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Identification of Bifurcations from Observations of
Noisy Biological Oscillators
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ABSTRACT Hair bundles are biological oscillators that actively transduce mechanical stimuli into electrical signals in the audi-
tory, vestibular, and lateral-line systems of vertebrates. A bundle’s function can be explained in part by its operation near a partic-
ular type of bifurcation, a qualitative change in behavior. By operating near different varieties of bifurcation, the bundle responds
best to disparate classes of stimuli. We show how to determine the identity of and proximity to distinct bifurcations despite the
presence of substantial environmental noise. Using an improved mechanical-load clamp to coerce a hair bundle to traverse
different bifurcations, we find that a bundle operates within at least two functional regimes. When coupled to a high-stiffness
load, a bundle functions near a supercritical Hopf bifurcation, in which case it responds best to sinusoidal stimuli such as those
detected by an auditory organ. When the load stiffness is low, a bundle instead resides close to a subcritical Hopf bifurcation and
achieves a graded frequency response—a continuous change in the rate, but not the amplitude, of spiking in response to
changes in the offset force—a behavior that is useful in a vestibular organ. The mechanical load in vivo might therefore control
a hair bundle’s responsiveness for effective operation in a particular receptor organ. Our results provide direct experimental ev-
idence for the existence of distinct bifurcations associated with a noisy biological oscillator, and demonstrate a general strategy
for bifurcation analysis based on observations of any noisy system.
INTRODUCTION
A bifurcation occurs when a quantitative change in the
value of some parameter–a control parameter–induces a
qualitative change in the behavior of a system. Bifurcations
are often encountered in theoretical and experimental sys-
tems in physics, chemistry, biology, medicine, economics,
and climatology (1–4). All systems operating near a given
type of bifurcation exhibit similar dynamics (5), and sys-
tems operating near different bifurcations can exhibit
distinct behaviors. Therefore, by identifying a bifurcation,
one can determine generic properties of a complex system
and predict that system’s function when it operates near
the bifurcation.

The activity of spiking neurons, for example, can be
segregated into at least two classes of excitability, with
distinct patterns in the frequency of spiking that are attrib-
uted to operation near different types of bifurcation (6–8).
Class I neurons display a continuous change in spike fre-
quency in response to changes in stimulus current, a
behavior that is commonly ascribed to their operation near
a saddle-node on invariant cycle (SNIC) bifurcation (9).
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Class II neurons, by contrast, exhibit a discontinuous jump
in frequency as a function of the applied current, a behavior
that is consistent with their crossing a Hopf bifurcation
(10). By identifying the type of bifurcation, one can
assess generic features of neuronal excitability in different
neuronal populations.

Bifurcation analysis is usually conducted on purely
mathematical stereotypes or on simplified representations
of real-world systems in which the effects of noise are small.
In certain experimentally accessible systems, however,
noise plays a significant and irreducible role in shaping
the dynamics. Among these systems is the hair cell, the sen-
sory receptor of the auditory, vestibular, and lateral-line sen-
sory systems of vertebrate animals (11). A hair cell detects
mechanical signals derived from sounds, accelerations, and
water movements, transducing them into electrical signals
that are transmitted to the brain. This detection is achieved
through the motion of a mechanosensitive organelle—the
hair bundle—that projects from the hair cell’s apical surface
and transduces mechanical input into electrical output in the
cell body. For small-magnitude stimuli, the hair bundle op-
erates in an environment dominated by noise. In fact, the
sensitivity of our hearing is limited by the clattering of air
molecules against the eardrum and the rattling of water mol-
ecules within the cochlea (12,13). Thermal noise also plays
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an important role in setting the sensitivity of vestibular
organs (14).

Auditory organs deal with noise by employing an active
process, a metabolically powered mechanism that enhances
their sensitivity (15). Vestibular systems might also employ
the active process to improve their effectiveness. The effects
of the active process depend on the values of a sensory
organ’s parameters (16). For example, it has been hypothe-
sized that auditory hair bundles achieve enhanced frequency
selectivity and a broadened dynamic range in response to
periodic stimuli when they are poised near the onset of
spontaneous oscillation, that is, when they operate close to
a supercritical Hopf bifurcation (17–19). Observations of in-
dividual bundles support this hypothesis (20). Hair bundles
have also been observed to attain a graded frequency
response with changes in static offsets, which could occur
if hair bundles operate near a SNIC bifurcation or, as we
argue below, a subcritical Hopf bifurcation (20–22). We pro-
pose that this graded response allows hair bundles to func-
tion as static force detectors, which would be of use in a
vestibular system. By operating near particular bifurcations,
a mechanically active hair bundle can therefore be useful in
different mechanosensory systems.

A bundle’s state diagram depicts its behavior for different
operating points defined by the values of the system’s con-
trol parameters (16,20). These control parameters include
the mechanical loads imposed on individual hair bundles
by accessory structures in vivo, such as the tectorial mem-
brane coupled to the bundles of outer hair cells in the
mammalian cochlea or the otolithic membrane coupled to
hair cells of the utriculus and sacculus. Each structure loads
the bundle with a mass, a drag, a stiffness, and an offset
force, the combination of which allows a bundle to operate
near the type of bifurcation that is suitable for its sensory
role.

Although biophysical experiments have identified several
of the mechanisms that underlie the active process (15), the
noisy environment of a hair bundle complicates the identifi-
cation of the relevant bifurcations. In particular, noise blurs
the boundaries between the dynamical regimes in the bun-
dle’s state diagram and conceals the characteristics of
various bifurcations. There are several types of bifurcation
in which a quiescent system becomes self-oscillatory. In
the absence of noise, a system crossing a SNIC or Hopf
bifurcation exhibits a continuous rise or discontinuous
jump, respectively, in the frequency of spontaneous oscilla-
tion (5–7). Changes in the amplitude of oscillation with the
adjustment of a parameter further distinguish two types of
Hopf bifurcation: a gradual rise in amplitude corresponds
to a supercritical Hopf bifurcation and a discontinuous
jump signals a subcritical Hopf bifurcation (7). In the pres-
ence of noise, however, sharp transitions in the amplitude
and frequency of spontaneous oscillation are blunted and
become difficult to differentiate from their gradual counter-
parts, complicating both the localization and identification
of bifurcations. We have overcome this challenge by
employing a battery of statistical tests to locate and identify
bifurcations from experimental observations of a noisy
system.

Deterministic bifurcations, which are those defined in the
absence of noise, occur at well-specified parameter values.
For example, a deterministic system possessing a supercrit-
ical Hopf bifurcation is quiescent on one side of the bifurca-
tion and oscillatory on the other. Although the location of
this bifurcation can only be estimated from observations,
we can nonetheless identify its quiescent and oscillatory
sides to define the bifurcation empirically. By analogy
with the deterministic case, we defined the location of an
empirical bifurcation for a noisy system as the parameter
value at which spontaneous oscillations can be reliably de-
tected from observations. The quiescent side of this empir-
ical bifurcation covers the range of parameter values for
which oscillations cannot be detected with sufficient statis-
tical certainty. In this manner, we delineated the oscillatory
and quiescent regions near supercritical Hopf, subcritical
Hopf, and SNIC bifurcations from noisy data.

We explored various metrics that capture the distinguish-
ing features of systems crossing different bifurcations. To do
so, we compared simulations of noisy systems near various
bifurcations with experimental observations of noisy hair-
bundle motion. Based on these comparisons, we ascertained
which metrics best characterize the identities and locations
of bifurcations near which hair bundles operate. By employ-
ing these metrics to assess the behavior of individual hair
bundles, we established that a hair bundle can operate
near at least two types of bifurcation. We then associated
the bundle’s operation near these bifurcations with the func-
tions of auditory and vestibular receptor organs. Our meth-
odology not only furthers our understanding of hair-bundle
dynamics but also provides a general strategy for analyzing
empirical observations of noisy dynamical systems.
MATERIALS AND METHODS

All experiments were performed on spontaneously active hair bundles from

the saccular maculae of adult bullfrogs, Rana catesbeiana (20).
Supporting Material

We have included detailed Supporting Material to accompany this article.

Although the entirety of the document is not required for a general under-

standing of our findings, we prepared the Supporting Material so that it can

serve as a self-contained guide for those who wish to apply our approach to

other systems.
Mechanical-load clamp

We employed a feedback system with a real-time interface to control the

load stiffness and constant force applied to individual hair bundles (23). Us-

ing a glass fiber as a model hair bundle, we confirmed that the clamp

achieves this performance with high precision and accuracy (Fig. S1).
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For a complete description of the mechanical-load clamp, see Supporting

Material Section A.
State-diagram mapping

To calculate the amplitude and frequency of hair-bundle motion in response

to various combinations of load stiffness and constant force, we employed

both previously described methods (20) and a peak-detection algorithm

(24). Operating points for which the bundle’s position histogram displayed

at least two clear maxima, as signaled by a Hartigans’ dip statistic that

exceeded 0.01 with p < 10�3, were classified as oscillatory (25). All

other operating points were deemed quiescent. Hartigans’ dip statistic is

described in more detail below, and an expanded explanation of the state-

diagram calculations can be found in Supporting Material Section B.
Time-series analysis

We employed a battery of statistical tests to assess the behavior of experi-

mentally observed hair bundles and simulated systems. We included simple

tests that limited the number of manually selected parameters. Our

approach requires only noisy time-series data and does not necessitate stim-

ulation. These features enhance the versatility of the method, permitting its

use in systems for which stimulation is difficult or impossible. For a com-

plete description of these metrics, see Supporting Material Section C.

A bifurcation occurs when a system undergoes a qualitative change in

behavior. For example, the system may transition from a domain of quies-

cence to one of spontaneous oscillation. We first sought to estimate the loca-

tion of a bifurcation by detecting the onset of spontaneous oscillations

across a range of control-parameter values. A system that oscillates sponta-

neously displays a position distribution with more than one peak (20,26,27).

Although previous studies measured the distance between peaks in the dis-

tribution to describe this phenomenon (27,28), we instead employed Harti-

gans’ dip statistic to measure the modality of a distribution (25). Not only is

the dip statistic an inferential measure of modality with an associated

p-value, it is also less biased by skew and sample size relative to other met-

rics (29). Whereas a small value of the dip statistic corresponds to a position

distribution with one peak, a large value reflects a distribution that has more

than one peak. We therefore defined a position distribution possessing a

large value of the dip statistic with a correspondingly small p-value as an

indicator of spontaneous oscillation, and a small value of the dip statistic

as an indicator of quiescence.

The behavior of a system is typically recorded using only a single observ-

able, such as a bundle’s position in time. However, in many instances a sys-

tem is described by more than one variable and the system’s dynamics

occupies a space of many variables, called a phase space. A dynamical

trajectory in phase space possesses information that is not apparent from

a single-variable time series. We therefore wished to reconstruct a two-

dimensional phase-space representation of hair-bundle dynamics based

only on observations of its displacement. Because many methods for

phase-space reconstruction require the manual selection or empirical esti-

mation of several parameter values (30–33), we focused instead on a

simpler alternative. The Hilbert transform of a signal is the imaginary

part of its analytical representation (34). The joint probability distribution

of a bundle’s real-valued position and the Hilbert transform of that posi-

tion—an analytic distribution—is a distribution over a system’s phase space

that can be calculated without the need for complicated analysis and chal-

lenging parameter selection. The analytic distribution appears ring-shaped

when a system displays limit-cycle oscillations, which correspond to stable,

closed-loop trajectories in phase space. Near quiescent fixed points, the

distribution instead exhibits an enhanced, disk-shaped density. This repre-

sentation is similar to that used to analyze spontaneous otoacoustic emis-

sions (35).

We next estimated the frequency, amplitude, and regularity of sponta-

neous oscillations by using a peak-detection algorithm that allows the
800 Biophysical Journal 111, 798–812, August 23, 2016
detection in a time series of all peaks and troughs that cross defined thresh-

olds (24). This method permits one to calculate a system’s amplitude and

frequency of oscillation for time series with substantial noise, short dura-

tions, and nonsinusoidal waveforms. For each peak-detection threshold,

the frequency is defined as the inverse of the mean time interval between

peaks, and the amplitude is calculated as half of the mean difference in po-

sition between each peak and trough.

We did not employ spectral methods to determine the location or identity

of a bifurcation. In the presence of noise, both a quiescent resonant system

and a limit-cycle system exhibit peaks in their Fourier spectra (36). A qual-

itative change in spectra as this noisy system crosses a bifurcation does not

exist. In contrast, a system’s position distribution exhibits a qualitative

change when the system crosses a bifurcation. Moreover, because many

of our signals were subjected to substantial noise and displayed nonsinusoi-

dal waveforms, the Fourier frequency and amplitude of oscillation

often fluctuated considerably as the value of a control parameter was

changed, and consequently this approach did not yield a clear estimate of

a bifurcation’s location that was consistent across the systems we studied

(Figs. S6–S8). The peak-detection algorithm also performed more reliably

than spectral analysis in estimating the amplitude and frequency of noise-

induced spikes (Fig. S9).

As a system transitions from a regime dominated by limit-cycle oscilla-

tions to one dominated by noise, that system’s spontaneous motion becomes

more irregular. The distribution of interpeak time intervals, the times be-

tween neighboring peaks, correspondingly broadens. We therefore assessed

the regularity of a system’s oscillations by calculating the coefficient of

variation, defined as the ratio of this distribution’s standard deviation to

its mean. As a system’s oscillations become increasingly irregular, the

metric grows and thus traces the transition from motion governed by

limit-cycle oscillations to that dominated by noise. The regularity of oscil-

lations determined using the coefficient of variation implies that multiple

peaks in the position histogram stem from limit-cycle oscillations rather

than from noise-induced switching between stable states. For example, a

system crossing a saddle-node, or fold, bifurcation may possess a stable

state on one side of the bifurcation and two stable states on the other.

This system can stochastically switch between two states in the bistable

regime. We found that the coefficient of variation for a noisy system tran-

sitioning from monostability to bistability is large for all control-parameter

values, in contrast with the smaller coefficients of variation displayed by

systems displaying limit-cycle oscillations (Fig. S12).

Finally, we estimated the location of a bifurcation using an information-

theoretical metric. Upon crossing certain bifurcations, a system exhibits

limit-cycle oscillations that appear ring-shaped in that system’s analytic dis-

tribution. To quantify this phenomenon, we estimated the mutual informa-

tion between the real and imaginary parts of the system’s analytic signal,

which we entitle the analytic information. The analytic information resem-

bles the time-delayed mutual information, a nonlinear measure of temporal

correlation in a signal (37). As opposed to a shift of the signal in time, how-

ever, the analytic information is calculated from a real-valued signal and

that signal shifted in phase. In the presence of a limit cycle the analytic in-

formation is large, and in the absence of a cycle its value is small. For

example, the analytic information approaches zero for a narrow-band

Gaussian-distributed noise sequence as its length increases (Fig. S10).

The information increases as a system crosses a bifurcation and begins to

oscillate spontaneously. Together with the dip statistic, the analytic infor-

mation therefore serves as an indicator of the onset of limit-cycle

oscillations.
Numerical simulations

A system operating near a bifurcation can be described by the normal form

corresponding to the type of bifurcation. The normal form is a standard

mathematical expression that captures the generic features of any system

operating near that kind of bifurcation. We performed simulations of the

normal forms for different bifurcations, in which we included various levels



A

B

C

D E

FIGURE 1 Hair-bundle state diagram. (A) A theoretical state diagram

specifies the behaviors of a hair bundle for various combinations of constant

force (FC) and load stiffness (KL). A line of Hopf bifurcations (red) sepa-

rates a region within which a hair bundle oscillates spontaneously (orange)

from one in which the bundle remains quiescent (white). Bautin points

(black) lie at the border between the supercritical and subcritical segments

of this line. Within the spontaneously oscillatory region, a bundle’s oscilla-

tions fall in amplitude and rise in frequency with an increase in load stiff-

ness (red and blue arrows, right panels). A line of fold bifurcations (green,

dashed) confines a region within which a bundle exhibits bistability (light

green). The gray arrows correspond to the regions of the bundle’s state di-

agram explored in Figs. 2, 3, 4, and 5. (B) Oscillations of an experimentally

observed hair bundle changed in appearance as the load stiffness increased

from 300 mN,m�1 to 1000 mN,m�1 (red to purple). The position histo-

grams and associated dip statistics shown to the right of each trace signal

the presence or absence of spontaneous oscillations. The dip statistic quan-
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of additive noise for each variable. We simulated the normal forms of the

supercritical Hopf, the subcritical Hopf, and the SNIC bifurcations. We

also simulated a model of hair-bundle dynamics with additive noise (16).

We refer to all these simulations as stochastic simulations throughout this

work. All simulations were conducted in MATLAB (R2014a, 8.3.0.532;

The MathWorks, Natick, MA) using the Euler-Murayama method.

