Biophysical Journal, Volume 111

Supplemental Information

Solvation Thermodynamics of Oligoglycine with Respect to Chain Length and Flexibility

Justin A. Drake, Robert C. Harris, and B. Montgomery Pettitt

Supporting Material

Solvation thermodynamics of oligoglycine with respect to chain length and flexibility: implications for aggregation and collapse

JA Drake¹, RC Harris², and BM Pettitt^{1*}

¹ Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-0304

² Department of Chemistry, Temple University, 1801 N Broad St, Philadelphia PA 19122

* Corresponding Author: BM Pettitt Email: bmpettitt@utmb.edu

Figure S1: Differences in solvation free energy and its vdw and elec components between C36 and ff12SB at 300K (left) and 320K (right). Black and gray bars are the results for the rigid and flexible oligoglycine models, respectively

Figure S2: Solvation entropy calculated by the end point energy approach (see Methods) at 300K (top row) and 320K (bottom row) with the C36 (left) and ff12SB (right) force fields.

Figure S3: Differences in solvation entropy and its vdw and elec components between C36 and ff12SB calculated at 310K using the finite difference approach (left). Black and gray bars are the results for the rigid and flexible oligoglycine models, respectively. The right figure shows differences in the overall solvation entropy between force fields at 300K and 320K from the end point energy approach.

Figure S4: Solvation enthalpy calculated by the end point energy approach at 300K (top row) and 320K (bottom row) with the C36 (left) and ff12SB (right) force fields.

Figure S5: Differences in solvation enthalpy and its vdw and elec components between C36 and ff12SB calculated at 310K using the finite difference approach (left). Black and gray bars are the results for the rigid and flexible oligoglycine models, respectively. The right figure shows differences in the overall solvation enthalpy between force fields at 300K and 320K from the end point energy approach.

				CHAR	MM36								Amber	ff12SB			
		FI	exible		Rig	gid/Ex	t				FI	exible		Rig	gid/Ex	t	
N	Temp.	∆G ^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	∆G ^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	$\Delta\Delta G^{vdw}$	N	Temp.	∆G ^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	∆G ^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	$\Delta\Delta G^{vdw}$
2	300	0.149	0.031	0.009	-0.203	0.023	0.010	-0.352	2	300	1.000	0.029	0.012	0.498	0.026	0.011	-0.502
	320	0.771	0.024	0.011	0.442	0.023	0.011	-0.329		320	1.530	0.029	0.010	1.110	0.022	0.012	-0.417
3	300	-0.034	0.034	0.018	-0.842	0.031	0.013	-0.808	3	300	0.727	0.035	0.011	-0.003	0.027	0.014	-0.730
	320	0.641	0.032	0.012	-0.002	0.034	0.011	-0.643		320	1.330	0.031	0.011	0.744	0.027	0.013	-0.583
4	300	-0.558	0.039	0.023	-1.483	0.032	0.014	-0.925	4	300	0.178	0.043	0.021	-0.538	0.033	0.015	-0.716
	320	0.169	0.039	0.019	-0.491	0.037	0.012	-0.660		320	0.849	0.039	0.016	0.386	0.036	0.014	-0.463
5	300	-0.998	0.065	0.024					5	300	-0.283	0.058	0.021				
	320	-0.234	0.051	0.018						320	0.406	0.054	0.026				
N	I Temp.	ΔG_{flex}^{elec}	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	∆G ^{elec}	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	$\Delta\Delta G^{elec}$	N	Temp.	∆G ^{elec}	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	∆G ^{elec}	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	$\Delta\Delta G^{elec}$
2	300	-18.580	0.052	0.012	-17.461	0.021	0.008	1.119	2	300	-20.835	0.097	0.015	-18.918	0.016	0.008	1.917
	320	-18.389	0.043	0.011	-17.204	0.023	0.009	1.185		320	-20.512	0.086	0.016	-18.588	0.019	0.008	1.924
3	300	-24.014	0.352	0.049	-22.079	0.024	0.010	1.935	3	300	-25.433	0.279	0.040	-23.927	0.021	0.009	1.506
	320	-23.718	0.263	0.046	-21.705	0.024	0.008	2.013		320	-25.014	0.267	0.039	-23.502	0.033	0.010	1.512
4	300	-26.926	0.653	0.129	-26.700	0.036	0.011	0.226	4	300	-27.729	0.473	0.076	-29.029	0.027	0.011	-1.300
	320	-26.568	0.479	0.096	-26.247	0.023	0.010	0.321		320	-27.406	0.351	0.066	-28.476	0.021	0.012	-1.070
5	300	-30.564	1.035	0.238					5	300	-30.362	1.016	0.116				
	320	-29.900	1.010	0.135						320	-29.828	0.632	0.085				
N	Temp.	∆G ^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	∆G ^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	$\Delta\Delta G^{sol}$	N	Temp.	∆G ^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	∆G ^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	∆∆G ^{sol}
2	300	-18.431	0.060	0.015	-17.664	0.031	0.013	0.767	2	300	-19.834	0.101	0.019	-18.420	0.030	0.014	1.414
	320	-17.618	0.049	0.016	-16.762	0.033	0.014	0.856		320	-18.987	0.090	0.019	-17.481	0.029	0.014	1.506
3	300	-24.048	0.354	0.052	-22.921	0.039	0.016	1.127	3	300	-24.706	0.282	0.041	-23.930	0.034	0.017	0.776
	320	-23.078	0.265	0.048	-21.708	0.042	0.014	1.370		320	-23.687	0.269	0.041	-22.758	0.043	0.016	0.929
4	300	-27.485	0.654	0.131	-28.182	0.049	0.018	-0.697	4	300	-27.550	0.475	0.079	-29.567	0.043	0.019	-2.017
	320	-26.400	0.481	0.098	-26.738	0.043	0.016	-0.338		320	-26.556	0.353	0.068	-28.089	0.042	0.018	-1.533
5	300	-31.562	1.037	0.239					5	300	-30.645	1.017	0.118				
	320	-30.134	1.012	0.136						320	-29.422	0.635	0.089				

