Cell, Volume 166

Supplemental Information

The Deubiquitinase OTULIN Is

an Essential Negative Regulator

of Inflammation and Autoimmunity

Rune Busk Damgaard, Jennifer A. Walker, Paola Marco-Casanova, Neil V. Morgan, Hannah L. Titheradge, Paul R. Elliott, Duncan McHale, Eamonn R. Maher, Andrew N.J. McKenzie, and David Komander

Table S1 (related to Figure 1). Serum immunoglobulin (Ig) levels fromORAS patients.

Tabulated serum immunoglobulin (Ig) levels from ORAS patients IV:3, IV:4, and V:2. Age of the patient at the time of sampling is indicated. Concentration of Ig is mg/mL with age-corrected normal range shown in brackets. Red shading indicates measurements that exceed the normal range.

Patient	Time of sample	lg	Concentration [mg/mL] (normal range)		
IV:3					
	Age 2 months	IgG	8.48 (2.1-7.7)		
		IgA	1.01 (0.05-0.4)		
		IgM	1.07 (0.15-0.7)		
	Age 3 months	lgG	6.18 (2.4-8.8)		
			IgG1 6.18 (2.2-4.95)		
			IgG2 0.57 (0.4-1.65)		
			IgG3 0.99 (0.04-0.23)		
			IgG4 <0.11 (0.01-1.3)		
		IgA	0.83 (0.1-0.6)		
		IgM	1.38 (0.2-1.0)		
IV:4					
	Age 4 days	lgG	5.58 (5.0-17)		
		IgA	<0.07 (0.01)		
		IgM	0.11 (0.05-0.2)		
	Age 2 years and 10 months	lgG	13.5 (3.1-13.8)		
		IgA	1.95 (0.3-1.2)		
		IgM	1.05 (0.5-2.2)		
V:2					
	Pre-infliximab	lgG	11.0 (3.6-15.2)		
		IgA	2.61 (0.35-1.39)		
		IgM	3.35 (0.43-1.9)		
	Post-infliximab (4 years)	lgG	10.18 (4.9-16.1)		
		IgA	0.93 (0.4-2.0)		
		IgM	1.46 (0.5-2.0)		

Table S3 (related to Figure 1). Pathogenic genetic variants in ORAS patients.

Details of 50 genetic variants detected in the exome from an individual affected by ORAS and annotated as pathogenic in the ClinVar database (<u>http://www.ncbi.nlm.nih.gov/clinvar/</u>). In the majority of cases these variants had a maximum allele frequency (AF_MAX) >0.1 in normal control databases of different populations and none were considered as a likely cause of the disease phenotype.