Because the simulations of the normal forms and the hair-bundle model

have no meaningful dimensions in position and time, the results of the sim-

ulations are reported without units. In keeping with the convention in the

dynamical-systems literature, we orient the abscissa of every plot such

that the quiescent regime occurs to the left and the oscillatory regime occurs

to the right of each bifurcation. For a complete description of these simula-

tions, see Supporting Material Sections D and E.
RESULTS

The hair bundles of various receptor organs confront a vari-
ety of physical loads (15). Both modeling and experiments
show that adjusting the mechanical load qualitatively
changes a hair bundle’s behavior (16,20). Our previous
work was limited, however, by the stability and precision
of the clamp system used to apply the load on a hair bundle.
These limitations impeded determination of the location
and identity of bifurcations displayed by a bundle. After
improving the mechanical-load clamp to overcome these
restrictions (Figs. S1–S3), we were able to probe the nature
of bifurcations more systematically than was possible
heretofore.
The hair bundle’s state diagram

Changing the load stiffness and constant force applied to
an individual hair bundle yields a map of the bundle’s
behavior—a state diagram—for combinations of these two
control parameters (Fig. 1 A). We predicted earlier that a
hair bundle oscillates spontaneously within a region
bounded by subcritical and supercritical Hopf bifurcations
and exhibits bistability in a regime bounded by lines
of fold bifurcations (16). Within the oscillatory regime,
we also expect the bundle’s spontaneous motion to fall
tifies the modality of the system’s position histogram; a dip statistic of at

least 0.01 with p < 10�3 implies spontaneous oscillation. (C) An experi-

mental state diagram depicts the behavior of a hair bundle for different

values of the load stiffness and constant force. White boxes correspond to

operating points at which the bundle’s position histogram possessed a dip

statistic of <0.01, indicating quiescent behavior. Within the territory of

spontaneous oscillation, the intensities of red and blue correspond to the

amplitude and frequency, respectively, of the bundle’s oscillations calcu-

lated with a peak-detection algorithm with a threshold of 25 nm. Colored

circles correspond to the traces in (B). (D) The dip-statistic values for the

experimental state diagram in (C) are displayed in shades of purple. (E)

Spearman’s rank correlation (r) quantifies the relationships between ampli-

tude (red arrow) and frequency (blue arrow) with the load stiffness (r(KL))

and constant force (r(FC)) (Table S1). For all experimental data, the stiff-

ness and drag coefficient of the stimulus fiber were kSF ¼ 109 mN,m�1

and xSF ¼ 142 nN,s,m�1, respectively. The proportional gain of the load

clamp was 0.01. For a complete description of the bundle’s experimental

state diagram, see Supporting Material Section B.
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FIGURE 2 Crossing a supercritical Hopf bifurcation by adjusting the

constant force. (A–N) Over a range of parameter values, we compared the

behavior near a supercritical Hopf bifurcation with additive noise (A–G)

with that of an experimentally observed hair bundle (H–N). (A) A noisy sys-

tem operating near a supercritical Hopf bifurcation displayed noise-induced

ringing when the control parameter was negative, but oscillated spontane-

ously for positive values (left). When the amplitude of spontaneous oscilla-

tion surpassed that of the noise, the position histogram (middle) disclosed

two peaks. When the control parameter exceeded zero, the joint probability

distribution (right) for each real-valued position (X) and its Hilbert trans-

form (XH)—the analytic distribution—was circular, with a diameter that

grew with the control parameter. In all of the analytic distributions, red

and blue correspond to high and low probability values, respectively. Prob-

abilities of or near zero are displayed in white. (B) The dip statistic for the

position distribution is shown as a function of the control parameter. A low

value for the dip statistic corresponded to a unimodal distribution (green).

When the control parameter exceeded zero and the amplitude of oscillation

exceeded the level of the noise, the position histogram displayed two peaks

(purple) corresponding to a large value of the dip statistic. The control

parameter value at which the dip statistic achieved significance (shaded;

p < 10�3) served as an estimate of the bifurcation’s location (dashed

line). (C) The RMS magnitude of the system’s motion rose gradually as

the control parameter increased. (D) The amplitude rose with the control

parameter for peak-detection thresholds of 0.68 (red), 1.06 (yellow), and

1.45 (cyan). (E) The frequency of oscillation, with the same thresholds as
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in amplitude and rise in frequency with an increase in
load stiffness. In this study, we explored a bundle’s
behavior within different locales of its state diagram and
identified the types of bifurcation near which the bundle
could operate.

Using the improved load clamp, we determined the
behavior of a bundle as a function of its mechanical load.
In agreement with the theoretical expectation, the load
stiffness controlled the character of the bundle’s sponta-
neous oscillations (Fig. 1 B). When the stiffness was small,
the bundle oscillated at low frequency and with a high
amplitude, and in some cases exhibited mixed-mode oscilla-
tions. Increasing the load stiffness caused the bundle’s oscil-
lations to increase in frequency and decrease in amplitude
until they vanished altogether.

A spontaneously oscillating hair bundle displays a distri-
bution of positions with more than one peak, whereas the
position distribution of a quiescent bundle has only a single
peak (20,26,27). We therefore classified the bundle’s
behavior as either oscillatory or quiescent based on its
position histogram. To do so, we employed Hartigans’
dip statistic: a large value corresponds to a multimodal po-
sition distribution generated by a spontaneously oscillating
bundle, and a small value arises from a unimodal position
distribution produced by a quiescent bundle (25). This
metric revealed an ovoid oscillatory regime surrounded
by a domain of quiescence (Figs. 1, C and D, and S4).
The boundary between these two regimes is expected to
in (D), grew with an increase in the control parameter until it achieved a

constant value. The value of the control parameter at which the rise in fre-

quency was steepest increased with the threshold. (F) The coefficient of

variation describes the regularity of oscillation, with a high value corre-

sponding to increased variability in the interpeak time interval. The value

of the control parameter at which the coefficient of variation crossed 0.5

increased with the peak-detection threshold. (G) The analytic information

rose gradually with the control parameter. (H) The behavior of an experi-

mentally observed hair bundle was transformed by changes in the constant

force: as the force decreased, the amplitude of spontaneous oscillation rose

(left) and the position histogram became bimodal (middle). The analytic

distribution formed a loop whose diameter increased with a decrease in

the constant force (right). (I) Reflecting a unimodal position histogram,

the dip statistic remained small for large values of the constant force

(green). When the constant force fell below 20 pN, the position histogram

displayed two peaks (purple) and the dip statistic increased, defining the

boundary of an oscillatory regime (shaded; p< 10�3). (J) The RMSmagni-

tude of the bundle’s motion rose gradually as the constant force decreased.

(K) The amplitude increased as the constant force declined for peak-detec-

tion thresholds of 6 nm (red), 8 nm (yellow), and 10 nm (cyan). (L) The fre-

quency of oscillation rose gradually with a decrease in constant force until it

achieved a constant value near 5 pN. The force at which this rise in fre-

quency occurred depended on the threshold value. (M) The coefficient of

variation exceeded 0.5 at a value of constant force that decreased as the

peak-detection threshold increased. (N) The analytic information rose grad-

ually as the constant force fell. For all experimental data, the load stiffness

was 400 mN,m�1 with a gain of 0.1. The stiffness and drag coefficient of

the stimulus fiber were respectively 109 mN,m�1 and 142 nN,s,m�1.

All simulations possessed noise with standard deviations of sR ¼ sI ¼
0.1. The error bars represent the standard errors of the means.
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correspond to lines of subcritical and supercritical Hopf bi-
furcations (16,20). Improvements in data acquisition and
analysis allowed us to construct the experimental state dia-
gram with greater stability and obtain a higher signal/noise
ratio over this range of control parameters than was possible
heretofore, eliminating the need for additional statistics to
delineate the locus of oscillation (20). The frequency of
spontaneous oscillation rose and the amplitude fell with
an increase in load stiffness. With an increase in the constant
force, however, both the amplitude and frequency declined
(Fig. 1 E). These correlations accord with theoretical predic-
tions and prior experimental investigations of the effects of
load stiffness on a bundle’s behavior (16,20).

Although the experimental state diagram depicted the
boundary of and patterns within a regime of spontaneous
oscillation, the identity of the bifurcations that define the
boundary has not been determined definitively. Because a
bundle’s operation near a particular bifurcation can in part
dictate its mechanosensory function, we developed a strat-
egy to identify bifurcations in experimental systems with
substantial noise.
A supercritical Hopf bifurcation for high-stiffness
loads

We first assessed whether a hair bundle in the high-stiffness
regime can operate near a supercritical Hopf bifurcation. To
do so, we compared simulations of a noisy system crossing a
supercritical Hopf bifurcation described by the bifurcation’s
normal-form equation with experimental observations of a
hair bundle subjected to a high load stiffness and increasing
values of constant force (Fig. 2). Both the model system and
the experimentally observed hair bundle oscillated sponta-
neously with amplitudes that grew with an increase in the
control parameter or a decrease in the bundle’s constant
force, respectively (Figs. 2, A and H, and S5 A). When the
amplitude of oscillation exceeded the noise, the position his-
togram displayed two distinct peaks. The analytic distribu-
tion, a two-dimensional representation of the bundle’s
motion, formed a loop corresponding to a limit cycle. An in-
crease in the control parameter or a decrease in the bundle’s
constant force caused the diameter of the loop to grow in
concert with a rise in the amplitude of oscillation.

We determined the location of an empirical bifurcation as
the point at which the dip statistic assumed a statistically
significant value. We estimated that the noisy bifurcation
was located on the oscillatory side of a deterministic super-
critical Hopf bifurcation (Fig. 2 B). For an active hair
bundle, we found a sharp transition between small and large
values of the dip statistic, corresponding to a bifurcation
defining the boundary between a quiescent and an oscilla-
tory regime (Fig. 2 I).

Although an oscillatory system’s amplitude and fre-
quency of motion are typically calculated from its Fourier
transform, the Fourier amplitude and frequency can be unin-
formative for determining a bifurcation’s location when
noise is substantial, when the signals are brief, or when
oscillations deviate substantially from pure sinusoids. We
illustrate this problem with the Fourier transform both for
noisy simulations and for experimental observations of
hair-bundle motion (Supporting Material Section C.7). For
an oscillator operating far from a bifurcation, spectral anal-
ysis performs well. Near a bifurcation and in the presence
of noise, however, detection of the bifurcation using the
Fourier amplitude and frequency becomes difficult. We
show that the amplitude and frequency calculated with the
Fourier transform fluctuate considerably as a system’s con-
trol parameter is changed (Fig. S8). Furthermore, spectral
methods do not reliably capture the amplitude and fre-
quency for a system that exhibits noise-induced spikes
(Fig. S9). Consequently, this method can fail to detect bifur-
cations in systems dominated by noise.

We therefore characterized the amplitude of spontaneous
oscillation using two other metrics. First, we calculated the
root-mean-square (RMS) magnitude. For both the simula-
tion and the experimentally observed hair bundle, the
RMS magnitude rose gradually as the operating point was
moved toward the region of spontaneous oscillation
(Fig. 2, C and J). However, both the amplitude and the fre-
quency of oscillation can affect the RMS magnitude. For
example, constant-amplitude spikes that become less
frequent correspond to a declining RMS magnitude even
though their amplitude does not change. To circumvent
this issue, we additionally determined the amplitude of
oscillation from a peak-detection algorithm that found the
local maxima (peaks) and minima (troughs) separated by
a threshold distance. Our peak-detection algorithm accu-
rately estimated the amplitude and frequency of oscillation
(Supporting Material Section C.7). We defined the ampli-
tude as half of the average distance between the position
of a peak and its neighboring trough. As the control param-
eter grew or the bundle’s constant force shrank, the ampli-
tude rose sharply and then more gradually regardless of
the peak-detection threshold (Fig. 2, D and K). The ampli-
tudes calculated from the peak-detection algorithm were
sensitive to the selected peak-detection threshold. For both
the simulated and experimentally observed time series, the
amplitude curve shifted toward the oscillatory region as
the threshold rose.

We then used the same peak-detection algorithm to calcu-
late the frequency of oscillation, which we defined as the in-
verse of themean time interval between successive peaks. As
noted for the amplitude relations, the frequencies calculated
with this method were sensitive to changes in the peak-detec-
tion threshold. Increasing the value of the peak-detection
threshold shifted the frequency curve farther into the oscilla-
tory side of the bifurcation for both the noisy simulations and
the experimental observations (Fig. 2, E and L).

As a system transitions from a regime dominated by
large-amplitude oscillations to one dominated by noise, its
Biophysical Journal 111, 798–812, August 23, 2016 803
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spontaneous motion becomes increasingly irregular. We
therefore quantified the variability of a system’s sponta-
neous motion by the coefficient of variation for the system’s
interpeak time intervals: large and small coefficients corre-
spond respectively to irregular and regular oscillations. For
all peak-detection thresholds, this metric fell as the systems’
operating points moved farther into the oscillatory regime,
indicating less variation in the interpeak intervals as the sys-
tem’s motion became dominated by limit-cycle oscillations
(Fig. 2, F and M). As with the amplitude and frequency of
motion, the coefficient of variation depended on the peak-
detection threshold. Increasing the value of the peak-detec-
tion threshold shifted the location at which the coefficient of
variation crossed a threshold of 0.5 farther into the oscilla-
tory regime for both a noisy system crossing a supercritical
Hopf bifurcation and for an experimentally observed hair
bundle.

A noisy bistable or multistable system exhibits a position
histogram with more than one peak and consequently a
large value for the dip statistic. Therefore, the dip statistic
alone cannot distinguish limit-cycle oscillations from
noise-induced switching between stable states. However,
position fluctuations are much less coherent for bistable
and multistable systems than for a limit-cycle oscillator.
We can therefore use the coefficient of variation to deter-
mine whether a system exhibits limit-cycle behavior or
whether it displays noised-induced switching between
stable states. The coefficient of variation never falls below
0.5 for a bistable or multistable system, but it can approach
zero for a limit-cycle oscillator (Supporting Material Sec-
tion D.6).

Finally, we sought to pinpoint the location of a bifurcation
and to determine its identity with another metric. The
analytic information, defined as the mutual information be-
tween the real and imaginary parts of the system’s analytic
signal, approaches zero for normally-distributed noise
and grows as limit-cycle oscillations emerge. The analytic
information rose gradually with an increase in the control
parameter in the simulation and with a decrease in the bun-
dle’s constant force in the experiment (Fig. 2, G and N).
Although the gradual rise in the analytic information
failed to identify the exact location of a bifurcation, the
trends for both the model and experiment displayed a strong
similarity. Taken together, the striking agreement between
the simulations and experimental observations implies that
a hair bundle subjected to a large load stiffness can traverse
a supercritical Hopf bifurcation as the constant force is
changed.

To confirm that the high-stiffness boundary between the
oscillatory and quiescent regions constitutes a line of super-
critical Hopf bifurcations, we subjected both a model hair
bundle and an experimentally observed one to a constant
force of zero and decreasing values of load stiffness, a
regime in which the model bundle is known to cross a super-
critical Hopf bifurcation. We then employed the same bat-
804 Biophysical Journal 111, 798–812, August 23, 2016
tery of tests as before to assess the similarities between
the time series of the simulated and experimentally observed
hair bundles (Fig. 3). All panels in Fig. 3 display the same
metrics as the corresponding panels in Fig. 2, but for
different time series.

In agreement with the generic features of a noisy system
crossing a supercritical Hopf bifurcation (Fig. 2 A), both the
simulated and experimentally observed hair bundles dis-
played spontaneous oscillations whose amplitude grew
with a decrease in stiffness (Figs. 3, A and H, and S5 B).
Their analytic distributions also displayed limit cycles that
correspondingly increased in diameter. Consistent with
that of a noisy system near a supercritical Hopf bifurcation
(Fig. 2 B), the simulated bundle’s position histogram
became bimodal on only the oscillatory side of the deter-
ministic bifurcation (Fig. 3 B). We observed a clear transi-
tion at which the simulated and experimentally observed
hair bundles became oscillatory (Fig. 3, B and I).