Table S1: Oligoglycine solvation free energies

Solvation free energies of Gly₂₋₅ either fixed in a rigid-extended conformation (subscript "fix") or allowed to sample conformation space with no physical constraints (subscript "flex") at 300K and 320K. Results for the van der Waals (vdw), electrostatic (elec), and overall (sol) solvation free energies are reported from top to bottom in units of kcal/mol for the C36 (left) and Amber ff12SB (right) force fields. $\Delta\Delta G's$ are provided as the difference between ΔG_{fix} and ΔG_{flex} for each component and the overall solvation free energy at both temperatures. *N* is the number of glycine residues, σ_{ACF}^{vdw} and σ_{ACF}^{elec} are the errors in ΔG^{vdw} and ΔG^{elec} , respectively, calculated from an autocorrelation time analysis (see Methods), and σ_{BSE}^{vdw} and σ_{BSE}^{elec} are the errors in ΔG^{vdw} and ΔG^{elec} , respectively, calculated from a block standard error analysis. Error propagation was used to compute $\sigma_{ACF}^{sol} = \sqrt{(\sigma_{ACF}^{vdw})^2 + (\sigma_{ACF}^{elec})^2}$ and $\sigma_{BSE}^{sol} =$

 $\sqrt{(\sigma_{BSE}^{vdw})^2 + (\sigma_{BSE}^{elec})^2}$

			СН	ARMM3	6							Amb	er ff129	SB		
	F	lexible	•	Ri	gid/Ex	ct				FI	lexible	,	Ri	gid/E	ct	
Ν	∆S ^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	∆S ^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	$\Delta\Delta S^{vdw}$	1	N	∆S ^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	∆S ^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	$\Delta\Delta S^{vdw}$
2	-31.10	1.96	0.71	-32.25	1.63	0.74	-1.15		2	-26.25	2.05	0.78	-30.50	1.70	0.81	-4.25
3	-33.75	2.33	1.08	-42.00	2.30	0.85	-8.25		3	-30.00	2.34	0.78	-37.37	1.91	0.96	-7.37
4	-36.35	2.76	1.49	-49.60	2.45	0.92	-13.25		4	-33.55	2.90	1.32	-46.20	2.44	1.03	-12.65
5	-38.20	4.13	1.50						5	-34.45	3.96	1.67				
	$\Delta S_{\rm flex}^{\rm elec}$	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	ΔS_{fix}^{elec}	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	$\Delta\Delta S^{elec}$			$\Delta S_{\text{flex}}^{\text{elec}}$	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	$\Delta S_{\text{fix}}^{\text{elec}}$	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	$\Delta\Delta S^{elec}$
2	-9.55	3.37	0.81	-12.85	1.56	0.60	-3.30		2	-16.15	6.48	1.10	-16.50	1.24	0.57	-0.35
3	-14.80	21.97	3.36	-18.70	1.70	0.64	-3.90	:	3	-20.95	19.31	2.79	-21.25	1.96	0.67	-0.30
4	-17.90	40.49	8.04	-22.65	2.14	0.74	-4.75		4	-16.15	29.45	5.03	-27.65	1.71	0.81	-11.50
5	-33.20	72.31	13.68						5	-26.70	59.83	7.19				