Position chr:nucleotide	Change	Genotype	gene	effect	dbsnp	clinVar significance	AF_MAX
1:100672060	T>C	НОМО	DBT	missense variant	rs12021720	pathogenic	0.966783
1:161599693	T>C	HET	FCGR3B	missense variant	rs76714703	pathogenic	0.5605
1:98348885	G>A	НОМО	DPYD	missense variant	rs1801265	pathogenic	0.942308
10:54531242	G>A	HET	MBL2	missense variant	rs5030737	pathogenic	0.065963
10:70645376	A>C	HET	STOX1	missense variant	rs10509305	pathogenic	0.237569
11:113270828	G>A	HET	ANKK1	missense variant	rs1800497	pathogenic	0.388112
11:18290859	C>T	HET	SAA1	missense variant	rs1136743	pathogenic	0.608179
11:68846399	A>T	HET	TPCN2	missense variant	rs35264875	pathogenic	0.21504
11:68846399	A>T	HET	TPCN2	missense variant	rs35264875	pathogenic	0.21504
11:68855363	G>A	HET	TPCN2	missense variant	rs3829241	pathogenic	0.362797
12:121176083	G>A	HET	ACADS	missense variant & splice region variant	rs1799958	pathogenic	0.314917
12:121437382	A>G	НОМО	HNF1A	missense variant	rs1169305	pathogenic	1
12:122295335	T>C	НОМО	HPD	missense variant	rs1154510	pathogenic	0.945122
14:21790040	G>T	HET	RPGRIP1	missense variant	rs10151259	pathogenic	0.240106
15:28230318	C>T	HET	OCA2	missense variant	rs1800407	pathogenic	0.079156
16:48258198	C>T	НОМО	ABCC11	missense variant	rs17822931	pathogenic	0.90035
16:56548501	C>T	НОМО	BBS2	missense variant	rs4784677	pathogenic	1
17:12899902	C>T	HET	ELAC2	missense variant	rs5030739	pathogenic	0.046174
17:12915009	G>A	НОМО	ELAC2	missense variant	rs4792311	pathogenic	0.327177
17:42453065	A>C	HET	ITGA2B	missense variant	rs5911	pathogenic	0.432927
17:48437456	C>G	НОМО	XYLT2	missense variant	rs6504649	pathogenic	0.41029
2:219755011	T>A	НОМО	WNT10A	missense variant	rs121908120	pathogenic	0.019789
20:43280227	C>T	HET	ADA	missense variant & NMD transcript variant	rs11555565	pathogenic	0.067282
22:42522613	G>C	НОМО	CYP2D6	missense variant	rs1135840	pathogenic	0.519337
22:42523943	A>G	НОМО	CYP2D6	splice region variant & intron variant & NMD transcript variant	rs16947	pathogenic	0.847902
22:42524243	CT>C	HET	CYP2D6	Frameshift variant & feature truncation	rs35742686	pathogenic	0.021108
22:46731689	G>T	HET	TRMU	missense variant & NMD transcript variant	rs11090865	pathogenic	0.22561
3:122003757	G>T	HET	CASR	missense variant	rs1801725	pathogenic	0.138522
4:102751076	G>A	HET	BANK1	missense variant	rs10516487	pathogenic	0.28628
4:187113041	C>G	HET	CYP4V2	missense variant	rs1055138	pathogenic	0.536939
5:118811533	G>A	HET	HSD17B4	missense variant	rs25640	pathogenic	0.497238
5:149212243	G>C	HET	PPARGC1B	missense variant	rs7732671	pathogenic	0.160569
5:35861068	T>C	HET	IL7R	missense variant & NMD transcript variant	rs1494558	pathogenic	0.745935
5:35861068	T>C	HET	IL7R	missense variant	rs1494558	pathogenic	0.745935
5:35871190	G>A	HET	IL7R	missense variant & NMD transcript variant	rs1494555	pathogenic	0.902439
5:73981270	T>C	НОМО	HEXB	missense variant	rs820878	pathogenic	1

6:29080344	G>A	HET	OR2J3	missense variant	rs3749977	pathogenic	0.619919
7:138417791	A>G	HET	ATP6V0A4	missense variant	rs3807153	pathogenic	0.219512
7:142458451	A>T	HET	PRSS1	missense variant	rs111033566	pathogenic	N/A
8:21976710	T>C	HET	HR	missense variant	rs7014851	pathogenic	0.284553
9:136301982	C>G	HET	ADAMTS13	missense variant	rs2301612	pathogenic	0.437995
MT:6480	G>A	HOMO	MT-CO1	missense variant	rs199476128	pathogenic	N/A
11:126162843	C>T	HET	TIRAP	missense variant & NMD transcript variant	rs8177374	pathogenic & protective	0.167546
1:196659237	C>T	HET	CFH	missense variant	rs1061170	pathogenic & risk factor	0.931818
1:223285200	G>A	HOMO	TLR5	stop gained	rs5744168	pathogenic & risk factor	0.055409
12:121416650	A>C	HET	HNF1A	Splice region variant & intron variant & NMD transcript variant	rs1169288	pathogenic & risk factor	0.424825
16:27374180	T>C	HET	IL4R	missense variant	rs1805015	pathogenic & risk factor	0.461382
16:69745145	G>A	HET	NQO1	missense variant	rs1800566	pathogenic & risk factor	0.424825
22:18901004	C>T	HOMO	PRODH	missense variant	rs450046	pathogenic & risk factor	0.963287
7:150696111	T>G	HET	NOS3	missense variant	rs1799983	pathogenic & risk factor	0.936992

Table S4 (related to Figure 2). Serum cytokine and chemokineconcentrations in CreERT2-Otulin*/floxand CreERT2-Otulinmarrow chimeric mice.