Both the RMS magnitude (Fig. 3, C and J) and the ampli-
tude (Fig. 3, D and K) of spontaneous oscillation rose grad-
ually with a decrease in stiffness; this pattern accorded with
that of a noisy system crossing a supercritical Hopf bifurca-
tion (Fig. 2, C and D). The frequency of oscillation, how-
ever, followed a trend that differed from our simulations
of generic dynamics near that bifurcation. As the stiffness
decreased from its greatest value, the frequency of oscilla-
tion first rose for both the simulated and experimentally
observed hair bundles, in agreement with a quiescent sys-
tem’s approach to a supercritical Hopf bifurcation (Fig. 3,
E and L). Further decreases in stiffness, however, caused
the frequency to achieve a maximal value and subsequently
to decline as the operating point moved beyond the range of
influence of the bifurcation. Although this pattern in fre-
quency differs from the generic behavior of a system oper-
ating near a supercritical Hopf bifurcation, it accords with
the specific behavior predicted for hair-bundle dynamics
(Fig. 1 A). The coefficient of variation was once again sen-
sitive to changes in the peak-detection threshold, consistent
with the generic behavior of a system operating near a su-
percritical Hopf bifurcation (Fig. 2 F). For both the simu-
lated and experimentally observed bundles, the coefficient
of variation crossed 0.5 at smaller stiffness values when
the value of the peak-detection threshold was larger
(Fig. 3, F and M). Finally, the analytic information rose
gradually as the systems’ operating points advanced into
the oscillatory regime (Fig. 3, G and N), in agreement
with that of a system crossing a supercritical Hopf bifurca-
tion (Fig. 2 G).

All of the observations of hair-bundle behavior agreed
with stochastic simulations of the normal form of a super-
critical Hopf bifurcation and of a model of hair-bundle dy-
namics. Taken together, these data strongly support the
prediction that for an active hair bundle, the boundary of
oscillation for large stiffnesses is a line of supercritical
Hopf bifurcations (16,20).
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FIGURE 3 Traversing a supercritical Hopf bifurcation by altering the

load stiffness. (A–N) Over a range of load stiffnesses, we compared

the behavior of a model hair bundle crossing a supercritical Hopf bifur-

cation (A–G) with that of an experimentally observed hair bundle (H–N).

All of the panels depicted here display the same metrics as shown in

Fig. 2. (A and H) As the stiffness declined, the amplitude of spontaneous

oscillation rose (left), the position histogram became bimodal (middle),

and the diameter of the limit cycle increased (right). (B and I) The dip

statistic rose as the stiffness decreased, signaling the emergence of

bimodal position histograms and the onset of spontaneous oscillations

(shaded; p < 10�3). The estimated boundary of the oscillatory regime

occurred on the oscillatory side of the deterministic bifurcation (dashed

line). (C and J) The RMS magnitude rose gradually as the stiffness

decreased. (D and K) The amplitude increased with a decrease in stiff-

ness. For these and subsequent panels, we used peak-detection thresholds

of (D–F) 1 (red) and 1.5 (cyan) or (K–M) 26 nm (red) and 34 nm (cyan).

(E and L) The stiffness at which the frequency rose depended on the

value of the peak-detection threshold. Spontaneous oscillations emerged

with a frequency that first rose and subsequently fell with decreases in

stiffness. (F and M) The stiffness at which the coefficient of variation ex-

ceeded 0.5 depended on the threshold value. (G and N) The analytic in-

formation rose gradually as the stiffness decreased. For all panels, the

constant force was zero with a gain of 0.1. The stiffness and drag coef-

ficient of the stimulus fiber were 109 mN,m�1 and 142 nN,s,m�1,

respectively. Dashed lines correspond to the location of the supercritical

Identification of Noisy Bifurcations
A subcritical Hopf bifurcation for low-stiffness
loads

We predicted that a hair bundle subjected to a small load
stiffness operates near a subcritical Hopf bifurcation
(Fig. 1 A), whereas an alternate analysis suggested that the
bundle lies close to a SNIC bifurcation (22,38). To evaluate
these alternatives, we used the methodology discussed
above to compare experimental observations of a hair
bundle subjected to a small load stiffness with those of noisy
systems operating near either a subcritical Hopf or a SNIC
bifurcation. All panels in Fig. 4 correspond to the metrics
displayed in Figs. 2 and 3, but for different sets of simula-
tions and experimental observations.

When operating on the oscillatory side of a subcritical
Hopf or SNIC bifurcation, the noisy systems exhibited
large-amplitude oscillations (Fig. 4, A and H) that accorded
with those of an experimentally observed hair bundle sub-
jected to a small stiffness (Fig. 4 O). On the other side of
a subcritical Hopf bifurcation, however, this system dis-
played noise-induced bursts of high-amplitude oscillations
(Fig. 4 A). A system near a SNIC bifurcation instead ex-
hibited noise-induced spikes with a frequency that fell
with a decrease in the control parameter (Fig. 4 H). The
bursting behavior near a subcritical Hopf bifurcation
occurred when a limit cycle coexisted with a stable point
at its center, as evidenced by an analytic distribution pos-
sessing an enhanced density within a loop (Figs. 4 A and
S5 C). Fluctuations induced transitions between the stable
point and the limit cycle, resulting in bursts of noisy oscil-
lations. Bursting occurred only for parameter values within
the region of coexistence that fell between the subcritical
Hopf bifurcation and a saddle-node of limit cycles bifurca-
tion. The latter bifurcation, at which a stable and an unstable
limit cycle collide and annihilate one another, is a conse-
quence of operation near a subcritical Hopf bifurcation.
The spiking behavior exhibited by a system near a SNIC
bifurcation, by contrast, engendered a locus of high proba-
bility along one part of a cycle (Figs. 4 H and S5 C). The
bundle’s spontaneous motion most closely resembled the
spiking behavior and analytic distributions of a noisy system
proximal to a SNIC bifurcation (Figs. 4 O and S5 C).

Whereas the dip statistic indicated noisy oscillations
solely on the oscillatory side of a deterministic supercritical
Hopf bifurcation (Fig. 2 B), it evidenced noisy oscillations
not only on the deterministically oscillatory side but also
within the coexistence region of a deterministic subcritical
Hopf bifurcation (Fig. 4 B). The dip statistic also detected
oscillations on the oscillatory side of a deterministic SNIC
bifurcation (Fig. 4 I). The dip statistic for an experimentally
observed hair bundle clearly delineated the boundary
Hopf bifurcation in the absence of noise. Stochastic simulations em-

ployed noise with standard deviations of sx ¼ sf ¼ 0.1. The error bars

represent the standard errors of the means.
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FIGURE 4 A subcritical Hopf or SNIC bifurcation at low stiffness. (A–U) We compared the behavior of noisy systems near either a subcritical Hopf bifur-

cation (A–G) or a SNIC bifurcation (H–N) with that of an experimentally observed hair bundle subjected to changes in constant force (O–U). Each row of

panels describes the same metrics as the corresponding rows in Figs. 2 and 3. (A) A noisy system poised near a subcritical Hopf bifurcation displayed noise-

induced bursts of high-amplitude oscillations when the control parameter fell between �0.25 and 0, a regime in which a limit cycle coexisted with a stable

fixed point (left). When the control parameter exceeded zero, the system exhibited high-amplitude sinusoidal oscillations. The position histogram featured

multiple peaks when the control parameter exceeded �0.25, a regime bounded by a saddle-node of limit cycles and a subcritical Hopf bifurcation (middle).

The analytic distribution formed a cycle whose diameter changed little with the control parameter and in some cases included a stable region at the center

(right). (B) The dip statistic evidenced the oscillatory boundary within the coexistence region of a subcritical Hopf bifurcation (shaded; p < 10�3). (C) The

RMS magnitude grew gradually with the control parameter. (D) The amplitude rose abruptly with the control parameter for peak-detection thresholds of 1.2

(red), 1.4 (yellow), and 1.6 (cyan). (E) The frequency of oscillation rose briskly between the saddle-node of limit cycles and the subcritical Hopf bifurcation

and then gradually on the exclusively oscillatory side of the Hopf bifurcation. (F) The coefficient of variation was insensitive to changes in the peak-detection

threshold. (G) The analytic information rose sharply near the subcritical Hopf bifurcation. (H) A system poised near a SNIC bifurcation displayed large-

amplitude spikes that increased in frequency with a rising control parameter (left). In agreement with this behavior, the position histograms became increas-

ingly bimodal (middle). The analytic distribution disclosed a cycle whose diameter remained invariant to changes in the control parameter (right). Consistent

with its spiking behavior, the system dwelled more often along one part of the cycle for low values of the control parameter. (I) The dip statistic determined

(legend continued on next page)
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between a quiescent regime and an oscillatory one, again
demonstrating the utility of this metric in pinpointing a bi-
furcation’s location (Fig. 4 P).

All of the other metrics were qualitatively indistinguish-
able between noisy systems operating near a subcritical
Hopf or a SNIC bifurcation, with the behaviors of both sys-
tems resembling those of an experimentally observed hair
bundle subjected to a low stiffness. However, these behav-
iors were distinct from those of a system close to a supercrit-
ical Hopf bifurcation (Figs. 2 and 3). In all cases, the RMS
magnitude increased abruptly near a bifurcation (Fig. 4, C,
J, and Q). The amplitude rose suddenly before a bifurcation
and then grew gradually or remained constant (Fig. 4, D, K,
and R). Unlike the pattern of a system operating near a su-
percritical Hopf bifurcation, the rise in the frequency of
spontaneous oscillation and the fall in the coefficient of vari-
ation with an increase in control parameter were insensitive
to the value of the peak-detection threshold (Fig. 4, E, F, L,
M, S, and T). Finally, the analytic information rose abruptly
near the bifurcation (Fig. 4, G, N, and U), in contrast to
the gradual rise displayed by a system near a supercritical
Hopf bifurcation (Fig. 2 G). Together, these data demon-
strate that for a low stiffness, a hair bundle can cross a
subcritical Hopf or SNIC bifurcation, but not a supercritical
Hopf bifurcation.

We next assessed whether the bursting behavior of a sys-
tem near a subcritical Hopf bifurcation disqualifies this
bifurcation as that exhibited by observed hair bundles at
low stiffnesses. Using the same battery of tests, we
compared experimental observations of another hair bundle
with stochastic simulations of a model bundle that is known
to operate near a subcritical Hopf bifurcation (Figs. 1 A and
5). In the presence of noise, the simulated bundle exhibited
downward excursions resembling the spikes displayed by
both of the experimentally observed bundles at low stiff-
nesses (Figs. 4 O, 5, A and H, and S5 D). Unlike a system
displaying bursting near a subcritical Hopf bifurcation
(Fig. 4 A), the simulated bundle showed noise-induced
spikes well beyond the saddle-node of limit cycles bifurca-
tion (Fig. 5 A). The bundle displayed a graded frequency
response: the spiking frequency fell with an increase in
the location of the deterministic SNIC bifurcation (shaded; p < 10�3). (J) The R

(K) The amplitude remained constant on the oscillatory side of the SNIC bifurc

quency of oscillation rose gradually from zero near the SNIC bifurcation for all p

the peak-detection threshold near the SNIC bifurcation. (N) The analytic informa

constant force decreased, the spontaneous oscillations of an experimentally obs

histograms became increasingly bimodal (middle), and the analytic distribution

ability along one section of each cycle (right). (P) The dip statistic located the bo

bundle’s RMS magnitude rose abruptly to a nearly constant value near the osci

forces below 25 pN for peak-detection thresholds of 20 nm (red), 27.5 nm (yellow

rose gradually from zero for constant forces below 30–35 pN. (T) The coefficien

information rose sharply and then gradually as the constant force decreased. For

The stiffness and drag coefficient of the stimulus fiber were 139 mN,m�1 and 239

to the locations of a subcritical Hopf bifurcation and a SNIC bifurcation, respec

bifurcation. Stochastic simulations for a subcritical Hopf bifurcation and for a

represent the standard errors of the means.
the bundle’s constant force. This change was accompanied
by a locus of increasing probability in the analytic distribu-
tion that rested upon one part of a large-amplitude limit cy-
cle. Spikes may therefore result either from the asymmetric
dynamics associated with a SNIC bifurcation or from the
specific asymmetry captured by the hair-bundle model
near a subcritical Hopf bifurcation, but lacking in the
normal form of a subcritical Hopf bifurcation. All metrics
showed a strong qualitative agreement between the model
bundle operating near a subcritical Hopf bifurcation, a
SNIC bifurcation, and both experimentally observed hair
bundles (Figs. 4 and 5). The changes in the metrics with a
control parameter were once again distinct from those of a
noisy system traversing a supercritical Hopf bifurcation.
DISCUSSION

A hair bundle’s function can be dictated in part by its
operation near a particular bifurcation. Here, we identified
the types and locations of bifurcations from experimental
observations of noisy hair bundles. By employing several
metrics to compare models with experimental observations,
we analyzed the bifurcation structure of experimentally
observed hair bundles operating in a noisy environment
and confirmed the predictions of a qualitative model of
hair-bundle dynamics.

Our model makes no assumptions about the temporal or
spatial scales of a bundle’s dynamics and requires only
two properties of hair bundles: their nonlinear stiffness
and adaptation to stimulation (15,39–42). Any actual bundle
or hair-bundle model that possesses these features will
exhibit the same state diagram as our model and thus
show qualitatively similar responses to stimulation (16).
Moreover, we previously used a quantitative model of
hair-bundle mechanics with physical parameters plausible
for the mammalian cochlea to demonstrate that hair-bundle
activity is likely essential for the mammalian auditory sys-
tem to achieve great sensitivity and sharp frequency selec-
tivity in response to high-frequency periodic stimuli (43).

Guided by the qualitative model, we found that a single
hair bundle can operate near more than one type of
MS magnitude grew rapidly to a constant value near the SNIC bifurcation.

ation for thresholds of 0.7 (red), 0.9 (yellow), and 1.1 (cyan). (L) The fre-

eak-detection thresholds. (M) The coefficient of variation was insensitive to

tion reached a plateau for positive values of the control parameter. (O) As the

erved hair bundle resembled spikes of rising frequency (left), the position

s formed loops that changed little in diameter with a locus of greater prob-

undary of the spontaneously oscillatory region (shaded; p < 10�3). (Q) The

llatory boundary. (R) The amplitude remained nearly constant for constant

), and 35 nm (cyan). (S) The bundle’s frequency of spontaneous oscillation

t of variation remained insensitive to changes in threshold. (U) The analytic

all experimental data, the load stiffness was 50 mN,m�1 with a gain of 0.1.

nN,s,m�1, respectively. Black dashed lines in (B–G) and (I–N) correspond

tively. Pink dashed lines depict the location of a saddle-node of limit cycles

SNIC bifurcation possessed noise levels of sR ¼ sI ¼ 0.2. The error bars
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FIGURE 5 A subcritical Hopf bifurcation can be crossed by controlling

the constant force. When the load stiffness remains low, a decrease in con-

stant force advances a bundle’s operating point across a subcritical Hopf

bifurcation. (A–N) Stochastic simulations of a model of hair-bundle motility

(A–G) were compared with an experimentally observed hair bundle (H–N).

The results depicted here correspond to the same metrics displayed in Figs.

2, 3, and 4. (A) As the constant force decreased, a model bundle exhibited

noise-induced spikes of rising frequency (left), an increasingly bimodal po-

sition histogram (middle), and an analytic distribution with a cycle whose

diameter changed little over a range of forces and upon which rested a locus

of higher probability (right). (B) The dip statistic defined an oscillatory

boundary at a control parameter smaller than the control parameters corre-

sponding to the deterministic bifurcations (shaded; p < 10�3). (C) The

model bundle’s RMS magnitude rose to a nearly constant value as the con-

stant force decreased. (D) Calculated with thresholds of 1 (red) and 2

(cyan), the amplitude of the bundle’s motion remained constant for forces

below 1. (E) The frequency of oscillation for a model bundle rose smoothly

from zero as the constant force decreased for both peak-detection thresh-

olds. (F) The coefficient of variation remained insensitive to changes in

the peak-detection threshold. (G) The analytic information rose with a

decrease in constant force. (H) An experimentally observed hair bundle ex-

hibited behaviors that accorded with those of a model bundle crossing a

subcritical Hopf bifurcation in the presence of noise. As the constant force

declined, the bundle displayed spikes of increasing frequency (left), a more

clearly bimodal position histogram (middle), and an analytic distribution
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bifurcation depending on its mechanical load. Although it
can be argued that noise introduces new bifurcations and
changes the character of existing ones (44), our observations
accord well with simulations of systems crossing bifurca-
tions in the presence of noise.
Proximity to a bifurcation

To understand certain dynamical systems, one must deter-
mine whether they can operate near bifurcations. We em-
ployed a battery of quantitative metrics to isolate the
location of such bifurcations as a function of a control
parameter. Among these metrics, Hartigans’ dip statistic
offered multiple advantages when used to determine
the modality of a bundle’s position distribution. First,
the dip statistic is an inferential metric that provides
an associated p-value that allowed us to estimate the
bifurcation’s position consistently across all of the data
sets. Second, the dip statistic is less sensitive to sample
size and skew than other measures of a distribution’s
modality (29).