	$\Delta S_{\rm flex}^{\rm sol}$	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	$\Delta S_{\rm fix}^{\rm sol}$	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	$\Delta\Delta S^{\rm sol}$			$\Delta S_{\rm flex}^{\rm sol}$	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	$\Delta S_{\rm fix}^{\rm sol}$	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	$\Delta\Delta S^{\rm sol}$
2	-40.65	3.87	1.08	-45.10	2.26	0.96	-4.45		2	-42.35	6.76	1.35	-46.95	2.09	0.99	-4.60
3	-48.50	22.11	3.53	-60.65	2.87	1.07	-12.15	;	3	-50.95	19.49	2.90	-58.60	2.74	1.17	-7.65
4	-54.25	40.59	8.18	-72.20	3.26	1.18	-17.95		4	-49.70	29.59	5.20	-73.90	3.01	1.31	-24.20
5	-71.40	72.45	13.76						5	-61.15	59.95	7.38				

Table S2: Oligoglycine solvation entropies calculated by the finite difference approach

Solvation entropies of rigid and flexible Gly_{2-5} calculated by the finite difference approach (FD). Results for the vdw, elec, and overall solvation entropies are given from top to bottom for C36 (left) and ff12SB (right). Units are in cal/mol/K. Errors in ΔS^{vdw} , ΔS^{elec} , and ΔS^{sol} were calculated by propagating, separately, the ACF and BSE errors in ΔG^{vdw} , ΔG^{elec} , and ΔG^{sol} . $\Delta \Delta S's$ are provided as the difference between ΔS_{fix} and ΔS_{flex} .

				CHAR	MM36								4	Amber	ff12SB			
		FI	exible	J	Riç	jid/Ex	t					FI	exible		Rig	gid/Ex	t	
Ν	Temp.	∆S ^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	∆S ^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	$\Delta\Delta S^{sol}$	I	I Tem	ıp.	ΔS_{flex}^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	∆S ^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	∆∆S ^{sol}
2	300	-37.970	8.349	4.880	-44.063	7.461	4.244	-6.093	12	2 300)	-46.937	8.397	4.727	-48.120	7.067	4.874	-1.183
	320	-35.159	7.748	4.435	-36.266	8.073	3.875	-1.106		320)	-44.500	7.608	3.854	-40.869	7.579	4.710	3.631
3	300	-58.583	8.301	3.944	-62.440	8.224	4.227	-3.857	13	3 300)	-48.573	8.489	4.742	-63.540	8.481	4.914	-14.967
	320	-48.397	8.105	4.328	-59.694	8.101	4.200	-11.297		320)	-49.981	7.870	4.330	-57.369	8.651	4.828	-7.388
4	300	-42.957	7.243	4.670	-79.540	7.778	4.554	-36.583	4	4 300)	-54.993	7.623	5.230	-78.983	7.851	4.570	-23.990
	320	-40.438	7.606	4.697	-71.469	8.042	4.275	-31.031		320)	-44.156	8.602	4.318	-79.888	7.192	4.703	-35.731
5	300	-55.280	8.056	3.214					1	5 300)	-52.093	7.727	4.029				
	320	-47.609	7.293	3.575						320)	-44.809	7.535	4.718				

Table S3: Oligoglycine solvation entropies calculated by the end point energy approach

Solvation entropies of rigid and flexible Gly₂₋₅ calculated by the end point energy (EP) approach at 300K and 320K with the C36 (left) and ff12SB (right) force fields. Errors in ΔG^{sol} were propagated with those in ΔH^{sol} estimated by the EP approach at both temperatures to yield error estimates of ΔS^{sol} . $\Delta \Delta S's$ are provided as the difference between ΔS_{fix} and ΔS_{flex} .