Tabulated serum cytokine and chemokine concentrations from terminal bleeds of CreERT2-*Otulin*^{+/flox} and CreERT2-*Otulin*^{LacZ/flox} chimeras and vehicle treated controls on day 5 measured by Luminex multiplex analysis. Significance level indicates the *P*-value of the difference in means between tamoxifen-treated +/flox and *LacZ*/flox chimeras. Green indicates upregulated cytokines/chemokines. Orange indicates downregulated cytokines/chemokines. n.s., non-significant. Data were pooled from two independent experiments. Data are presented as mean \pm s.e.m., and n represents number of mice.

	Tamo	oxifen	Vehicle		
Analyte	+/flox, n=13	<i>Lac</i> Z/flox, n=14	+/flox, n=2	LacZ/flox, n=2	Significance level
G-CSF	470.30 ± 139.60	55216.0 ± 8756.0	227.50 ± 72.89	168.10 ± 62.95	****
GM-CSF	669.60 ± 49.08	909.00 ± 82.56	842.5 ± 68.65	793.80 ± 171.20	n.s.
IFN-γ	4.92 ± 0.49	7.56 ± 0.57	3.92 ± 0.72	3.92 ± 0.72	n.s.
IL-1α	477.60 ± 155.20	248.10 ± 41.80	182.80 ± 106.2	181.4 ± 119.50	n.s.
IL-1β	34.86 ± 5.30	38.91 ± 2.93	17.26 ± 5.32	36.27 ± 11.12	n.s.
IL-2	3.69 ± 0.30	3.70 ± 0.34	2.49 ± 0.30	3.18 ± 0.78	n.s.
IL-4	2.10 ± 0.50	1.67 ± 0.25	2.13 ± 0.99	1.78 ± 0.77	n.s.
IL-5	41.01 ± 5.35	13.75 ± 1.637	50.36 ± 8.01	37.20 ± 3.34	****
IL-6	7.95 ± 2.87	336.60 ± 61.09	23.89 ± 18.72	5.66 ± 2.94	****
IL-7	7.54 ± 1.10	10.79 ± 0.98	6.13 ± 0.77	9.27 ± 0.80	n.s.
IL-9	99.05 ± 52.0	66.48 ± 28.89	87.63 ± 87.63	84.08 ± 84.08	n.s.
IL-10	7.60 ± 0.84	11.79 ± 1.10	6.03 ± 0.48	4.58 ± 0.0	n.s.
IL-12p40	7.85 ± 0.97	12.66 ± 2.53	3.69 ± 0.13	6.63 ± 0.77	n.s.
IL-12p70	37.80 ± 9.51	50.28 ± 7.10	32.93 ± 14.49	47.06 ± 11.24	n.s.
IL-13	167.7 ± 14.45	257.10 ± 22.29	203.20 ± 40.99	172.6 ± 40.63	n.s.
IL-15	20.81 ± 3.67	38.78 ± 5.75	13.00 ± 13.00	15.80 ± 10.21	n.s.
IL-17	6.81 ± 1.20	7.91 ± 1.07	14.47 ± 8.18	10.08 ± 4.51	n.s.
IP-10	669.60 ± 49.08	909.00 ± 82.56	842.50 ± 68.65	793.80 ± 171.20	n.s.
KC	85.53 ± 20.18	450.50 ± 90.12	11.27 ± 0.09	13.25 ± 3.47	****
MCP-1	167.50 ± 16.12	353.20 ± 35.05	111.90 ± 11.45	154.00 ± 22.24	****
MIP-1α	111.70 ± 12.64	143.40 ± 6.94	98.10 ± 11.52	99.82 ± 18.26	n.s.
MIP-1β	49.63 ± 11.95	57.89 ± 5.47	68.29 ± 38.41	53.70 ± 23.82	n.s.
MIP-2	110.50 ± 4.35	109.60 ± 6.81	96.08 ± 18.75	110.90 ± 21.08	n.s.
RANTES	13.04 ± 1.52	14.74 ± 0.92	11.27 ± 0.09	13.25 ± 3.47	n.s.
TNF	13.70 ± 2.14	21.58 ± 1.67	9.67 ± 0.77	11.88 ± 1.44	**