A phenomenological bifurcation occurs when the proba-
bility distribution of a system’s state, including but not
limited to its position distribution, exhibits a qualitative
change; for example, the distribution’s modality may
change (44). A third benefit of using the dip statistic is
that it identifies phenomenological bifurcations associated
with changes in the position distribution. Although this
approach might have missed modality changes in the bun-
dle’s state distribution associated with unobserved variables,
such as the hair cell’s transduction current, it clearly
defined a boundary between an oscillatory and a quiescent
regime based only on experimental observations of the bun-
dle’s motion. Although we found that noise introduced
an unavoidable bias in the estimation of a deterministic
bifurcation’s position, we note that phenomenological
with a cycle that changed little in diameter over a range of forces and

upon which rested a locus of enhanced probability (right). (I) The dip sta-

tistic defined the boundary of the oscillatory region (shaded; p < 10�3). (J)

The RMS magnitude of the bundle’s motion rose as the constant force fell

below 40–45 pN and achieved a constant value for forces below 35 pN. (K)

The amplitude of the bundle’s oscillations achieved a nearly constant value

for forces below 35–48 pN. We employed peak-detection thresholds of

50 nm (red) and 60 nm (cyan). (L) The bundle’s frequency of oscillation

rose gradually from zero as the constant force decreased. (M) The constant

force at which the coefficient of variation exceeded 0.5 remained relatively

insensitive to changes in the peak-detection threshold. (N) The analytic in-

formation rose as the constant force decreased. For experimental data, the

load stiffness was 100 mN$m�1 with a gain of 0.1. The stiffness and drag

coefficient of the stimulus fiber were 139 mN,m�1 and 239 nN,s,m�1,

respectively. Black dashed lines correspond to the location of the subcritical

Hopf bifurcation at FC¼ 0.66, and pink dashed lines correspond to the loca-

tion of the saddle-node of limit cycles bifurcation at FC ¼ 0.664 in the

absence of noise. Stochastic simulations of the model of hair-bundle

motility possessed a stiffness of 2 and noise levels of sx ¼ sf ¼ 0.2. The

error bars represent standard errors of the means.
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bifurcations can occur at values of a control parameter that
differ from those in the deterministic cases.

The coefficient of variation for the values of a system’s
state variables in a time series was previously employed to
experimentally estimate the locations of Hopf bifurcations
in a predator-prey system, in which the bifurcation’s loca-
tion was defined by the transition from a small to a large
value of the coefficient corresponding to the onset of spon-
taneous oscillations (45). By using the magnitude of the
state variables rather than the time intervals between events,
this coefficient of variation captures a different aspect of a
dynamical system’s behavior than the coefficient of varia-
tion we employ here. Because the coefficient of variation
for the values of a system’s state variables does not describe
the regularity of a system’s oscillations or spiking, it cannot
distinguish between noisy switching in a bistable system
and limit-cycle oscillations. The mean value of the variables
we study is often zero, as is the case for the Hopf normal
form, so it is not possible to calculate this coefficient of vari-
ation. Moreover, a change in this metric with a control
parameter could arise from a change in a variable’s mean
value rather than from a system crossing a Hopf bifurcation.
Nonetheless, this metric will likely be useful for bifurcation
analysis of some systems, especially if it is combined with
some of the other measures that we utilize here.
Identity of a bifurcation

We developed a protocol that permits the identification of
bifurcations solely on the basis of noisy time series. This
diagnostic method has several appealing features. Although
the approach requires data from a range of operating points
near a bifurcation, it does not necessitate external stimula-
tion. In studies of climate change, finance, and geophysics
(3,4), among other disciplines, stimulation may be difficult
or even impossible. Moreover, the method performs well at
high noise levels and relies on few (if any) choices by the
experimenter.

Although the dip statistic can be employed to locate a
bifurcation, it cannot be used to distinguish between types
of bifurcation. To identify the bifurcation near which a sys-
tem operates, we apply five additional metrics, each of
which captures a different feature of the system’s behavior
(Fig. 6). These metrics and the analytical distributions
allow us to distinguish supercritical Hopf bifurcations
from subcritical Hopf and SNIC bifurcations. Near a super-
critical Hopf bifurcation, the RMS magnitude grows more
slowly with the control parameter, and the oscillation fre-
quency and coefficient of variation are more dependent
on the peak-detection threshold, than near subcritical
Hopf and SNIC bifurcations. In addition, the analytical dis-
tribution often evidences a fixed point surrounded by a limit
cycle when a bundle operates near a subcritical Hopf bifur-
cation, but never does so near a supercritical Hopf bifurca-
tion. The similarities between simulations and observations
allow us to conclude that a hair bundle possess a line of su-
percritical Hopf bifurcations in the high-stiffness regime.

The agreement between the metrics for simulations and
observations also implies that a hair bundle manifests
lines of either subcritical Hopf or SNIC bifurcations at
low stiffnesses. Experimentally observed bundles exhibit
the graded response in the frequency of spiking that occurs
near a SNIC bifurcation, but not near a subcritical Hopf
bifurcation. However, a model bundle near a subcritical
Hopf bifurcation in the presence of noise also exhibits a
graded spike-frequency response resembling that of a
SNIC bifurcation (21,22), even though no SNIC bifurcation
occurs in this region of the state diagram (16).

Graded spiking responses can arise from fluctuations
inducing a system to cross a threshold. Moving a control
parameter in a specific direction can increase the probability
of crossing the threshold and consequently elevate the
FIGURE 6 Summary of the metrics used to

identify bifurcations. We present a schematic dia-

gram for each metric that was used to identify

the type of the bifurcation near which a system

operated. The three columns on the left include di-

agrams for noisy systems crossing supercritical

Hopf, subcritical Hopf, and SNIC bifurcations.

The two columns on the right refer to a model

hair bundle crossing either a supercritical (red) or

subcritical (blue) Hopf bifurcation. Red and blue

arrows highlight the range of parameter values

explored in each instance. Green arrows indicate

trends in each of the statistics as a function of the

control parameter. Purple arrows and purple arrow-

heads illustrate the dependence and independence,

respectively, of the frequency of oscillation and co-

efficient of variation with changes in peak-detec-

tion threshold. In each panel, we highlight in

color the metrics that agree with observations of

bundles subjected to high-stiffness (red) and low-

stiffness (blue) loads.
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spiking frequency. Near a SNIC bifurcation, noise can cause
a system to repeatedly cross a threshold and produce a spike.
When operating in the low-stiffness regime, the model
bundle instead possesses a quasi-threshold within the
quiescent region near a subcritical Hopf bifurcation (Figs.
S15–S18). In contrast to a true threshold that separates
sub- and suprathreshold regimes, a quasi-threshold consti-
tutes a region over which the model bundle can display
spikes of all amplitudes (10). Noise can induce the model
bundle’s trajectory to cross this quasi-threshold, which can
be very narrow, eliciting an excursion resembling an all-
or-none spike. Increasing the stiffness diminishes both the
amplitude of spikes and the range of constant forces over
which spikes can occur. These noise-induced excursions
are similar to the voltage spikes or action potentials
produced by neurons (6,7,46). For example, the Hodgkin-
Huxley model possesses a quasi-threshold, as does the Fitz-
Hugh-Nagumo model, a two-dimensional simplification of
the Hodgkin-Huxley model that is similar in form to our
qualitative hair-bundle model (16,46,47). In the presence
of noise, the FitzHugh-Nagumo model exhibits noise-
induced spikes with a frequency that depends on a control
parameter. Although the graded-frequency spiking present
in class I excitable neurons has typically been described
by operation near a SNIC bifurcation (6,7,9), similar
behavior can arise instead from model-specific dynamics
near a subcritical Hopf bifurcation. Therefore, some behav-
iors do not result solely from operation near a bifurcation,
but are specific to the system in question. The presence of
a graded frequency response is not sufficient to conclude
that a system operates near a SNIC bifurcation.

The appearance of large-amplitude oscillations as the
constant force is changed is consistent with a hair bundle
crossing either a subcritical Hopf or SNIC bifurcation.
Alternatively, the emergence of large oscillations could
arise from a third mechanism. Here, a small-amplitude
limit cycle is created at a supercritical Hopf bifurcation,
but the amplitude of the cycle grows rapidly within an
exponentially small range of control-parameter values, re-
sulting in a large-amplitude limit cycle. This phenomenon,
termed a canard explosion, has been observed in a model of
hair-bundle motility over a limited range of operating
points (48,49). Although canard explosions can in principle
emerge in our model, it is unlikely that we observed this
phenomenon in experiments. A canard explosion emerges
as a sharp rise in the amplitude of oscillation with a corre-
sponding decrease in frequency (50). In contrast, we found
that large bundle oscillations appeared with a correspond-
ing increase in frequency as the constant force declined.

Although we could not reliably distinguish a noisy system
operating near a SNIC bifurcation from one poised close to a
subcritical Hopf bifurcation, one could in principle discrim-
inate between these bifurcations by assessing their phase
portraits. The phase portrait of a system operating in the re-
gion of coexistence between a limit cycle and a fixed point
810 Biophysical Journal 111, 798–812, August 23, 2016
near a subcritical Hopf bifurcation evidences a stable fixed
point within a stable limit cycle. The phase portrait of a sys-
tem near a SNIC bifurcation does not illustrate such coexis-
tence. Using the analytic distributions as a proxy for the
bundle’s phase portraits, we at times found a region of
increased probability within a loop, as would be expected
for a stable fixed point within a limit cycle (Supporting Ma-
terial Section F.2). Although we require additional data to
confirm that the bundle operates in a coexistence region,
these results indicate that a bundle subjected to a small
load stiffness is more likely to operate close to a subcritical
Hopf bifurcation than to a SNIC bifurcation.

Because a single model explains the behavior of bundles
for both large and small values of load stiffness as arising in
part from operation near supercritical and subcritical Hopf
bifurcations, respectively, it is more likely that a bundle ex-
periences subcritical Hopf rather than SNIC bifurcations.
Taken together, these data indicate a clear distinction be-
tween a bundle’s operation near a supercritical Hopf bifur-
cation at high stiffness values and its operation close to a
subcritical Hopf bifurcation at low stiffnesses.
Hair-bundle function

Systems operating near different bifurcations exhibit
distinct behaviors. Both the proximity to a bifurcation and
the type of bifurcation can determine how a system responds
to different classes of stimuli. For example, a system poised
near a supercritical Hopf bifurcation responds well to peri-
odic stimuli, whereas one operating near a SNIC bifurcation
can exhibit a graded frequency response in response to
changes in its control parameter. Dynamical-systems anal-
ysis therefore reveals how a system might possess different
functions within different regions of its state diagram. By
noting where bifurcations lie in the state diagram, one can
predict how that system might function in various contexts.

The stiffness of a hair bundle’s load in vivo depends on
the sensory organ in which it resides. For example, a
mammalian auditory hair bundle tuned to 14 kHz might
experience a stiffness load by the tectorial membrane of
>200 mN,m�1 (43), whereas many vestibular hair bundles
are coupled to otolithic membranes with a much smaller
stiffness of ~1 mN,m�1 (51). A bundle’s load stiffness
might therefore determine its sensory role.

When an auditory receptor organ imposes a high stiffness
on a hair bundle, the bundle operates in the vicinity of a su-
percritical Hopf bifurcation. Under these conditions, the
bundle responds to periodic stimuli with robust amplifica-
tion, sharp frequency selectivity, and a broad dynamic range
(20,52,53). If a bundle is instead coupled to a load of low
stiffness, as might be the case in a vestibular organ, it oper-
ates in the vicinity of a subcritical Hopf bifurcation. Ther-
mal fluctuations can induce spikes that permit the bundle
to represent changes in constant force as changes in spike
frequency. This graded frequency response could be useful
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for the detection of accelerations and gravistatic forces. For
operating points in the same region of a bundle’s state dia-
gram, a bundle can also spike in response to the beginning
or end of a force step, and thus can serve as a step detector
owing to the quasi-threshold behavior that allows it to detect
abrupt changes in force (16,20).

The dual sensory roles of individual hair bundles might be
mirrored by different subpopulations of the afferent neurons
that innervate them. Within vestibular organs such as the
sacculus and utriculus, hair cells are innervated by afferents
that discharge regularly or irregularly in the absence of stim-
ulation (54). These neurons are classified according to their
distribution of interpeak time intervals: regular and irregular
afferents possess distributions with small and large coeffi-
cients of variation, respectively. Regular afferents generate
action potentials with a frequency that depends on the
magnitude of a constant injected current (55), a behavior
resembling that of a noisy hair bundle subjected to a low
stiffness. Irregular afferents, on the other hand, respond bet-
ter to periodic stimuli and display spike rates that change lit-
tle with the injected current (56), similar to the behavior of
an oscillating hair bundle operating in the high-stiffness
regime in response to changes in constant force. Whether
these neuronal subpopulations operate in the vicinity of
subcritical or supercritical Hopf bifurcations, respectively,
remains to be seen. For example, as the firing rate of a reg-
ular afferent neuron decreases, its coefficient of variation
correspondingly increases (55,57). We observe the same
negative correlation between the frequency and coefficient
of variation as a system crosses a bifurcation, indicating
that the afferent neurons might also cross a bifurcation as
their control parameter is changed. The algorithms pre-
sented here may permit identification of the bifurcations
near which the neurons operate. Furthermore, it remains un-
certain whether these two neuronal subpopulations selec-
tively innervate hair cells with bundles operating within
different functional regimes, and whether afferent neurons
in the auditory system possess traits similar to those of bun-
dles operating in the high-stiffness regime.

In summary, one sensory function—the detection of peri-
odic stimuli—arises from a hair bundle’s operation near a
supercritical Hopf bifurcation. Two other sensory func-
tions—the measurement of constant forces and the detection
of force steps—result from a bundle’s operation within the
quiescent region near a subcritical Hopf bifurcation. These
results highlight the remarkable flexibility of the hair bundle
as a signal detector and suggest how the bundle might have
evolved through changes in its operating point to serve
disparate functions in various auditory, vestibular, and
lateral-line organs.
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Preface

This document is a self-contained guide to the methods presented in the accompanying paper. We
hope that this Supporting Material will benefit those who may wish to employ similar methodology
for identification and location of bifurcations in noisy systems. The Supporting Material is organized
as follows:

• Section A: The Mechanical-Load Clamp. We describe the theoretical foundation and
implementation of a feedback-based clamp system to control the mechanical loads delivered
to individual biological oscillators.

• Section B: The Hair Bundle’s State Diagram. Having verified the mechanical-load
clamp, we used this system to systematically deliver loads to individual hair bundles. This
allowed us to generate a state diagram, a two-dimensional map of bundle behavior as a function
of these loads.

• Section C: Analytical Metrics. We describe here the tools and metrics used to identify
the types and locations of bifurcations near which a dynamical system might operate.

• Section D: Noisy Simulations of Bifurcation Normal Forms. The behavior of a system
operating near a bifurcation can be reduced to a simple mathematical representation: a normal
form. Here we describe each of the normal forms used in this study and provide details on
how stochastic simulations were performed.

• Section E: Noisy Simulations of a Model of Hair-Bundle Mechanics. We describe
here a qualitative model of hair-bundle mechanics that captures the dynamics of bundles
across organs and species. We include details on how the simulations were performed and
provide examples of the model’s output.

• Section F: Analysis of Hair Bundles in the Presence of Noise. We provide additional
details on the two classes of hair-bundle behavior and the bifurcations that correspond to
these classes.

• Section G: Noise-Induced Spiking in a Model of Hair Bundle Mechanics. We show
that a model hair bundle crossing a subcritical Hopf bifurcation displays spiking behavior
resembling that of a system operating near a SNIC bifurcation.
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Section A
The Mechanical-Load Clamp

To control the mechanical loads applied to individual hair bundles, we designed and implemented a
mechanical-load clamp [1, 2]. The load clamp permits robust control of the constant force, stiffness,
drag coefficient, and mass of a mechanical load. Rather than physically exchanging mechanical
objects coupled to individual bundles, the bundle’s load can be adjusted using only a feedback-based
circuit. Here we describe both the mathematical foundation and the experimental verification of a
mechanical-load clamp.

A.1 Mathematical Description

A hair bundle’s mechanical load controls its function [2, 3]. This load may include a constant force,
a stiffness, a drag, and a mass. The behavior of a hair bundle under different combinations of
these loads can be captured by a map: a state diagram. One may thus envision an experimental
system that—analogously to accessory structures in vivo—imposes mechanical loads to adjust the
behavior of an active hair bundle. Such a system would allow characterization of a bundle’s behavior
throughout its state diagram. We earlier developed a feedback-based mechanical-load clamp; here
we describe an extension to the system to encompass not only an external force and virtual stiffness
but also a virtual drag and virtual mass.