			СН	ARMM3	6						Amb	er ff12S	BB		
	F	exible	•	Rig	gid/Ex	t			FI	exible	•	Rig	gid/E>	t	
Ν	ΔH_{flex}^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	∆H ^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	$\Delta \Delta H^{vdw}$	Ν	ΔH_{flex}^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	∆H ^{vdw}	$\sigma_{\rm ACF}^{\rm vdw}$	$\sigma_{\rm BSE}^{\rm vdw}$	$\Delta \Delta H^{vdw}$
2	-9.18	0.61	0.22	-9.88	0.50	0.23	-0.70	2	-6.87	0.64	0.24	-8.65	0.53	0.25	-1.78
3	-10.16	0.72	0.34	-13.44	0.71	0.26	-3.28	3	-8.27	0.73	0.24	-11.21	0.59	0.30	-2.94
4	-11.46	0.86	0.46	-16.36	0.76	0.29	-4.90	4	-9.89	0.90	0.41	-14.40	0.76	0.32	-4.51
5	-12.46	1.28	0.47					5	-10.62	1.23	0.52				
	ΔH_{flex}^{elec}	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	∆H ^{elec}	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	ΔΔH ^{elec}		∆H ^{elec}	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	∆H ^{elec}	$\sigma_{\rm ACF}^{\rm elec}$	$\sigma_{\rm BSE}^{\rm elec}$	∆∆H ^{elec}
2	-21.44	1.05	0.25	-21.32	0.48	0.19	0.13	2	-25.68	2.01	0.34	-23.87	0.39	0.18	1.81
3	-28.45	6.82	1.04	-27.69	0.53	0.20	0.76	3	-31.72	5.99	0.87	-30.30	0.61	0.21	1.42
4	-32.30	12.56	2.49	-33.49	0.66	0.23	-1.20	4	-32.57	9.14	1.56	-37.32	0.53	0.25	-4.75
5	-40.52	22.43	4.24					5	-38.37	18.56	2.23				
	ΔH_{flex}^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma^{\rm sol}_{\rm BSE}$	ΔH_{fix}^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	$\Delta \Delta H^{sol}$		ΔH_{flex}^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	ΔH_{fix}^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	ΔΔΗ ^{sol}
2	-30.63	1.20	0.34	-31.19	0.70	0.30	-0.57	2	-32.54	2.10	0.42	-32.51	0.65	0.31	0.03
3	-38.60	6.86	1.10	-41.12	0.89	0.33	-2.52	3	-39.99	6.04	0.90	-41.51	0.85	0.36	-1.52
4	-43.76	12.59	2.54	-49.84	1.01	0.37	-6.08	4	-42.46	9.18	1.61	-51.74	0.93	0.41	-9.28
5	-52.98	22.47	4.27					5	-48.99	18.60	2.29				

Table S4: Oligoglycine solvation enthalpies calculated by the finite difference approach

Solvation enthalpies of rigid and flexible Gly₂₋₅ calculated by the FD approach at 310K. Results for the vdw, elec, and overall solvation enthalpy are given from top to bottom for C36 (left) and ff12SB (right). Units are in kcal/mol. Errors in ΔH^{vdw} , ΔH^{elec} , and ΔH^{sol} were calculated by propagating, separately, the ACF and BSE errors in ΔG^{vdw} , ΔG^{elec} , and ΔG^{sol} . $\Delta \Delta H's$ are provided as the difference between

 ΔH_{fix} and ΔH_{flex} .