Table S5 (related to Figure 3). Serum cytokine and chemokine concentrations in CD4Cre-Otulin*/flox and CD4Cre-Otulin

Tabulated serum cytokine and chemokine concentrations from terminal bleeds of CD4Cre-*Otulin*^{+/flox} and CD4Cre-*Otulin*^{del/flox} mice measured by MAGPIX multiplex analysis. Significance level indicates the *P*-value of the difference in means between +/flox and del/flox mice. Green indicates upregulated cytokines/chemokines. Orange indicates downregulated cytokines. n.s., non-significant. Data are presented as mean \pm s.e.m., and n represents number of mice.

	Concentration, pg/			
Analyte	+/flox, n=6	del/flox, n=6	Significance level	
G-CSF	472 ± 133.70	382 ± 67.35	n.s.	
GM-CSF	67.03 ± 5.22	65.06 ± 5.15	n.s.	
IFN-γ	4.89 ± 0.63	8.59 ± 1.54	n.s.	
IL-1α	225.20 ± 48.31	173.40 ± 18.44	n.s.	
IL-1β	20.70 ± 1.16	21.05 ±2.71	n.s.	
IL-2	1.63 ± 0.25	1.87 ± 0.31	n.s.	
IL-4	0.69 ± 0.16	1.12 ± 0.16	n.s.	
IL-5	13.75 ± 2.80	20.30 ± 3.53	n.s.	
IL-6	8.31 ± 5.01	21.75 ± 6.05	n.s.	
IL-7	5.12 ± 0.39	8.49 ± 2.34	n.s.	
IL-9	100.30 ± 15.56	111.10 ± 23.37	n.s.	
IL-10	11.80 ± 1.49	10.60 ±1.26	n.s.	
IL-12p40	10.55 ± 2.26	12.05 ± 2.58	n.s.	
IL-12p70	16.86 ± 3.59	18.77 ± 2.37	n.s.	
IL-13	114.10 ± 10.03	108.80 ± 10.51	n.s.	
IL-15	66.69 ± 5.59	88.19 ± 16.51	n.s.	
IL-17	4.41 ± 0.38	5.06 ± 1.08	n.s.	
IP-10	213.90 ± 20.94	278.30 ± 27.83	n.s.	
КС	123.10 ± 16.81	142.30 ± 12.45	n.s.	
MCP-1	70.11 ± 3.41	69.87 ± 6.76	n.s.	
MIP-1α	72.95 ± 6.63	66.20 ± 5.47	n.s.	
MIP-1β	71.37 ± 5.39	85.82 ± 9.37	n.s.	
MIP-2	108.60 ± 8.87	97.24 ± 6.23	n.s.	
RANTES	33.36 ± 3.67	36.37 ± 4.79	n.s.	
TNF	5.90 ± 0.66	6.58 ± 0.84	n.s.	

Table S6 (related to Figure 3). Serum cytokine and chemokineconcentrations in MB1Cre-Otulin*/flox and MB1Cre-Otulin

Tabulated serum cytokine and chemokine concentrations from terminal bleeds of MB1Cre-*Otulin*^{+/flox} and MB1Cre-*Otulin*^{LacZ/flox} mice measured by MAGPIX multiplex analysis. Significance level indicates the *P*-value of the difference in means between +/flox and del/flox mice. Green indicates upregulated cytokines/chemokines. Orange indicates downregulated cytokines. n.s., non-significant. Data are presented as mean \pm s.e.m., and n represents number of mice.