The equation of motion for a hair bundle coupled to a flexible stimulus fiber is

mBẌ + ξBẊ +KBX − FA = −ξXXẊ − ξ∆X∆̇ +KF (∆−X), (S1)

in which X is the position of the hair bundle and mB, ξB, and KB are respectively its mass, drag
coefficient, and stiffness. Ẋ and Ẍ correspond to respectively the bundle’s velocity and acceleration.
The term FA represents the bundle’s active force. ∆ and ∆̇ are the position and velocity of the
stimulus fiber’s base, KF is the fiber’s stiffness, ξXX is the drag coefficient owing to motion at the
fiber’s tip, and ξ∆X is that owing to motion of the fiber’s base.

We measured the bundle’s position by tracking the shadow of the fiber’s tip, magnified and
projected onto a dual-photodiode system, which generated a voltage VD = αX. To calculate the
coefficient α, we displaced the shadow of the fiber’s tip with a piezoelectric actuator in 20 µm steps.
In a feedback-based position clamp, an error signal was generated in proportion to the difference
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between the bundle’s actual positionX and a commanded positionXC : VE = VC−VD = α(XC−X).
This error signal was relayed through a differential amplifier and multiplied by a proportional gain
G to generate an output voltage VO = GVE . This output signal was then directed to another
piezoelectric actuator that controlled the motion of the stimulus fiber’s base. The relationship
between the error signal and the motion of the base of the stimulus fiber is

∆ = βVO = βGVE = βG(VC − VD) = αβG(XC −X). (S2)

The calibration term β describes the relationship between the input voltage to the piezoelectric
actuator that controls the fiber’s base and its resulting motion.

We can next suppose the bundle is loaded with a virtual mass mV , a virtual drag ξV , stiffness
KL, and external force FE . The external force can be considered a sum of a constant force FC and
a stimulus force FS , FE = FC + FS . The bundle’s equation of motion then becomes

mBẌ + ξBẊ +KBX − FA = −mV Ẍ − ξV Ẋ −KLX + FC + FS . (S3)

By combining Equations S1 and S3, we obtain a relation describing the capacity of the mechanical-
load clamp to deliver loads to individual hair bundles:

− ξXXẊ − ξ∆X∆̇ +KF (∆−X) = −mV Ẍ − ξV Ẋ −KLX + FC + FS . (S4)

We must now calculate the value of the commanded position XC required to deliver these virtual
mechanical loads. This is achieved by combining Equations S2 and S4, yielding

αβG
(
ξ∆XẊC −KFXC

)
= mV Ẍ + (ξV − ξXX +αβGξ∆X)Ẋ + [KL − (1 + αβG)KF ]X −FC −FS .

(S5)
A real-time processor discretizes equation S5 with time intervals δt of equal duration. Estimates of
the bundle’s instantaneous velocity and acceleration at index j therefore become

Ẋj =
Xj −Xj−1

δt
, (S6)

Ẍj =
Xj − 2Xj−1 +Xj−2

δt
. (S7)

Combining Equations S5-S7 yields the command signal VC,j at the jth time interval:

VC,j =
ξ∆XVC,j−1

ξ∆X −KF δt

+

(
mV Ẍj + (ξV − ξXX + αβGξ∆X)Ẋj + [KL − (1 + αβG)KF ]Xj − FC,j − FS,j

βG(ξ∆X −KF δt)

)
δt. (S8)

Given a set of inputs G, mV , ξV , KL, FC , and FS , the mechanical-load clamp calculated for each
time interval an appropriate command voltage according to Equation S8. For experiments in this
study, we controlled only the load stiffness and constant force applied to an individual hair bundle,
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setting mV , ξV , and sometimes FS equal to zero.
Our experiments employed fibers with typical stiffnesses of KF = 100− 300 µN ·m−1 and drag

coefficients of ξXX = 130 − 250 nN · s ·m−1 and ξ∆X = 80 − 150 nN · s ·m−1 [4]. The gain G was
typically 0.01-0.1.

For our experiments we computed the complete Equation S8 at each index j. This allowed us
to avoid the need for assumptions regarding the bundle’s drag coefficients that were required in our
previous study [2]. Moreover, we previously adjusted the command voltage VC and gain G to change
the mechanical load. Here we varied only the command voltage VC to control the load, resulting in
an increase in the load clamp’s stability.

A.2 Verification of the Mechanical-Load Clamp

We verified that the mechanical-load clamp successfully imposes a load stiffness and constant force
on a hair bundle. To do so, we coupled the tip of a flexible glass stimulus fiber to the tip of a
vertically mounted glass fiber that served as a model hair bundle. We then delivered force pulses of
different amplitudes in the presence of a range of virtual load stiffnesses. This yielded a relationship
that accorded with the behavior of a Hookean material (Fig. S1).

To assess the clamp’s effect on spontaneously active hair bundles, we coupled the tip of a stimulus
fiber to the kinociliary bulb of an active bundle from the bullfrog’s sacculus. In keeping with our
theoretical predictions and prior work [2, 3], a hair bundle’s spontaneous oscillations decreased in
amplitude and increased in frequency as the load stiffness rose (Fig. S2A). Another bundle initially
exhibited multimodal oscillations for small values of load stiffness. Upon an increase in the stiffness,
both the fast and slow modes of oscillation increased in frequency and decreased in amplitude until
oscillations ceased altogether at a load stiffness of 500 µN ·m−1 (Fig. S2B).

Finally, we assessed a simulated load clamp’s effect on a model hair bundle. To do so, we
performed simulations of a model of hair-bundle dynamics when coupled to a mechanical-load
clamp:

Ẋ = −KBX + a(X − f)− (x− f)3 + FO + FF , (S9)

τf ḟ = bx− f, (S10)

FF = KF [αβG(XC −X)−X] , (S11)

in which XC = VC/α and VC is described by Equation S8. Here a is a stiffness, FO is the bundle’s
intrinsic offset force, FF is a force exerted by the stimulus fiber onto the bundle, f is the bun-
dle’s force of adaptation, τf is the time constant of adaptation, and b is a stiffness. Because the
model of hair-bundle dynamics has been rescaled, we additionally rescaled the load clamp’s unitless
parameters to exert forces of an appropriate order of magnitude. For these simulations, a = 3.5,
KB = FO = 0, τf = 10, b = 0.5, α = 10, β = 0.1, G = 1, KF = 1, and drag owing to the fiber
has been neglected. We integrated Equations S9-S11 numerically in MATLAB (R2014a) with the
Euler-Murayama method using a time step of 10−2 for combinations of 41 values each of constant
force and load stiffness.

We calculated the amplitude and frequency of the model hair bundle’s spontaneous oscillations
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from the largest peak in each power spectrum. Operating points for which the bundle’s oscillations
fell below an amplitude of 10−2 and displayed only single peaks in their position histograms were
classified as non-oscillatory. This approach produced an artificial state diagram that agreed with
theoretical predictions (Fig. S3). As the load stiffness increased, the bundle’s oscillation amplitude
fell and its frequency of spontaneous oscillation rose. The oscillatory region followed closely the lines
of supercritical and subcritical Hopf bifurcations for this set of parameters [3]. Both in experiments
and in simulations, the mechanical-load clamp therefore controlled the constant force and load
stiffness applied to a hair bundle.
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Figure S1: Control of constant force and load stiffness with a mechanical-load clamp. (A)
To verify that a load clamp can adjust a bundle’s virtual stiffness and constant force, we coupled
the tip of a glass stimulus fiber to a vertically mounted fiber and delivered a series of constant
forces (FC = 0,±10,±30,±50 pN) at different values of load stiffness (−100 µN ·m−1 ≤ KL ≤
500 µN ·m−1). Fits to the expression X = FC/ (KL +KB) yielded R2 > 0.99 in all cases. (B)
Example traces for the experiment in (A) at FC = 30 pN revealed a change in the rise time of
the fiber’s step response: as the load stiffness increased, the rise time declined. For load stiffnesses
exceeding 250 µN ·m−1, the response rang with a decay time that grew with the stiffness owing
to the mass of the vertically mounted fiber. These phenomena accord with the prediction that the
fiber’s virtual stiffness increased. In all panels, mV = ξV = FC = 0 and G = 0.01.
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Figure S2: Hair-bundle motion as a function of changes in load stiffness. (A) We subjected
a spontaneously oscillating hair bundle to load stiffnesses of -500 µN ·m−1 through 900 µN ·m−1.
As the stiffness increased, the bundle’s oscillations rose in frequency and declined in amplitude. At
a load stiffness of -500 µN ·m−1, the bundle resided mostly at a positive position with a downward
excursion occurring approximately every 700 ms. (B) Imposing on another hair bundle load stiff-
nesses ranging from -100 µN ·m−1 through 700 µN ·m−1 disclosed a similar pattern in amplitude
and frequency. Load stiffnesses exceeding 500 µN ·m−1 suppressed the hair bundle’s oscillations.
The total acquisition time under each condition was 30 s at a sampling interval of 200 µs. The
stimulus fiber possessed a stiffness of 150 µN ·m−1 and a drag coefficient of 100 nN · s ·m−1. In all
panels, mV = ξV = FC = 0 and G = 0.01.
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Figure S3: Exploration of a model bundle’s state diagram with a simulated load clamp.
(A) We set both the intrinsic offset force and the stiffness of a hair bundle to zero and adjusted
the constant force and load stiffness applied with a virtual mechanical-load clamp. The resultant
oscillatory region (red) bounded by a domain of quiescence (gray) resembled that of a bundle’s
theoretical state diagram (Fig. 1A). An increase in load stiffness caused a decrease in the amplitude
of spontaneous oscillation. (B) The frequency of oscillation rose with an increase in load stiffness
(blue).



Section B
The Hair Bundle’s State Diagram

We used the mechanical-load clamp from Section A to control the loads applied to hair bundles
of the bullfrog’s sacculus. By changing the constant force and load stiffness applied to a bundle,
we generated a map of the bundle’s behavior—a state diagram—as a function of these two control
parameters. Here we describe the statistical methods by which we classified a hair bundle’s behavior
as either spontaneously oscillatory or quiescent and calculated an oscillating bundle’s amplitude and
frequency of motion. We include the results of these measures for an individual hair bundle.

B.1 Preparation of an Experimental State Diagram

A state diagram captures the behavior of a hair bundle when coupled to different mechanical loads.
We employed a mechanical-load clamp to apply loads to an individual hair bundle and recorded
the bundle’s position for 12 s at each operating point. From the results we could map the bundle’s
experimental state diagram.

For a given combination of constant force and load stiffness, a hair bundle could either oscillate
spontaneously or remain quiescent. To classify a bundle’s behavior, we assessed its position his-
togram at each operating point. If the bundle oscillated with an amplitude that exceeded the level
of noise, its distribution of positions displayed at least two peaks. If the bundle instead remained
quiescent or possessed oscillations indistinguishable from noise, its position distribution displayed
only one. We therefore quantified the modality of the bundle’s position histogram at each operating
point, in which unimodal and multimodal distributions corresponded respectively to quiescent and
oscillatory behavior.

Hartigans’ dip statistic evaluates the modality of a distribution, with a low value reflecting a
unimodal distribution [5]. To calculate the dip statistic for each combination of constant force and
load stiffness, we first removed the slow drift in a time series by subtracting from it the data smoothed
with a moving average with a window 1 s in width. We then eliminated high-frequency noise by
applying another moving average with a window of 0.02 s in width. These procedures represented
the equivalent of band-pass filtering with cutoff frequencies of 1 Hz and 50 Hz. The dip statistic was
subsequently calculated from the bundle’s position histogram binned according to the Freedman-
Diaconis rule [6]. We tested the distribution against a null uniform distribution possessing the same
mean, variance, and length as that of the experimental record. We then classified as oscillatory all
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operating points possessing a dip statistic of at least 0.01 and a p-value below 10−3.
We employed two methods to estimate the amplitude and frequency of the bundle’s spontaneous

oscillations. First, we measured these values from the peak of the time series’ Fourier transform.
The unfiltered trace of bundle motion was multiplied by a Hamming window, mean-subtracted, and
zero-padded to reduce spectral leakage and improve precision in determining the peak. Because the
time series was filtered for calculation of the dip statistic, we searched for peaks across a range of
1-50Hz. The peak’s value was then rescaled by a factor calculated by applying the same procedure
to a sinusoidal waveform of the same length as the original time series.

Because the Fourier transform of noisy hair-bundle motion sometimes possessed many peaks
due to phase slips, changes in oscillatory frequency, and other factors, we additionally employed a
peak-detection algorithm to calculate the bundle’s amplitude and frequency of oscillation [7]. By
finding the locations of all peaks and troughs in the time series of bundle motion, we calculated
the frequency as the inverse of the mean inter-peak interval and the amplitude as half of the mean
difference between each peak and trough. We tested the algorithm over a range of thresholds between
the maximum noise floor and the maximum amplitude of spontaneous oscillation. Here we selected
a threshold of 25 nm, which rested in the middle of this range and yielded values consistent with
observations of the bundle’s time-series data. Together, these methods provided two experimental
state diagrams for an individual hair bundle.

B.2 Results

We subjected a hair bundle with a diameter of 4 µm from the bullfrog’s sacculus to 81 combinations of
constant force ranging from -80 pN to +80 pN and load stiffness from 200 µN ·m−1 to 1000µN ·m−1.
The hair bundle oscillated spontaneously at 60 of these operating points, resulting in an experimental
state diagram with an ovoid oscillatory regime surrounded by a domain of quiescence (Fig. S4).
For state diagrams calculated from a peak-detection algorithm and the Fourier transform of the
time series, the bundle’s amplitude fell and its frequency of oscillation rose with an increase in load
stiffness. We found that the bundle’s frequency of motion calculated from the Fourier transform
varied over the same range of values as the frequency calculated from the peak-detection algorithm.
However, due to the presence of multiple peaks in the bundle’s amplitude spectrum, the amplitudes
of oscillation calculated from the Fourier transform were about one-quarter of those calculated by
peak detection and the frequencies of oscillation were much more variable as the control parameter
was changed than those found using the peak-detection algorithm. Owing to the variability in the
frequency of oscillation calculated using the Fourier transform, the correlation between the frequency
of oscillation and load stiffness was statistically significant for only the peak-detection algorithm
(Table S1).
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Figure S4: A hair bundle’s experimental state diagram. (A) A hair bundle oscillated spon-
taneously for combinations of constant force (FC) and load stiffness (KL) within an oscillatory
regime (colored) bounded by a region of quiescence (white). The amplitude and frequency of os-
cillation calculated with a peak-detection algorithm are displayed respectively in shades of red and
blue. (B) The same bundle’s experimental state diagram displayed similar patterns in amplitude
and frequency when they were calculated from the Fourier transform of the time series of bundle
motion.
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Peak Detection

Ampl. vs KL Freq. vs KL Ampl. vs FC Freq. vs FC Ampl. vs Freq.

Spearman’s ρ -0.67 0.48 -0.24 -0.56 0.07

p-value 7.4 x 10−8 4.1 x 10−4 8.4 x 10−2 1.7 x 10−5 6.3 x 10−1

Fourier Transform

Ampl. vs KL Freq. vs KL Ampl. vs FC Freq. vs FC Ampl. vs Freq.

Spearman’s ρ -0.74 0.13 -0.15 -0.45 -0.08

p-value 3.9 x 10−10 3.5 x 10−1 2.9 x 10−1 8.8 x 10−4 5.6 x 10−1

Table S1: Correlations within the bundle’s experimental state diagram. Spearman’s ρ
quantifies the correlations between the amplitude or frequency of oscillation and the constant force
(FC) or load stiffness (KL). The values of Spearman’s ρ and its associated p-value are shown
for results from the peak-detection algorithm and from the Fourier transform of the time series.
Columns in bold represent cases for which p < 10−3.



Section C
Analytical Metrics

We employed several metrics to characterize the behavior of a noisy dynamical system operating
near one or more bifurcations. Using these metrics, we hoped to classify the system according to
the type of bifurcation near which it operates and to estimate the value of the control parameter
at which the bifurcation resides. We estimated the location of a bifurcation from Hartigans’ dip
statistic for the distribution of positions in the time series, from the coefficient of variation for
the distribution of times between successive peaks or troughs, and from the mutual information
between the real and imaginary components of the analytic signal of a time series. In addition to
the above metrics, we classified the type of bifurcation from the joint probability distribution of the
real-valued positions of the system and its Hilbert transform and from the amplitude and frequency
of the system’s spontaneous motion.

We include here a set of tools that requires few manual choices by an experimenter. An ex-
perimenter should also be able to employ these metrics with ease, encountering little difficulty in
either interpretation or implementation. Finally, we sought methods that can be applied to a sys-
tem—such as a hair bundle—operating in an environment with substantial noise and whose time
series may be of limited length.