				CHAR	MM36					Amber ff12SB								
		FI	exible		Rig	gid/Ex	t				FI	exible		Rig	gid/Ex	t		
Ν	Temp.	ΔH_{flex}^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	ΔH_{fix}^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	$\Delta\Delta H^{sol}$	N	Temp.	ΔH_{flex}^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	ΔH_{fix}^{sol}	$\sigma_{\rm ACF}^{\rm sol}$	$\sigma_{\rm BSE}^{\rm sol}$	$\Delta \Delta H^{sol}$	
2	300	-29.822	2.504	1.464	-30.883	2.238	1.273	-1.061	2	300	-33.915	2.517	1.418	-32.856	2.120	1.462	1.059	
	320	-28.869	2.479	1.419	-28.367	2.583	1.240	0.502		320	-33.227	2.433	1.233	-30.559	2.425	1.507	2.668	
3	300	-41.623	2.465	1.182	-41.653	2.467	1.268	-0.030	3	300	-39.278	2.531	1.422	-42.992	2.544	1.474	-3.714	
	320	-38.565	2.580	1.384	-40.810	2.592	1.344	-2.245		320	-39.681	2.504	1.385	-41.116	2.768	1.545	-1.435	
4	300	-40.372	2.072	1.395	-52.044	2.333	1.366	-11.672	4	300	-44.048	2.237	1.567	-53.262	2.355	1.371	-9.214	
	320	-39.340	2.386	1.500	-49.608	2.573	1.368	-10.268		320	-40.686	2.730	1.380	-53.653	2.301	1.505	-12.967	
5	300	-48.146	2.183	0.934					5	300	-46.273	2.083	1.203					
	320	-45.369	2.103	1.136						320	-43.761	2.326	1.507					

Table S5: Oligoglycine solvation enthalpies calculated by the end point energy approach

Solvation enthalpies of rigid and flexible Gly₂₋₅ calculated by the end point energy approach at 300K and 320K with C36 (left) and ff12SB (right). Errors in ΔH^{sol} (σ_{BSE}^{sol} , σ_{BSE}^{sol}) were directly calculated and the details can be found in the Methods section and Appendix A. Units are in kcal/mol and $\Delta\Delta H's$ are provided as the difference between ΔH_{fix} and ΔH_{flex} .

				(HARM	M36			
		Flexibl	е		Rigid/E	xt			
Ν	∆G ^{vdw} flex	∆H ^{vdw} flex	-TAS ^{vdw}	∆G ^{vdw}	ΔH ^{vdw} fix	-TAS ^{vdw}	∆∆G ^{vdw}	ΔΔH ^{vdw}	-TAAS ^{vdw}
2	0.46	-9.18	9.64	0.12	-9.88	10.00	-0.34	-0.70	0.35
3	0.30	-10.16	10.46	-0.42	-13.44	13.02	-0.73	-3.28	2.56
4	-0.19	-11.46	11.27	-0.99	-16.36	15.38	-0.79	-4.90	4.11
5	-0.62	-12.46	11.84						
N	∆G ^{elec}	∆H ^{elec}	-TASelec	∆G ^{elec}	ΔH ^{elec}	-TASelec	ΔΔG ^{elec}	ΔΔH ^{elec}	-TAAS ^{elec}
2	-18.48	-21.44	2.96	-17.33	-21.32	3.98	1.15	0.13	1.02
3	-23.87	-28.45	4.59	-21.89	-27.69	5.80	1.97	0.76	1.21
4	-26.75	-32.30	5.55	-26.47	-33.49	7.02	0.27	-1.20	1.47
5	-30.23	-40.52	10.29						
Ν	∆G ^{sol}	∆H ^{sol} flex	-TAS ^{sol}	∆G ^{sol}	∆H ^{sol}	-TAS ^{sol}	ΔΔG ^{sol}	ΔΔH ^{sol}	-TAAS ^{sol}
2	-18.02	-30.63	12.60	-17.21	-31.19	13.98	0.81	-0.57	1.38
3	-23.56	-38.60	15.03	-22.31	-41.12	18.80	1.25	-2.52	3.77
4	-26.94	-43.76	16.82	-27.46	-49.84	22.38	-0.52	-6.08	5.56
5	-30.85	-52.98	22.13						
Γ				A	mber ff	12SB			
		Flexibl	е		Rigid/E	xt			
Ν	∆G ^{vdw} flex	∆H ^{vdw} flex	-TAS ^{vdw}	∆G ^{vdw}	ΔH ^{vdw} fix	-TAS ^{vdw}	ΔΔG ^{vdw}	ΔΔH ^{vdw}	-TAAS ^{vdw}
2	1.26	-6.87	8.14	0.80	-8.65	9.46	-0.46	-1.78	1.32
3	1.03	-8.27	9.30	0.37	-11.21	11.58	-0.66	-2.94	2.28
4	0.51	-9.89	10.40	-0.08	-14.40	14.32	-0.59	-4.51	3.92
5	0.06	-10.62	10.68						
Ν	∆G ^{elec} flex	∆H ^{elec} flex	-TASelec	∆G ^{elec}	ΔH ^{elec}	-TASelec	ΔΔG ^{elec}	ΔΔH ^{elec}	-TAAS ^{elec}
2	-20.67	-25.68	5.01	-18.75	-23.87	5.11	1.92	1.81	0.11
3	-25.22	-31.72	6.49	-23.71	-30.30	6.59	1.51	1.42	0.09