	Concentration, pg/			
Analyte	+/flox, n=7	LacZ/flox, n=7	Significance level	
G-CSF	382.10 ± 104.30	195.30 ± 52.50	n.s.	
GM-CSF	70.17 ± 6.52	44.31 ± 10.87	n.s.	
IFN-γ	5.96 ± 0.80	4.50 ± 0.87	n.s.	
IL-1α	344.40 ± 71.07	385.90 ± 94.17	n.s.	
IL-1β	26.59 ± 6.29	17.40 ± 2.09	n.s.	
IL-2	2.08 ± 0.31	1.12 ± 0.18	*	
IL-4	0.68 ± 0.10	0.42 ± 0.12	n.s.	
IL-5	20.61 ± 6.56	13.55 ± 2.50	n.s.	
IL-6	16.69 ± 13.23	4.13 ± 1.52	n.s.	
IL-7	23.12 ± 12.12	10.69 ± 3.81	n.s.	
IL-9	81.60 ± 17.04	93.25 ± 21.98	n.s.	
IL-10	30.24 ± 19.94	6.91 ± 1.31	n.s.	
IL-12p40	6.73 ± 2.52	6.50 ± 2.55	n.s.	
IL-12p70	14.51 ± 2.41	8.48 ± 3.77	n.s.	
IL-13	115.10 ± 17.32	112 ± 18.97	n.s.	
IL-15	87.39 ± 10.94	71.03 ± 9.04	n.s.	
IL-17	19.29 ± 16.61	2.28 ± 0.49	n.s.	
IP-10	207.70 ± 14.76	224.80 ± 37.63	n.s.	
КС	124.90 ± 22.66	101.90 ± 15.74	n.s.	
MCP-1	71.70 ± 7.63	58.56 ± 6.29	n.s.	
MIP-1α	81.64 ± 19.47	62.16 ± 10.30	n.s.	
MIP-1β	55.18 ± 18.55	38.87 ± 11.42	n.s.	
MIP-2	97.23 ± 3.58	83.28 ± 9.91	n.s.	
RANTES	29.32 ± 5.74	16.34 ± 3.21	n.s.	
TNF	5.49 ± 0.66	4.40 ± 0.83	n.s.	

Table S7 (related to Figure 3). Serum cytokine and chemokineconcentrations in LysMCre-Otulin*/flox and LysMCre-OtulinTabulated serum cytokine and chemokine concentrations from terminalbleeds of sex- and age-matched 4 - 9 month old LysMCre-Otulin*/flox andLysMCre-OtulinLysMCre-OtulinLacz/floxmicemiceLysMCre-OtulinConcentrationsLysMCre-Otulin

Significance level indicates the *P*-value of the difference in means between LysMCre-*Otulin*^{+/flox} and LysMCre-*Otulin*^{LacZ/flox} mice. Green indicates upregulated cytokines/chemokines. n.s., non-significant. Data were pooled from three independent experiments. Data are presented as mean \pm s.e.m., and n represents number of mice.