C.1 Hartigans’ Dip Statistic

A system that exhibits limit-cycle oscillations that can be distinguished from noise possesses a
distribution of time-series values with more than one peak. As a measure of the onset of spontaneous
oscillations, we therefore employed Hartigan’s dip statistic, whose high and low values correspond
respectively to multimodal and unimodal distributions. For an empirical probability density function
f(x) and its cumulative distribution function F (x), the dip statistic is

D(F ) = inf
HεU

[
sup
x
|F (x)−H(x)|

]
, (S12)

in which H is a member of a family of cumulative distribution functions U arising from unimodal
probability density functions, inf

HεU
is the infinum for all distributions H that are members of U ,

and sup
x

corresponds to the supremum across all values of x. The maximum value of D(F ) is 0.25,

corresponding to a maximally bimodal probability density function [5].

16
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For stochastic simulations it was not necessary to detrend or filter the data prior to calculation
of the dip statistic. For experimental time series of bundle motion, we detrended the data by
subtracting the smoothened time series calculated from a moving average with a window of a length
equal to half that of the time series (typically 8-30 s). Error bars from stochastic simulations
represent the standard errors of the means from five time series, and those from experimental data
represent standard errors calculated from 104 bootstrap samples. We calculated the dip statistic’s p-
value by comparing the dip statistic from the empirical distribution to a distribution of dip statistics
drawn from 5·103 uniformly-distributed arrays, each of the same length as the original signal. Time-
series data yielding p < 10−3 were classified as oscillatory and all others as non-oscillatory.

C.2 The Analytic Distribution

The phase portrait of a dynamical system reveals fixed points and limit cycles that may be either
stable or unstable. Under experimental conditions one may reconstruct an n-dimensional phase
space by embedding the system’s trajectory in these dimensions [8, 9]. Although this approach
works in principle, phase-space embedding requires the specification of several parameters, such as
the number of dimensions and a time delay [10, 11, 12]. Because these methods depend upon a
number of decisions made by an experimenter and are at times difficult to employ and interpret,
we instead used the Hilbert transform to reconstruct a map similar to a phase space. A real-valued
signal and its Hilbert transform permit embedding of data into a two-dimensional phase space
[13, 14, 15]. The analytic distribution is the joint probability distribution between the real and
imaginary parts of the analytic signal. This method does not require the selection of any parameter
values and can reveal both limit cycles and fixed points.

We define the Hilbert transform of a real-valued signal X(t) as

XH(t) = F−1
[
−i · sgn(ω) · X̃(ω)

]
, (S13)

in which F−1 [f(x)] is the inverse Fourier transform of the function f(x), i =
√
−1, sgn(ω) is the

sign function of the frequency ω, and X̃(ω) is the Fourier transform of X(t). We can then generate
the analytic distribution as the joint probability distribution of X(t) and XH(t). For this paper, we
calculated this distribution with a total of 28-211 equal-width bins. In the presence of limit-cycle
oscillations, the distribution yielded a circle or oval. The absence of limit-cycle oscillations instead
revealed a unimodal density. Finally, fixed points within, on, or near a limit cycle appeared as
regions of high probability within the joint distribution of X(t) and XH(t).

In Fig. S5 we display higher magnification joint probability distributions corresponding to those
illustrated in the main text.
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Figure S5: Analytic distributions from a system’s analytic signal. For the distributions
displayed in Fig. 2 (A), Fig. 3 (B), Fig. 4 (C), and Fig. 5 (D), we show the joint probability
distributions of each system’s position X and the Hilbert transform of its position XH . The data
in each column are presented in the same order as those in the associated figures.
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C.3 Peak Detection

Using a peak-detection algorithm [7], we defined for each time series the local maxima and minima
as respectively peaks and troughs in the signal. For a given threshold δ, peaks and troughs were
defined as

Pj = max
X

{
X : Xε

{
Pi : tTj ≤ tPi ≤ tTj+1

}
;Tj + δ ≤ X ∩ Tj+1 + δ ≤ X

}
, (S14)

Tj = min
X

{
X : Xε

{
Ti : tPj ≤ tTi ≤ tPj+1

}
;Pj − δ ≥ X ∩ Pj+1 − δ ≥ X

}
, (S15)

in which Pj and Tj correspond respectively to the jth peak or trough in the signal and tPj and tTj
are the times at which the jth peak or trough occurs. We specified a number of thresholds that fell
between the maximum noise floor and the maximum amplitude of oscillation from the time series
across all operating points.

C.4 Amplitude from Peak Detection

We defined the peak-to-peak magnitude as the difference between the value of each peak Pj and the
nearest trough. For each time series, we reported the mean amplitude as one-half the mean peak-
to-peak magnitude. The associated error bars represented the standard errors of the mean from
five time series for stochastic simulations and the standard error from 104 bootstrapped samples for
experimental results.

C.5 Frequency from Peak Detection

We calculated the mean frequency of oscillation 〈r〉 for each time series as the inverse of the mean
inter-event interval 〈IEI〉

〈r〉 =
1

〈IEI〉
, (S16)

in which the inter-event interval corresponds to the length of time between successive peaks, IEIk =

tPk+1
−tPk

. The mean frequency can additionally be estimated as the number of peaks n(P ) divided
by the length of the signal in time T :

〈r〉 =
n(P )

T
. (S17)

In this study, we reported the frequency calculated from Equation S16 and confirmed that these
values accorded with those from Equation S17. For stochastic simulations, error bars represented
the standard errors of the mean from five time series. For hair-bundle data, error bars represented
standard errors calculated from 104 bootstrapped samples.
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C.6 Coefficient of Variation from Peak Detection

To assess the regularity of oscillations in a time series, we calculated the coefficient of variation CV
for the distribution of inter-event intervals

CV =

√
〈∆IEI2〉
〈IEI〉

, (S18)

in which
〈
∆IEI2

〉
=
〈
IEI2

〉
− 〈IEI〉2 represents the variance of IEI and

√
〈∆IEI2〉 its standard

deviation. The coefficient of variation is larger for irregular oscillations than it is for regular ones. We
estimated the control parameter at which a bifurcation occurred as the value for which CV crossed
an empirically derived threshold. To distinguish limit-cycle oscillation from stochastic switching
between stable states, we selected a threshold of 0.5 because the coefficient of variation is never
less than 0.5 in the case of stochastic switching (Section D.6). Error bars represented the standard
errors of the mean from five time series for stochastic simulations and standard errors from 104

bootstrapped samples for experimental data. In many cases we excluded from display coefficients
of variation drawn from a pool of fewer than 0.05 counts per unit time (e.g. three counts for a
60-second time series of bundle motion or 100 counts for a numerical simulation with 104 units of
time).

C.7 Fourier Transform

We estimated the amplitude and frequency of spontaneous oscillation from a noisy system’s Fourier
transform. With a moderate level of noise (σR = σI = 0.1, see Section D), the estimates for
each time series revealed patterns consistent with those expected for a system operating near the
relevant bifurcation (Fig. S6). Near a supercritical Hopf bifurcation, the amplitude rose gradually
with an increase in the control parameter and the frequency of oscillation remained constant when
that parameter exceeded zero (Fig. S6A). Near a SNIC bifurcation, the frequency of oscillation
grew gradually from zero as the control parameter increased and the amplitude of oscillation rose
sharply until it achieved a nearly constant value (Fig. S6B). Finally, a system operating near
a subcritical Hopf bifurcation possessed an amplitude and frequency that both rose sharply near
the associated saddle-node of limit cycles bifurcation and gradually increased thereafter (Fig. S6C).
These examples show that the Fourier transform can be used to estimate the location of a bifurcation
if the noise level is low.

To demonstrate that the Fourier transform of a time series may fail to evidence the presence of a
bifurcation when the noise level is large, we calculated the amplitude and frequency of spontaneous
oscillation from stochastic simulations of a model of hair-bundle dynamics (see Section E). Here the
amplitude and frequency of oscillation failed to indicate the transection of either a subcritical or
a supercritical Hopf bifurcation (Fig. S7). In spite of the fact that this simulation involved long
time series (5 · 108 points) and several spectra we averaged to improve the signal-to-noise ratio, the
results remained poor.

We next determined that the Fourier transform of a hair bundle’s time series was less successful
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at indicating the onset of oscillations than the peak-detection algorithm. We defined the amplitude
and frequency from the peak of maximal height in the bundle’s amplitude spectrum (Fig. S8A).
In many cases, however, the spectrum displayed multiple peaks of similar height. The presence of
more than one peak made it difficult to select an appropriate maximum, which in turn yielded a
poor estimate of the frequency of spontaneous oscillation.

In response to a decrease in constant force, the peak-detection algorithm yielded a sharp rise
to a nearly constant amplitude of oscillation indicating the onset of oscillations near a bifurcation
and a gradual growth in frequency for both peak-detection thresholds (Fig. S8B). The amplitude
and frequency estimated from the Fourier transform displayed large fluctuations obscuring the onset
of oscillations (Fig. S8C). The bundle’s amplitude of spontaneous oscillation calculated from the
Fourier transform was sometimes only about half that computed from the peak-detection algorithm.

When a hair bundle displays spikes, calculation of its amplitude and frequency of spiking from
the peak-detection algorithm yields more accurate results than those from its spectra (Fig. S9). To
demonstrate this, we calculated the amplitude and frequency of spiking for a model hair bundle.
The bundle displayed spikes with an amplitude exceeding one and a frequency of approximately
0.01 (Fig. S9A). The bundle’s spectrum displayed a broad peak (Fig. S9B). Subdividing the
signal into increasing numbers of non-overlapping windows to calculate averaged spectra made
this peak clearer, but the peak remained broad. We then calculated for increasing numbers of
non-overlapping windows the amplitude and frequency of spiking using both the peak-detection
algorithm and the bundle’s spectra. As the number of windows used for averaging increased, the
amplitude of spiking calculated using three different peak-detection thresholds remained constant
around 1.7-1.75 (Fig. S9C). However, the amplitude calculated from the averaged spectra increased
from 0.04 to a maximum of 0.18 as the number of windows increased. The amplitude of spiking
calculated using the bundle’s averaged spectra therefore yielded a result that did not agree with
the expected amplitude from the raw time series (Figure S9A). The frequency of spiking calculated
using the peak-detection algorithm also remained constant around 0.01 as the number of windows
changed (Fig. S9D). This value agrees with the expected frequency of 0.01 from the raw time
series (Fig. S9A). However, the frequency of spiking calculated using the bundle’s averaged spectra
fluctuated greatly around 0.02-0.03 as the number of windows changed, well above the expected
spiking frequency. Furthermore, there was no obvious improvement in the estimate of the bundle’s
frequency of spiking using its averaged spectra as the number of windows increased. The peak-
detection algorithm therefore performed better than spectral analysis in capturing the amplitude
and frequency of spiking. Because the peak-detection algorithm produced accurate estimates of spike
amplitudes and rates and indicated the onset of oscillations, we employed this method throughout
this study.
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Figure S6: Amplitude and frequency of oscillation for noisy systems near different bifur-
cations. We calculated the amplitude (left column) and frequency (right column) of oscillation as
the peak in the Fourier transform of a time series. (A) For a system described by the normal form
of a supercritical Hopf bifurcation, the amplitude rose gradually with the control parameter and
the frequency remained constant on the oscillatory side of the bifurcation. (B) A system crossing
a SNIC bifurcation exhibited an oscillation amplitude that asymptoted to a constant value as the
control parameter increased. With a decrease in the control parameter, its frequency of oscillation
fell to an arbitrarily small value. (C) For a system described by the normal form of a subcritical
Hopf bifurcation, the amplitude and frequency both increased sharply on the non-oscillatory side of
the deterministic bifurcation and subsequently grew gradually as the control parameter continued
to rise. All simulations were integrated numerically as described in Section D with noise levels of
σR = σI = 0.1. Error bars correspond to the standard errors of the mean from five time series.
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Figure S7: Amplitude and frequency of oscillation for a model hair bundle in the presence
of noise. We calculated the amplitude (top) and frequency (bottom) of oscillation as the peak in the
Fourier transform of a time series. (A) For a stiffness of 2, a model hair bundle crossed a subcritical
Hopf bifurcation with changes in constant force. In the absence of noise, both the amplitude and
frequency of oscillation rose sharply near the bifurcation, then gradually on the oscillatory side of
the bifurcation with decreases in constant force (dashed line). In the presence of noise, neither
the amplitude nor the frequency indicated a bifurcation had been transected and the amplitude
fell to less than half the value obtained in the noise-free scenario (red). (B) At a constant force
of 0, the model bundle crossed a supercritical Hopf bifurcation with an increase in stiffness. In
the absence of noise the amplitude rose gradually from zero and the frequency achieved a non-zero
value at the bifurcation before falling with further decreases in load stiffness (dashed line). The
addition of noise effaced the transition from zero to non-zero in amplitude, which for the largest
amplitudes fell to less than one-fifth the value of the noise-free scenario (red). The pattern in
amplitude was qualitatively similar to that of the subcritical Hopf bifurcation. Noise eliminates
some differences between supercritical and subcritical Hopf bifurcations. All panels correspond to
numerical simulations of a model of hair-bundle dynamics as outlined in Section E with a noise level
of σX = σf = 0.2. Error bars correspond to the standard errors of the mean from five time series.
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Figure S8: Comparison of amplitude and frequency calculations for experimental data.
(A) Displayed on the left are the time series and position histograms for the bundle in Fig. 5. We
calculated the amplitude and frequency of oscillation from the peak (red arrowhead) in the bundle’s
spectrum (blue, right). (B) We calculated with a peak-detection algorithm the bundle’s amplitude
(red, orange) and frequency (dark and light blue) of spontaneous oscillation. We used thresholds
of 50 nm (red, dark blue) and 60 nm (orange, light blue). (C) We compared the results in panel
B with the amplitude and frequency curves calculated from the bundle’s Fourier transform. For all
panels, the load stiffness was 100 µN ·m−1 and the proportional gain was 0.1. We used a stimulus
fiber with a stiffness of 139 µN ·m−1 and a drag coefficient of 239 nN · s ·m−1 . Additional analyses
can be found in Figs. 5H-N. Error bars represent standard errors of the means from 104 bootstrap
samples. To detect a peak in the spectrum with accuracy the time series must be sufficiently long
to produce the required frequency resolution. Because of this requirement the time series was not
partitioned into windows for averaging.
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Figure S9: Comparison of amplitude and frequency calculations for simulated data. (A) A
model bundle subjected to a constant force of 2 and a stiffness of 2 displayed large-amplitude spikes.
The peak-detection algorithm successfully identified each spike for a peak-detection threshold of 3
(red circles). Over the course of this time segment, the bundle displayed approximately 0.01 spikes
per time point with an amplitude larger than one. (B) Spectra for the entire time series of 2 · 106

time points are displayed for different numbers of non-overlapping windows, in which each spectrum
is an average over the number of windows indicated (red through purple). (C) The bundle’s spike
amplitude was calculated using both a peak-detection algorithm with three thresholds and the
averaged spectra for one through fifty non-overlapping time windows. The amplitude remained
constant around 1.7-1.75 for all peak-detection thresholds (δ1 = 2, δ2 = 2.5, δ3 = 3) as the number
of non-overlapping windows increased from one to fifty. However, the amplitude calculated from the
peak in the bundle’s averaged spectrum increased from 0.04 to a maximum of 0.18 as the number of
windows increased. (D) The bundle’s frequency of spiking was calculated using the same method in
(C). The frequency of spiking remained constant around 0.01-0.011 for all peak-detection thresholds
as the number of windows increased. However, the frequency of spiking calculated using the bundle’s
averaged spectra displayed large fluctuations from 0.02-0.03 as the number of windows changed from
1-48. When the number of windows became 49 or larger, the averaged spectra possessed too few
points to accurately determine the position of the peak. All spectra were calculated using Welch’s
method. Simulations were performed in MATLAB using equations S31-S32 and a noise level of 0.4.
Error bars represent standard errors of the means for the number of averages shown on the abscissa.
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C.8 Analytic Information

A system that exhibits limit-cycle oscillations in a two-dimensional phase space displays a high
degree of correlation between the two relevant dimensions. A system dominated by noise, however,
evidences less correlation between these variables. We therefore sought to estimate the onset of
limit-cycle oscillations by measuring the analytic information, which is the mutual information
between the real and imaginary parts of a system’s analytic signal. As described in Section C.2, we
generated an analytic distribution from a system’s real-valued signal X and its Hilbert transform
XH . We then calculated the mutual information between X and XH as

I(X;XH) =

LX∑
i=1

LXH∑
j=1

p(i, j) · log2

(
p(i, j)

p(i) · q(j)

)
, (S19)

in which p(i, j) is height of the bin with index {i, j} for the histogram estimating the joint probability
distribution between X and XH and p(i) and q(j) are respectively the values of the marginal
probability distributions of X at index i and of XH at index j. LX and LXH

correspond respectively
to the number of bins used to estimate the distributions for X and XH . We calculated the analytic
information in this manner over 28-211 equal-width bins in the analytic distribution, employing the
same number of bins for all time series in a given experiment or simulation. Using this metric, we
found that the analytic information rose with the emergence of limit-cycle oscillations (Figs. 2-5).
For narrow-band Gaussian noise, the analytic information instead approached zero as the length of
the sequence of randomly-generated outcomes increased (Fig. S10).
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Figure S10: Analytic information of narrow-band Gaussian noise as a function of the
number of outcomes. We calculated the analytic information for narrow-band Gaussian noise
for increasing numbers of outcomes. As the number of outcomes increased by one millionfold, the
analytic information fell by more than one thousandfold. All calculations of analytic information
employed 28 equal-width bins. Error bars represent the standard errors of the mean for 100 repeti-
tions.