Table S6: Solvation thermodynamics calculated by the finite difference approach at 310K

Solvation thermodynamics of rigid and flexible Gly_{2-5} calculated by the FD approach at 310K. Results for each component and the overall solvation free energy are shown from top to bottom within each panel for C36 (top panel) and ff12SB (bottom panel). ΔG^{sol} at 310K was approximated as the average of ΔG^{sol}

-28.75 -37.32

-17.95 -32.51

-23.34 -41.51

-28.83 -51.74

∆H^{sol} fix

∆G^{sol}

8.57

-TAS^{sol}

14.55

18.17

22.91

-1.18

ΔΔG^{sol}

1.46

0.85

-1.77

-4.75

AAH^{sol}

0.03

-1.52

-9.28

3.57

-TAAS^{sol}

1.43

2.37

7.50

4 -27.57 -32.57

5 -30.10 -38.37

-19.41 -32.54

-24.20 -39.99

4 -27.05 -42.46

5 -30.03 -48.99

∆G^{sol}

N

2

3

ΔH^{sol} flex 5.01

8.28

-TASflex

13.13

15.79

15.41

18.96

at 300K and 320K. Differences in each thermodynamic quantity between the rigid and flexible

oligoglycine models are shown on the right side of each panel. All units are in kcal/mol.