	Concentration, pg			
Analyte	+/flox, n=12	LacZ/flox, n=12	Significance level	
G-CSF	195.50 ± 49.79	3285.00 ± 968.50	****	
GM-CSF	17.96 ± 7.66	108.20 ± 28.01	***	
IFN-γ	0.97 ± 0.29	16.09 ± 6.75	**	
IL-1α	851.20 ± 246.60	465.60 ± 84.46	n.s.	
IL-1β	6.81 ± 1.51	35.01 ± 4.08	***	
IL-2	0.53 ± 0.17	7.06 ± 2.85	***	
IL-4	0.30 ± 0.13	3.50 ± 1.04	**	
IL-5	8.97 ± 2.10	20.43 ± 3.40	**	
IL-6	1.94 ± 1.34	79.81 ± 26.76	***	
IL-7	7.71 ± 4.00	7.29 ± 2.12	n.s.	
IL-9	30.39 ± 8.69	149.8 ± 63.42	n.s.	
IL-10	2.87 ± 1.10	20.03 ± 4.60	***	
IL-12p40	3.76 ± 1.24	4.84 ± 2.38	n.s.	
IL-12p70	0.21 ± 0.17	20.81 ± 7.28	***	
IL-13	86.84 ± 10.47	229.6 ± 63.56	*	
IL-15	14.76 ± 10.34	9.80 ± 3.96	n.s.	
IL-17	0.78 ± 0.41	6.25 ± 2.67	n.s.	
IP-10	256.30 ± 16.23	774.70 ± 49.75	****	
КС	89.69 ± 25.12	164.8 ± 35.60	n.s.	
MCP-1	55.95 ± 4.97	137.10 ± 14.20	****	
MIP-1α	16.15 ± 7.46	174.50 ± 53.86	***	
ΜΙΡ-1β	9.63 ± 5.20	31.68 ± 13.49	n.s.	
MIP-2	92.14 ± 9.69	70.53 ± 5.56	n.s.	
RANTES	7.87 ± 1.37	14.24 ± 2.03	*	
TNF	4.79 ± 0.40	20.58 ± 1.59	***	

Table S8 (related to Key Resources Table). Primer sequences forquantitative RT-PCR.

Sequence-Based Reagents - Primers		
18S rRNA RT-qPCR F primer	This paper	N/A
5'-GTAACCCGTTGAACCCCATT-3'		
18S rRNA RT-qPCR R primer	This paper	N/A
5'-CCATCCAATCGGTAGTAGCG-3'		
Mouse <i>Tnf</i> RT-qPCR F primer	This paper	N/A
5'-GGTCTGGGCCATAGAACTGA-3'		
Mouse <i>Tnf</i> RT-qPCR R primer	This paper	N/A
5'-CAGCCTCTTCTCATTCCTGC-3'		
Mouse <i>II6</i> RT-qPCR F primer	This paper	N/A
5'-TCTGAAGGACTCTGGCTTTG-3'		
Mouse <i>II6</i> RT-qPCR R primer	This paper	N/A
5'-GATGGATGCTACCAAACTGGA-3'		
Mouse Nfkbia RT-qPCR F primer	This paper	N/A
5'-CCAAGTGCAGGAACGAGTCT-3'		
Mouse Nfkbia RT-qPCR R primer	This paper	N/A
5'-AAGGACGAGGAGTACGAGCA-3'		
Mouse <i>Tnfaip</i> 3 RT-qPCR F primer	This paper	N/A
5'-TTCCTCAGGACCAGGTCAGT-3'		
Mouse <i>Tnfaip</i> 3 RT-qPCR R primer	This paper	N/A
5'-AAGCTCGTGGCTCTGAAAAC-3'		
Mouse <i>Hoip/Rnf31</i> RT-qPCR F primer	This paper	N/A
5'-TACGGTTGTATGGCTATA-3'		
Mouse Hoip/Rnf31 RT-qPCR R primer	This paper	N/A
5'-GTATTCATCTGGTTCCTC-3'		
Mouse Hoil-1/Rbck1 RT-qPCR F primer	This paper	N/A
5'-GCACTTTCATCAACAAAC-3'		
Mouse Hoil-1/Rbck1 RT-qPCR R primer	This paper	N/A
5'-AGGTATCTGGTAGGTCTC-3'		
Mouse Sharpin RT-qPCR F primer	This paper	N/A
5'-GAACTGGTATTGTCTTGTGTA-3'		
Mouse Sharpin RT-qPCR R primer	This paper	N/A
5'-AGAAGGCAAGGATGAACT-3'		