Section D
Noisy Simulations of Bifurcation Normal Forms

In order to identify and locate different bifurcations in the presence of noise, we employed the metrics
from Section C to noisy time series drawn from systems operating near different bifurcations. Each
of these noisy systems can be described by a simple mathematical object—a normal form—that
captures the generic features of a particular bifurcation. By employing the same metrics to both
our simulations and our experiments, we could then compare these results to identify and locate
the bifurcations near which hair bundles might operate.

We performed stochastic simulations of the normal forms of various bifurcations. All equations
were numerically integrated with the Euler-Murayama method in MATLAB (R2014a). For each
normal form we simulated time series across 500 values of the control parameter ranging from -5 to
5. Each time series possessed 5 · 107 points and was subsequently divided into five partitions of 107

points apiece to obtain five examples at each operating point. Each simulation incorporated white
noise with standard deviations of 0.05, 0.1, 0.2, and 0.4.

D.1 Supercritical Hopf Bifurcation

Simulations of the supercritical Hopf bifurcation employed the two coupled planar equations

dXR =
[
µXR − ωXI −XR · (X2

R +X2
I )
]
· dt+ σR · dWR, (S20)

dXI =
[
ωXR + µXI −XI · (X2

R +X2
I )
]
· dt+ σI · dWI , (S21)

in which µ is a control parameter, ω is an angular frequency, and XR and XI are respectively the
real and imaginary parts of the signal. Here WR and WI are Wiener processes, such that σR · dWR

and σI ·dWI are normally distributed white-noise increments with standard deviations of σR and σI .
For our simulations we defined ω = 2π. A supercritical Hopf bifurcation occurs at µ = 0, birthing
limit-cycle oscillations for µ > 0. We therefore define µ < 0 and µ > 0 as respectively the quiescent
and oscillatory sides of the deterministic Hopf bifurcation.

28
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D.2 Subcritical Hopf Bifurcation

Simulations of the subcritical Hopf bifurcation employed the two coupled planar equations

dXR =
[
µXR − ωXI +XR · (X2

R +X2
I )−XR · (X2

R +X2
I )2
]
· dt+ σR · dWR, (S22)

dXI =
[
ωXR + µXI +XI · (X2

R +X2
I )−XI · (X2

R +X2
I )2
]
· dt+ σI · dWI , (S23)

in which µ is a control parameter, ω is a frequency, and the noise terms are the same as those for
the supercritical Hopf bifurcation. We defined ω = 2π for all stochastic simulations. The subcritical
Hopf bifurcation occurs at µ = 0 and a saddle-node of limit cycles bifurcation resides at µ = −0.25.
We again define µ > 0 as the oscillatory side of the deterministic Hopf bifurcation. There is a
quiescent region near the subcritical Hopf bifurcation defined by µ < −0.25, as there is coexistence
of a limit cycle with a stable fixed point for −0.25 < µ < 0.

D.3 Saddle-Node on Invariant Cycle (SNIC) Bifurcation

A system operating near a SNIC bifurcation may be defined in polar coordinates [16, 17, 18]:

ṙ = r · (1− r2), (S24)

θ̇ = 1− cos θ + µ · (1 + cos θ), (S25)

in which r and θ describe motion in respectively the radial and angular directions. Strictly speaking,
Equation S25 is the normal form of the SNIC bifurcation, and Equation S24 is an auxiliary equation
that is necessary to define the amplitude dynamics. A SNIC bifurcation occurs at µ = 0, with limit-
cycle oscillations existing for all values of µ exceeding zero. We performed a change of variables to
describe this system using the two coupled planar equations

dXR =

(1−X2
R −X2

I ) ·XR −XI ·

1− XR√
X2
R +X2

I

+ µ ·

1 +
XR√

X2
R +X2

I

 ·dt+σR ·dWR,

(S26)

dXI =

(1−X2
R −X2

I ) ·XI +XR ·

1− XR√
X2
R +X2

I

+ µ ·

1 +
XR√

X2
R +X2

I

 · dt+ σI · dWI ,

(S27)
in which all noise terms are defined in the same manner as those for a Hopf bifurcation. We define
the quiescent and oscillatory sides of the deterministic bifurcation as respectively µ < 0 and µ > 0.
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D.4 Saddle-Node Bifurcation

We additionally performed stochastic simulations of a system crossing a saddle-node bifurcation.
To do so, we employed the normal form of a cusp bifurcation, given by [19]:

dX =
[
µ+ bX −X3

]
· dt+ σ · dW, (S28)

in which µ and b are control parameters. We used b = 0.2565, so that a saddle-node bifurcation
occurs at µ = ∓ 2

3
√

3
b3/2 ≈ ∓0.05. Simulations were obtained over 500 values of µ ranging from -0.5

to 0, each with 5 · 108 points and subsequently divided into five time series with 108 points apiece,
one order of magnitude longer than the simulations described in Sections D.1-D.3.

D.5 Frequency of Motion in the Presence of Noise

We performed stochastic simulations of each of the normal forms outlined in Sections D.1-D.4. To
assess the dependence of our calculations on the level of noise, we compared the relationship between
frequency and control parameter at two noise levels, for which σ = σR = σI , and two peak-detection
thresholds for each normal form (Fig. S11).

A system operating near a supercritical Hopf bifurcation should exhibit a discontinuous jump in
frequency to a non-zero value upon crossing the bifurcation (Fig. S11A). However, the addition of
noise blurred this discontinuity, resulting in a gradual rise in the frequency of oscillation to a constant
value at µ > 0. Increasing the value of the peak-detection threshold shifted the frequency curve
rightward. A system operating in the vicinity of a subcritical Hopf bifurcation instead exhibited
limit-cycle oscillations in the coexistence and quiescent regions near the deterministic bifurcation
(µ < 0) in the presence of noise (Fig. S11B). Although noise blurred the sharp rise in frequency
predicted in a deterministic scenario, the subcritical Hopf bifurcation could be distinguished from
its supercritical counterpart for sufficiently weak noise by a peak-detection algorithm. For the
subcritical Hopf bifurcation an increase in the peak-detection threshold did not shift the curve
rightward at low noise levels. However, when the noise was large (σ = 0.2) the shift reappeared
rendering the subcritical Hopf similar to a supercritical Hopf bifurcation, as the oscillation frequency
asymptotes to a constant as the control parameter is increased in both cases.

A system crossing a SNIC bifurcation displayed a frequency that rose gradually from zero in
the absence of noise (Fig. S11C). Adding noise caused the system to cross a separatrix in its phase
space, inducing all-or-none excursions with a frequency that depended on the noise level. Unlike the
frequency relationship for a supercritical Hopf bifurcation, that of a SNIC bifurcation was insensitive
to changes in the peak-detection threshold.

Finally, a system crossing a saddle-node bifurcation displayed a frequency that depended strongly
on both the noise level and the peak-detection threshold (Fig. S11D). When the noise level was
larger or the peak-detection threshold smaller, the detected frequency of motion increased for all
operating points and achieved a maximum at µ = 0. Unlike the previous bifurcations, the frequencies
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for different noise levels and peak-detection thresholds did not converge to the same values when
the control parameter became large. For a deterministic system, in which the noise level was zero,
no peaks were detected and the frequency was zero (not shown).

D.6 Irregularity of Interpeak Intervals in a Bistable System

A bistable system displays noise-induced switching between its stable states, revealing a bimodal
distribution of positions. Because the switching arises from noise-induced motion, however, we
expect the residence times to be irregular. In such a scenario, the distribution of interpeak intervals
will be broad and the coefficient of variation large. The coefficient of variation does not distinguish
between the monostable and bistable sides of a saddle-node bifurcation (Fig. S12). The dip statistic
rises, however, as a system transitions from monostability to bistability.

Stochastic switching between states A and B of a double-well potential can be idealized by
homogeneous Poisson processes between the two states. The distribution of durations for which
the particle remains in either state A or state B—the residence-time distribution—is therefore
exponential. When calculating the coefficient of variation we quantified the time between peaks in
a time series, which represents the time for a particle to start in state B (or A) and to return to
state B (or A). Let the time τ between events represent the time between starting in state B and
returning to state B. The distribution of τ follows

P (τ) = N ·
τ̂

0

λ1 exp (−λ1t)λ2 exp (−λ2(τ − t)) dt, (S29)

in which N is a normalization constant, and λ1 is the rate at which the system transitions from B

to A and λ2 is the rate of transitioning from A to B. The coefficient of variation for this distribution
is

CV =

√
λ2

1 + λ2
2

λ1 + λ2
. (S30)

In the case that λ1 = λ2, the coefficient of variation becomes CV = 1/
√

2 ≈ 0.7. When either
λ1 →∞ or λ2 →∞, the coefficient of variation instead becomes CV = 1, which is what we expect
for an exponential distribution. Consequently, a noisy, bistable system’s coefficient of variation
never falls below 0.7. To rule out bistability in experimental observations, we choose a threshold
for the coefficient of variation of 0.5. This conservative threshold allows us to account for numerical
errors that could allow the coefficient calculated for a bistable system to attain values slightly below
0.7 (Fig. S12). The variance in the recurrence time is smaller in the two-state Poisson process limit
than it is for a system with multiple stable states. The coefficient of variation for a multistable
system therefore always exceeds 1/

√
2. This threshold on the coefficient of variation therefore

distinguishes a system’s operation in a bistable or multistable regime from operation in a regime
allowing limit-cycle oscillations.



Supporting Material 32

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

Control parameter

 

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

Control parameter

0.1

0.2

0.3

 

 

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
Control parameter

σ = 0.05 

σ = 0.1 

δ
1

δ
2

δ
1

δ
2

σ = 0.1 

σ = 0.2 

δ
1

δ
2

δ
1

δ
2

σ = 0.2 

σ = 0.4

δ
1

δ
2

δ
1

δ
2

A B

C

σ = 0 σ = 0 

σ = 0 

F
re

q
u

e
n

c
y

F
re

q
u

e
n

c
y

F
re

q
u

e
n

c
y

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

F
re

q
u

e
n

c
y

090.

Control parameter
-0.05-0.09 -0.07 -0.03 -0.01

D

σ = 0.2 

σ = 0.4 

δ
1

δ
2

δ
1

δ
2

Figure S11: Dependence of the frequency of oscillation on noise level. (A) Simulations of
the normal form of a supercritical Hopf bifurcation reveal changes in the frequency of oscillation
with variation of the control parameter. Here the bifurcation resides at µ = 0 (gray line). In the
absence of noise, the spike rate discontinuously jumped to a non-zero value and remained constant
upon crossing the bifurcation (dashed line). Adding noise caused the slope of this relationship to
decrease as a function of the noise level (red vs. blue). Changing the peak-detection threshold at
a given level of noise shifted the frequency relationship without changing its slope (red vs. pink).
(B) A subcritical Hopf bifurcation resides at µ = 0 (gray line) and a saddle-node of limit cycles
at µ = -0.25 (green line). In the absence of noise with initial conditions XR = XI ≈ 0, the spike
rate rose discontinuously upon crossing the Hopf bifurcation and slowly increased until it achieved a
constant value for µ� 0 . Adding noise caused limit-cycle oscillations to appear in the coexistence
and quiescent regions near the deterministic bifurcation (µ < 0). With a low noise level, the spike
rate curve had a similar shape as in the deterministic case and fell to zero near the saddle-node
of limit cycles (red and pink). Higher noise levels skewed the curve and induced ringing in the
quiescent regime (blue and cyan). Changing the threshold yielded either little change in the spike
rate relationship (red vs. pink) or a small change in its slope and magnitude near the bifurcation
(blue vs. cyan). (C) A SNIC bifurcation occurs at µ = 0 (gray line). Oscillations emerged with an
arbitrarily low frequency at µ = 0 and grew in frequency as µ increased. Adding noise increased
the frequency near the bifurcation and induced oscillations for µ < 0. Changing the peak-detection
threshold caused no change in this relationship. (D) A saddle-node bifurcation occurs near µ =
-0.05. Increasing the noise level or decreasing the peak-detection threshold increased the fluctuation
frequency across all operating points. For panels A-C, we employed thresholds of δ1 = 1 and δ2 = 1.5.
Panel D employed thresholds of δ1 = 0.8 and δ2 = 1.2. Deterministic plots were calculated with a
threshold of 10−3. Error bars represent standard errors of the means for five time series.
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Figure S12: Coefficient of variation and dip statistic for a system possessing both monos-
table and bistable regimes. A system is monostable for control-parameter values below -0.05
and bistable for values above this threshold, at which a saddle-node bifurcation occurs. (Top) For
a noisy system crossing a saddle-node bifurcation, the coefficients of variation remained larger than
a threshold of 0.5 (green line) for peak-detection thresholds of δ1 = 0.8 (red) and δ2 = 1.2 (pink)
and a noise level of σ = 0.4. (Bottom) At the same noise level, the system displays a rise in its dip
statistic after crossing the saddle-node bifurcation. Gray dashed lines correspond to the saddle-node
bifurcation’s location. Error bars represent standard errors of the mean for five repetitions.



Section E
Noisy Simulations of a Model of Hair-Bundle Mechanics

We next wished to compare the behavior of experimentally observed hair bundles to simulated ones
whose operation near a particular bifurcation is known. This allowed us to test the metrics in
Section C on a noisy system that possesses both the generic features of particular bifurcations and
behaviors specific to hair bundles. In doing so, we could further verify our ability to identify and
locate bifurcations near which noisy bundles might operate.

We performed stochastic simulations of a model of hair-bundle dynamics by the method outlined
in Section D. Each time series contained 5 · 108 points and was divided into five partitions of 108

points apiece to obtain five examples at each of 500 operating points. Each simulation incorporated
white noise generated by the Mersenne twister pseudorandom-number generator with standard
deviations of 0.05, 0.1, 0.2, 0.4, 0.5, and 1. We repeated the simulations for a constant force of 0
with stiffnesses ranging from 0 through 4 and for load stiffnesses of 1.5, 1.75, 2, 2.5, and 3 with
constant forces ranging from 0 through 2.

E.1 Mathematical Description

The following description captures the dynamics of a mechanically loaded hair bundle [2, 3]:

dX =
[
a · (X − f)− (X − f)3 −KT ·X + FC

]
· dt+ σX · dWX , (S31)

df =
1

τf
(b ·X − f) · dt+ σf · dWf , (S32)

in which X is the bundle’s position, f is the force owing to adaptation, a is stiffness owing to
gating of the mechanotransduction channel, τf is the timescale of adaptation, and b is a stiffness
coupling bundle position to adaptation. The total stiffness of the bundle with a mechanical load is
KT = KB +KL, in which KB is the bundle’s stiffness and KL is that of its load. The bundle may
also be subjected to a constant force FC . WX and Wf are Wiener processes such that σX · dWX

and σf · dWf are normally distributed white-noise increments with standard deviations of σX and
σf . For all simulations, we used σ = σX = σf , a = 3.5, b = 0.5, and τf = 10.
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E.2 Analysis of a Model Hair Bundle in the Presence of Noise

We assessed the effects of noise on the behavior of a model hair bundle crossing either a subcritical
or a supercritical Hopf bifurcation. To achieve this we calculated the frequency of spontaneous
oscillation as a function of the control parameter for two levels of noise and two peak-detection
thresholds (Fig. S13).

When subjected to increasing values of constant force, a model hair bundle with a stiffness of
2 crossed a subcritical Hopf bifurcation (Fig. S13A, [3]). At high values of the constant force the
bundle exhibited no spontaneous activity. Decreasing the constant force below a critical value caused
a sudden onset of limit-cycle oscillations that corresponded to a discontinuous jump in frequency in
the absence of noise. The frequency then rose slowly with further decreases in the constant force.
When noise was added, the discontinuity in frequency disappeared and the bundle’s oscillations
decreased gradually to zero with increased force. Raising the level of noise caused the bundle to
oscillate spontaneously at larger values of constant force, indicating that a hair bundle may exhibit
spontaneous oscillations far from the deterministic subcritical Hopf bifurcation. Finally, changing
the value of the peak-detection threshold caused no changes in the relationship between frequency
and constant force.