Γ				CH	ARMM	36								Am	ber ff12	SB			
		Flexibl	е	3	Rigid/E	ct						Flexib	e		Rigid/Ex	ĸt			
N	ΔG_{flex}^{sol}	ΔH ^{sol} flex	-TAS ^{sol}	∆G ^{sol} fix	∆H ^{sol} fix	-TAS ^{sol}	ΔΔG ^{sol}	ΔΔH ^{sol}	-TAAS ^{sol}	N	∆G ^{sol} flex	∆H ^{sol} flex	-TAS ^{sol}	∆G ^{sol} fix	ΔH ^{sol} fix	-TAS ^{sol}	ΔΔG ^{sol}	ΔΔH ^{sol}	-ΤΔΔS ^{sol}
2	-18.43	-29.82	11.39	-17.66	-30.88	13.22	0.77	-1.06	1.83	2	-19.83	-33.92	14.08	-18.42	-32.86	14.44	1.41	1.06	0.36
3	-24.05	-41.62	17.58	-22.92	-41.65	18.73	1.13	-0.03	1.16	3	-24.71	-39.28	14.57	-23.93	-42.99	19.06	0.78	-3.71	4.49
4	-27.49	-40.37	12.89	-28.18	-52.04	23.86	-0.70	-11.67	10.98	4	-27.55	-44.05	16.50	-29.57	-53.26	23.70	-2.02	-9.21	7.20
5	-31.56	-48.15	16.58							5	-30.65	-46.27	15.63						
Г				CH	ARMM	36				Γ				Am	ber ff12	SB			
		Flexibl	e	CH	ARMM	36 kt						Flexib	e	Am	ber ff12 Rigid/Ex	SB			
N	∆G ^{sol}	Flexibl	e -T∆S ^{sol}	CH AG ^{sol}	HARMM Rigid/Ex AH ^{sol}	36 kt -T∆S ^{sol}	ΔΔG ^{sol}	ΔΔH ^{sol}	-TAAS ^{sol}	N	∆G ^{sol}	Flexibl	e -T∆S ^{sol}	Am ΔG ^{sol}	ber ff12 Rigid/Ex ΔH ^{sol}	SB kt -TΔS ^{sol}	ΔΔG ^{sol}	ΔΔH ^{sol}	-TAAS ^{sol}
N 2	∆G ^{sol} -17.62	Flexibl AH ^{sol} -28.87	e -TΔS ^{sol} 11.25	CH ΔG ^{sol} -16.76	HARMM Rigid/Es ΔH ^{sol} -28.37	36 κt -TΔS ^{sol} 11.61	ΔΔG ^{sol} 0.86	ΔΔΗ ^{sol} 0.50	-TAAS ^{sol} 0.35	N 2	∆G ^{sol} -18.99	Flexibl ∆H ^{sol} -33.23	-TΔS ^{sol} 14.24	ΔG ^{sol} -17.48	ber ff12 Rigid/Ex ΔH ^{sol} -30.56	SB κt -TΔS ^{sol} 13.08	ΔΔG ^{sol} 1.51	ΔΔH ^{sol} 2.67	-T∆∆S ^{sol} -1.16
N 2 3	ΔG ^{sol} -17.62 -23.08	Flexibl ∆H ^{sol} -28.87 -38.57	e -TΔS ^{sol} 11.25 15.49	ΔG ^{sol} -16.76 -21.71	ARMM Rigid/E ΔH ^{sol} -28.37 -40.81	36 ct -TΔS ^{sol} 11.61 19.10	∆∆G ^{sol} 0.86 1.37	∆∆H ^{sol} 0.50 -2.25	-ΤΔΔS ^{sol} 0.35 3.62	N 2 3	ΔG ^{sol} -18.99 -23.69	Flexibl ∆H ^{sol} -33.23 -39.68	-TΔS ^{sol} 14.24 15.99	ΔG ^{sol} -17.48 -22.76	ber ff12 Rigid/Ex ΔH ^{sol} -30.56 -41.12	-TΔS ^{sol} 13.08 18.36	ΔΔG ^{sol} 1.51 0.93	∆∆H ^{sol} 2.67 -1.44	-ΤΔΔS ^{sol} -1.16 2.36
N 2 3 4	ΔG ^{sol} -17.62 -23.08 -26.40	Flexibl ΔH ^{sol} -28.87 -38.57 -39.34	e -TΔS ^{sol} 11.25 15.49 12.94	ΔG ^{sol} -16.76 -21.71 -26.74	HARMM Rigid/E ΔH ^{sol} -28.37 -40.81 -49.61	36 ct -TΔS ^{sol} 11.61 19.10 22.87	∆∆G ^{sol} 0.86 1.37 -0.34	ΔΔH ^{sol} 0.50 -2.25 -10.27	-T∆∆S ^{sol} 0.35 3.62 9.93	N 2 3 4	ΔG ^{sol} -18.99 -23.69 -26.56	Flexibl ΔH ^{sol} -33.23 -39.68 -40.69	e -TΔS ^{sol} 14.24 15.99 14.13	ΔG ^{sol} -17.48 -22.76 -28.09	ber ff12 Rigid/Ex ΔH ^{sol} -30.56 -41.12 -53.65	-TΔS ^{sol} 13.08 18.36 25.56	ΔΔG ^{sol} 1.51 0.93 -1.53	ΔΔΗ ^{sol} 2.67 -1.44 -12.97	-T∆∆S ^{sol} -1.16 2.36 11.43

Table S7: Solvation thermodynamics calculated by the end point energy approach at 300K and 320K

Solvation thermodynamics of rigid and flexible Gly_{2-5} calculated by the EP approach at 300K (top row)

and 320K (bottom row) with the C36 (left) and ff12SB (right) force fields. Differences in each

thermodynamic quantity between the rigid and flexible oligoglycine models are shown on the right side

of each panel. All units are in kcal/mol.