path theory (46).

A limitation of the theory is that one cannot extract
atomic details from the one-dimensional model or immedi-
ately relate the fitted parameters of the underlying potential
surface to microscopic properties such as a specific
hydrogen bond. Formally, the potential surface is defined
by a projection of the high-dimensional conformation space
onto the measured extension, which cannot be inverted.
However, the characteristics of the potential surface may
suggest mechanisms that can be tested, for instance, by per-
forming mutations.

Finally, we note that the potentials introduced here for
pulling may also prove useful in other fields. Encouraged
by the remarkable equivalence of pulling and the
behavior of Josephson junctions in the presence of
time-varying fields (7,47), we expect that the models
introduced here may prove useful in diverse applications,
from the dynamic theory of phase transitions to nano-
scale friction and ionic currents under time-dependent
electric fields.
SUPPORTING MATERIAL

Supporting Materials and Methods and three figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(16)30522-7.
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Supporting Text

High Speed AFM

The theory of force-ramp experiments based on Main Text Eq. 3 is valid
only when the pulling speed is so slow that the system can relax to equilib-
rium at each instant of time. In addition, the linkers must be sufficiently soft
that the effect of the pulling apparatus is negligible. One can examine the
influence of the linkers and of the AFM tip using the two-dimensional free
energy surface [1]

G(x, q) = Go(x) +
1

2
κL(q − x)2 +

1

2
κS(vt− q)2, (S1)

where x and q are the molecular and measured extensions, respectively; Go(x)
is the molecular free energy profile, v is the pulling velocity, κL and κS are
the spring constant of the linker and cantilever, respectively. The dynamics
is assumed to be diffusive and the diffusion coefficients Dx along x and Dq

along q are in general different.
In a pulling experiment, the rupture force is commonly found from the

extrapolated average force at rupture. When the pulling speed is slow then
this rupture force can be approximated as F = κs(vt− q∪(t)) where t is the
time at which rupture occurs and q∪(t) is the force-dependent minimum (i.e.,

∗Correspondence: gerhard.hummer@biophys.mpg.de



the value of q for which ∂G/∂x = ∂G/∂q = 0). For larger pulling speeds a
better estimate of the rupture force is to replace q∪(t) by the average value
of q, 〈q(t)〉 before rupture, so the observed force is Fobs = κS(vt−〈q(t)〉). To
find 〈q(t)〉, one can show, for example by averaging the underlying stochastic
differential equations and using the fact the average of the random force is
zero, that

d〈q(t)〉
dt

= −βDq〈∂G∂q 〉,
d〈x(t)〉

dt
= −βDx〈∂G∂x 〉.

(S2)

If we approximate Go(x) by a harmonic potential at its minimum (which
we take as 0 without loss of generality) Go(x) = 1

2
G′′o(0)x2 = 1

2
κMx

2 then
the differential equations for 〈q(t)〉 and 〈x(t)〉 are linear and can be solved
analytically. For the initial conditions 〈q(0)〉 = 〈x(0)〉 = 0, we find that at
long times 〈q(t)〉 = q∪(t)− δ where the lag δ is

δ =
v(κ∪e )2

βκS

(
1

Dxκ2
M

+
1

Dqκ2
ML

)
, (S3)

with (κ∪e )−1 = κ−1
S + κ−1

M + κ−1
L and κ−1

ML = κ−1
M + κ−1

L , so that the average
value of q lags behind its minimum value. The measured rupture force can
then be written as

Fobs(t) ≈ κS(vt− q∪(t)) + κSδ, (S4)

where δ is given by Eq. S3. The effective potential surface experienced
by the molecular coordinate x at time t has its minimum, on average, at
xe∪(t) = κL〈q(t)〉/(κM + κL) = κL[q∪(t) − δ]/(κM + κL). This shift in the
minimum from x = 0 can be interpreted as the result of an effective force
Feff(t) = κMx

e
∪(t) acting on the molecular coordinate x. The difference be-

tween the observed force Fobs(t) and this effective molecular force Feff(t) is
an approximate correction for drag effects,

∆Fdrag ≡ Fobs(t)− Feff(t) = (κS + κML) δ, (S5)

where the time-dependent terms exactly canceled. If this drag correction
∆Fdrag is subtracted from the Fobs then our previous analysis [1] of the re-
lations between the rate at constant force and the rate that determines the
rupture force histogram via Main Text Eq. 3 is still valid within the frame-
work of the quasi-adiabatic approximation. For stiff molecules (κM � κL)

2



that relax rapidly (Dx � Dq) the force correction term is

∆Fdrag ≈
v

βDq

(
1 +

κL
κS

)−1

. (S6)

However, for finite Dx/Dq and stiff apparatus and linkers, the drag correction
in Eq. S5 can also exceed v/βDq.

For very high speeds not only the quasi-adiabatic approximation breaks
down but it becomes difficult to define the rupture force when the fluctuations
in q are slow compared to the rupture time. The breakdown of the quasi-
adiabatic approximation has been recently analyzed for the one dimensional
harmonic-cusp potential [2]. It will be interesting to see if this analysis can
be extended to two dimensional free energy surfaces as given in Eq. S1.
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Figure S 1: Parameter interdependence in unrestricted fits to hsAFM [3] data
for titin I91 domain. For µ=0.3, the relative χ2 is shown as a function of ln(k0[s−1])
and x‡[nm] (top), and of ∆G‡[kBT ] and x‡[nm] (bottom). Best fits exhibit a clear lin-
ear interdependence with ln(k0[s−1])/x‡[nm] ∼ −26, for 10−10 ≤ k0 ≤ 10−3 s−1, and
0.3 ≤ x‡ ≤ 0.7 nm. The parameter interdependence can be reduced by using additional
information, such as restricting k0 to the bulk unfolding rate 4.9× 10−4 s−1.
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Figure S 2: Ductility of the ddFLN4 domain. We performed restricted fits to the ex-

perimental ddFLN4 unfolding rates, enforcing that the kinetic prefactor, kpre = k0e
β∆G‡

,
is within the range expected from the transition path time measurements [4] for proteins
of comparable size (1/µs−1/100µs). Relative error χ2 (top left) of the fits to the ddFLN4
unfolding rates, activation barrier β∆G‡ (top right), transition state x‡ (bottom left), and
base ten logarithm of the intrinsic rate, log10(k0) (bottom right), as a function of µ. Solid
green circles are for the unrestricted fits (Main Text Fig. 5), and open magenta circles
show the results with the restriction.
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Figure S 3: Ductility of the biotin-streptavidin and LFA-1:ICAM1 complexes.
Mean rupture force of the biotin-streptavidin (top) and LFA-1:ICAM1 (bottom) complexes
[5] as a function of the logarithm of the force-loading rate. Fits of 〈F 〉 are shown as lines
for the best model µ = 0 (blue). The inset shows the error χ2 relative to the best fit.
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