A model hair bundle subjected to a constant force of 0 and increasing values of stiffness instead
crossed a supercritical Hopf bifurcation (Fig. S13B, [3]). When the stiffness was large, the bundle
exhibited no spontaneous motion in the absence of noise. Upon reduction of the stiffness below
a critical value, limit-cycle oscillations emerged at a non-zero frequency. Further decreases in the
stiffness caused a decline in the bundle’s frequency of oscillation. As for a bundle operating near a
subcritical Hopf bifurcation, adding noise to the system obscured the discontinuity in the relation-
ship between frequency and stiffness. Unlike that of a subcritical Hopf bifurcation, however, the
frequency relationship shifted rightward with an increase in the peak-detection threshold value.
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Figure S13: Effects of noise on a model hair bundle’s frequency of oscillation. (A) A model
hair bundle was poised at a stiffness of 2 and subjected to an array of 500 constant forces ranging
from 0 through 2 such that the bundle crossed a subcritical Hopf bifurcation (gray line). In the
absence of noise, the bundle exhibited spontaneous oscillations whose frequency rose discontinuously
at a critical value of the constant force (black dashed line). The slope of the frequency relationship
decreased as a function of noise level, obscuring the discontinuity (solid lines). Changes to the
peak-detection threshold did not appreciably alter the frequency relationship. A saddle-node of
limit cycles bifurcation occurred at FC = 0.664 (pink dashed line). (B) A model bundle was poised
at a constant force of 0 and subjected to 500 stiffnesses ranging from 1.5 through 3.5 such that the
bundle crossed a supercritical Hopf bifurcation (gray line). In the absence of noise, spontaneous
oscillations emerged with a non-zero frequency at a critical value of the total stiffness and the
frequency of oscillation fell with decreased stiffness (dashed line). Adding noise reduced the slope
of the rise in frequency (solid lines). Increasing the peak-detection threshold shifted the frequency
curves rightward. All error bars represent standard errors of the means from five time series. We
employed thresholds of δ1 = 1 and δ2 = 1.5. Deterministic plots were calculated with a threshold
of 10−3 in both panels.



Section F
Analysis of Hair Bundles in the Presence of Noise

We found that hair bundles exhibited at least two classes of behavior that corresponded to operation
near distinct bifurcations. Here we include extended time-series data that correspond to these two
regimes.

F.1 Operation Near a Supercritical Hopf Bifurcation

A hair bundle subjected to a large load stiffness and a constant force of 0 displayed behaviors
consistent with those of a system near a supercritical Hopf bifurcation (Fig. S14A). As the load
stiffness fell, the bundle’s amplitude of spontaneous oscillation increased. We additionally observed
a decline in the frequency of oscillation that agreed with simulations of a model of hair-bundle
dynamics (Fig. S13B). The joint probability distribution of the bundle’s position and the Hilbert
transform of its position possessed a circular region that increased in diameter with a decrease in
load stiffness.

F.2 Operation Near a SNIC or Subcritical Hopf Bifurcation

Subjecting another bundle to a small load stiffness and a range of constant forces evoked behaviors
that accorded with operation near either a SNIC or a subcritical Hopf bifurcation (Fig. S14B).
A decrease in constant force caused the bundle to exhibit asymmetric oscillations with downward
excursions that resembled spikes. The interval between successive excursions fell with a decrease
in constant force. Joint probability distributions of the bundle’s position and its Hilbert transform
disclosed a limit cycle whose diameter remained invariant to changes in constant force. A region
of high probability additionally existed on the limit cycle. Although we expected the bundle to
cross a subcritical Hopf bifurcation in the low-stiffness regime [3], the behavior instead resembled
that of a system near a SNIC bifurcation. We noted, however, that the same behaviors arose
in our model of hair-bundle mechanics when noise was added to the system (Figs. 5, S13A). We
therefore hypothesize that a hair bundle crossing a subcritical Hopf bifurcation can exhibit behaviors
resembling those of a system near a SNIC bifurcation. We further explore this phenomenon in
Figures 4 and 5.
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Figure S14: Two classes of hair-bundle behavior. (A) While subjecting a hair bundle to
a constant force of 0 and load stiffnesses ranging from 50 µN ·m−1 through 660 µN ·m−1, we
monitored its position over the course of 30 s under each condition. We display a 3.5 s window of
each time series. (left) The bundle oscillated spontaneously with high frequency and low amplitude
at a load stiffness of 660 µN ·m−1. Reducing the load stiffness caused the bundle’s oscillations to
decrease in frequency and increase in amplitude. (right) The distributions of the bundle’s position
X and its Hilbert transform XH based on 30 s of data revealed a limit cycle whose diameter rose
with a decrease in load stiffness. (B) We subjected a second hair bundle to a load stiffness of 50
µN ·m−1 and constant forces ranging from -4 pN to 40 pN and tracked its motion over a course of
30 s under each condition, and we display a 10 s window of each time series. Subjecting the bundle
to a constant force of 40 pN suppressed its spontaneous activity (left). Decreasing the force caused
downward excursions to emerge at a low frequency; further declines in the constant force increased
the frequency of these excursions. Distributions of the bundle’s position X and its Hilbert transform
XH based on 30 s of data indicated the presence of a single fixed point at a constant force of 40
pN (right). Reducing the force to 29 pN unveiled a limit cycle upon which rested a region of high
probability. Further decreases in constant force caused the bundle to reside with greater probability
at other positions along the cycle. For forces below 19 pN, a region of high probability appeared
within the cycle. All data were acquired at sampling intervals of 1 ms. The stimulus fiber possessed
a stiffness of 260 µN ·m−1 and a drag coefficient of 130 nN · s ·m−1.



Section G
Noise-Induced Spiking in a Model of Hair-Bundle Mechanics

We hypothesized that a hair bundle achieves behaviors resembling those of a system near a SNIC
bifurcation through an asymmetry in its phase space and quasi-threshold phenomena similar to
those in models of spiking neurons [20, 21, 22]. In other words, a bundle could exhibit noise-induced
excursions resembling all-or-none spikes in the quiescent regime at small stiffnesses. We assessed
this possibility by analyzing the vector fields for a model hair bundle within different regions of its
state space.

G.1 Effects of Constant Force and Stiffness

We first assessed the vector fields of our model of hair-bundle dynamics when the bundle was
subjected to a low stiffness and increasing values of constant force. When its operating point
rested on the oscillatory side of a subcritical Hopf bifurcation, the bundle exhibited limit-cycle
oscillations (Figs. S15A-B). All trajectories proceeded toward a stable limit cycle in which the
bundle displayed relaxation oscillations. The slow parts of each cycle corresponded to trajectories
that fell near the cubic Ẋ = 0 nullcline and the fast parts to rapid jumps across this nullcline’s
middle region. An unstable fixed point was situated at the intersection of the cubic Ẋ = 0 and
linear ḟ = 0 nullclines. An increase in the constant force caused the cubic nullcline to migrate in the
positive X- and f -directions until the fixed point became stable at a subcritical Hopf bifurcation and
the limit-cycle attractor subsequently disappeared at the nearby saddle-node of limit cycles (Figs.
S15B-C). This behavior closely resembled the excitation-block phenomenon in models of neuronal
dynamics [23]. After the bundle’s operating point crossed a subcritical Hopf bifurcation and the
subsequent saddle-node of limit cycles bifurcation, the bundle’s trajectories converged on a stable
fixed point (Fig. S15C). Trajectories diverged sharply from a region near and above the middle part
of the cubic nullcline. If the hair bundle’s trajectory were to cross this quasi-threshold region, the
trajectory would correspond to a large-amplitude excursion in X as it extended toward one of the
cubic nullcline’s side branches [20, 24, 25]. Further increases in constant force propelled the stable
fixed point farther from the middle branch of the cubic nullcline (Fig. S15D). By increasing the
distance between the stable fixed point and the quasi-threshold region, a larger perturbation would
be required to move the bundle’s trajectory beyond the quasi-threshold.

We next assessed the behavior of a model hair bundle subjected to a constant force of zero and
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increasing values of stiffness. As the bundle’s stiffness increased and its operating point approached
a supercritical Hopf bifurcation, the slope of the middle branch of the Ẋ = 0 nullcline fell (Figs.
S16A-B). This caused the diameter of the limit cycle to decline with an increase in stiffness. On the
quiescent side of the deterministic bifurcation, the slope of the middle branch of the Ẋ = 0 nullcline
became negative, rendering its fixed point stable (Figs. S16C-D). Because in the quiescent regime
there existed no divergent trajectories near the Ẋ = 0 nullcline, no quasi-threshold existed.



Supporting Material 41

X

f

A

B

C

f

D

X

Load stiffness (K
L
)

C
o

n
s
ta

n
t 
fo

rc
e

 (
F

C
)

A

B

C

D

Figure S15: Vector fields for a model hair bundle as a function of constant force. We
calculated the vector fields in the bundle’s position X and the adaptive force f from Equations S31
and S32. As depicted in the panel on the right, we subjected the hair bundle to a stiffness of 2
and constant forces of 0 (A), 0.6 (B), 0.7 (C), and 1.5 (D); the bundle’s operating point crossed a
subcritical Hopf bifurcation at a constant force of 0.66. A fixed point resided at the intersection of
the Ẋ = 0 (solid blue) and ḟ = 0 (dashed blue) nullclines. Gray arrows indicate the local directions
of trajectories. Although trajectories always cross the X nullcline vertically and the f nullcline
horizontally, the region over which this occurs is often too small for the trajectories’ directions to
be represented accurately by the arrows. Red curves and arrows highlight example trajectories in
the absence of noise. All panels were generated in Mathematica (10.2.0.0).
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Figure S16: Vector fields for a model hair bundle as a function of stiffness. We calculated
the vector fields in the bundle’s position X and the adaptive force f . As shown in the rightmost
panel, we subjected the hair bundle to a constant force of 0 and stiffnesses of 2.5 (A), 3 (B), 3.5
(C), and 4 (D); the bundle’s operating point crossed a supercritical Hopf bifurcation at a stiffness
of 3.4. A fixed point resided at the intersection of the Ẋ = 0 (solid blue) and ḟ = 0 (dashed blue)
nullclines. Gray arrows indicate the trajectories’ local directions. Red curves and arrows highlight
example trajectories in the absence of noise. All panels were generated in Mathematica (10.2.0.0).



Supporting Material 43

G.2 Quasi-Threshold Behavior in a Bundle Model

We hypothesized that a hair bundle’s stiffness and constant force control its capacity to exhibit large-
amplitude spikes in the presence of noise. To assess this possibility, we simulated a hair bundle’s
response to shocks—instantaneous changes inX—that mimicked noisy perturbations to the bundle’s
position starting at the system’s stable fixed point (Fig. S17). These shocks could induce excursions
that appeared to be all-or-none spikes arising from quasi-thresholds in the bundle’s phase portrait.
Unlike a true threshold with a well-defined boundary, a quasi-threshold corresponds to a region
near a stable fixed point in which nearby trajectories can diverge from one another. All shocks that
exceed the quasi-threshold region cause large excursions of indistinguishable amplitudes. For this
reason, crossing a quasi-threshold leads to a behavior similar to the that obtained by crossing a
true threshold. A quasi-threshold region may be so narrow that it becomes difficult to distinguish
it from a true threshold. A classic example of this phenomenon can be found in the Hodgkin-
Huxley model of neurons, in which large-amplitude excursions resembling all-or-none spikes arise
from quasi-threshold behavior [21, 23].

We searched for a quasi-threshold’s location by manually iterating through different shock mag-
nitudes and defined the quasi-threshold as the value of X at which trajectories diverged from one
another and beyond which a family of trajectories possessed amplitudes that were indistinguishable
from one another within a certain resolution. When the stiffness was low and the bundle operated
closer to a subcritical Hopf bifurcation, the bundle exhibited a large-amplitude spike if the shock
exceeded a quasi-threshold over a broad range of constant forces. Increasing the bundle’s stiffness
caused the spike amplitude to fall and the range of constant forces over which quasi-threshold behav-
ior could occur to decrease, but the magnitude of the shock required to exceed the quasi-threshold
shrunk owing to the fact that the bundle’s operating point resided closer to a Hopf bifurcation.
When the stiffness was high and the bundle operated closer to a supercritical Hopf bifurcation,
no quasi-threshold was found for shocks in X across all constant forces. Here the bundle rang in
response to a shock with an amplitude that grew with the shock’s magnitude.

Quasi-threshold phenomena in a bundle’s response to shocks arose from its specific dynamics
rather than the behavior of a system described by the normal form of a subcritical Hopf bifurcation.
To illustrate these dynamics, we calculated a hair bundle’s response to shocks in phase space using
the same parameters as before. Increases in a bundle’s constant force induced translation of the
Ẋ = 0 nullcline, causing the stable fixed point to move farther from the location of a quasi-threshold
in the X-direction (Fig. S18). Shocks of larger magnitude were therefore required to induce a spike
as the constant force rose. When the constant force was very large, the bundle’s fixed point fell
below the middle branch of the Ẋ = 0 nullcline. Increasing a bundle’s stiffness caused the middle
part of the Ẋ = 0 nullcline to become shallower. This had two effects. First, the amplitude of
shock-induced spikes decreased as the stiffness rose. Second, nearby trajectories no longer diverged
as sharply from a region near the middle branch of the Ẋ = 0 nullcline. As a result, the range
of constant forces over which a quasi-threshold existed fell with an increase in stiffness. No quasi-
threshold was found for shocks in X across all constant forces at stiffnesses of 2.6 and 3.0.

Noise can induce shocks in the f as well as the X direction. A quasi-threshold thus corresponds to
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an area in the bundle’s phase portrait. For illustration, we analyzed shocks in only the X direction
rather than in both the X and f directions. Noise-induced excursions resembling all-or-none spikes
therefore arise from a quasi-threshold in a hair bundle’s phase space. These spikes achieve similar
amplitudes and can be elicited over a broader range of constant forces when the bundle’s operating
point lies in the low-stiffness regime. The spike amplitude additionally increases for smaller stiffness
values. Finally, the perturbation size required for a bundle to spike falls as changes in constant force
bring the system’s operating point toward a line of subcritical Hopf bifurcations.
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Figure S17: Time series of a model bundle’s response to instantaneous changes in its
position. A model hair bundle was subjected to constant forces of FC = {1.2, 2.0, 2.6, 3.8} and
stiffnesses of KT = {1.4, 1.8, 2.2, 2.6, 3.0}. The locations of these operating points are represented
in the schematic state diagram on the right, in which dashed, thin, and thick lines correspond
respectively to lines of fold, subcritical Hopf, and supercritical Hopf bifurcations. Pink circles
correspond to those operating points at which a quasi-threshold was found. At each operating
point, the bundle’s dynamics was simulated using five different initial conditions. Each initial
condition corresponded to the fixed-point value for f but to different values for X, each separated
by ∆X = 0.4 (red to purple). Pink dashed lines and arrows correspond to the approximate location
inX of a quasi-threshold. If the bundle’s position exceeded the quasi-threshold, the bundle exhibited
a large-amplitude excursion that resembled an all-or-none spike. The distance between the bundle’s
steady-state position and the quasi-threshold at a given stiffness rose with an increase in constant
force. No quasi-threshold existed for the constant forces shown at stiffness values of 2.6 and 3.0. In
the absence of a quasi-threshold, the bundle instead exhibited ringing with an amplitude that grew
with the bundle’s initial position. All simulations were generated from Equations S31 and S32 in
Mathematica (10.2.0.0).
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Figure S18: Phase portraits of a model bundle’s response to instantaneous changes in
its position. Using the same parameters as for Fig. S17, we simulated a model hair bundle’s
trajectory in phase space. Solid and dashed gray lines correspond respectively to the Ẋ = 0 and
ḟ = 0 nullclines. Black circles at the intersection of these nullclines correspond to stable fixed
points. Pink circles approximate the location of a quasi-threshold. Those operating points for
which a quasi-threshold existed are outlined in pink. Each colored curve represents the bundle’s
trajectory starting at a fixed value of f and increasing initial positions in X (red to purple). All
trajectories evolved to eventually reside at the stable fixed point for each operating point. Increases
in constant force shifted the Ẋ = 0 nullcline in the positive X- and f -directions. This caused the
distance between the bundle’s stable fixed point and its quasi-threshold to grow. When the constant
force increased to 3.8 the fixed point fell below the middle part of the Ẋ = 0 nullcline, rendering
the quasi-threshold inaccessible to shocks in the bundle’s position X. As the stiffness increased, the
slope of the middle part of the Ẋ = 0 nullcline declined, causing the magnitude of shock-induced
spikes to decrease and the range of constant forces over which a quasi-threshold existed to fall. No
quasi-threshold in the X-direction existed for any value of constant force at stiffnesses of 2.6 and
3.0. All simulations were generated from Equations S31 and S32 in Mathematica (10.2.0.0).
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