Supporting Information

for

Isocyanide or Nitrosyl Complexation to Hemes with Varying Tethered Axial Base Ligand Donors: Synthesis and Characterization

Savita K. Sharma • Hyun Kim • Patrick J. Rogler • Maxime Siegler • Kenneth D. Karlin*

[†]Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218.

'To whom correspondence should be addressed. E-mail: karlin@jhu.edu (K.D.K)

Table of Contents

Fig. S1. ESI-MS of the porphyrin ligand P^{ImTr} in CH_2Cl_2 at 293 K.

Fig. S2. ¹H-NMR spectra of covalently linked histamine containing porphyrin P^{ImTr} in CD₃CN at 293 K.

Fig. S3. UV-Vis spectra of heme iron(III) porphyrin, [(P^{ImH})Fe^{III}-Cl] complex in CH₂Cl₂ at 293 K.

Fig. S4. ESI-MS of $[(P^{ImH})Fe^{III}-CI]$ in CH₂Cl₂ at 293 K.

Fig. S5. ²H-NMR spectra of heme iron(III) complex [(P^{ImH})Fe^{III}-Cl] at 293 K and at 183 K in THF.

Fig. S6. ²H-NMR spectra of heme iron(II) complex [(P^{ImH})Fe^{II}] at 293 K and at 183 K in THF.

Fig. S7. Crystal structure of (3)-DIMPI, showing weak intramolecular CH...F interaction.

Fig. S8. Crystal structure of (4)-DIMPI, showing weak intramolecular CH...F interaction.

Fig. S9. Binding isotherm at 430 nm resulting from the reaction of $(P^{Py})Fe^{II}$ and DIMPI.

Fig. S10. Binding isotherm at 430 nm resulting from the reaction of (P^{Im})Fe^{II} and DIMPI.

Fig. S11. Binding isotherm at 430 nm resulting from the reaction of (P^{ImH})Fe^{II} and DIMPI.

Fig. S12. X-band EPR spectroscopy of ferrous heme-NO complexes recorded at 8K in frozen THF and fit of the spectrum using the program Easy Spin.

Fig. S1. ESI-MS of the porphyrin ligand P^{ImTr} , corresponding to $M+H^+$ and $M+Na^+$ (1258.35) in CH_2Cl_2 at 293 K.

Fig. S2. ¹H-NMR spectra of covalently linked histamine containing porphyrin P^{ImTr} in CD₃CN at 293 K. (*) corresponds to solvent molecules, residual NMR solvent CH₃CN and ethyl acetate (used as an eluent for column chromatography.

Fig. S3. UV-Vis spectra of heme iron(III) porphyrin, [(P^{ImH})Fe^{III}-Cl] complex in CH₂Cl₂ at 293 K.

Fig. S4. ESI-MS of [(P^{ImH})Fe^{III}-Cl] in CH₂Cl₂ at 293 K; the peak at 1047.01 corresponds to M-Cl⁻.

Fig. S5. (top) ²H-NMR spectra of heme iron(III) complex d_{δ} -[(P^{ImH})Fe^{III}-Cl] in THF ($\delta_{pyrrole} = 82.0$ ppm) at 293 K. (bottom) ²H-NMR spectra of heme iron(III) complex d_{δ} -[(P^{ImH})Fe^{III}-Cl] in THF ($\delta_{pyrrole} = 126$ ppm) at 183 K. (*) corresponds to solvent molecule THF.

Fig. S6. (top) ²H-NMR spectra of heme iron(II) complex d_{δ} -[(P^{ImH})Fe^{II}] in THF ($\delta_{\text{pyrrole}} = 57.0, 49.0, 19.0, 15.7, 8.30$ ppm) at 293 K, (ratio of pyrrole-H is 1:1:2:4). (bottom) ²H-NMR spectra of heme iron(II) complex d_{δ} -[(P^{ImH})Fe^{II}] in THF ($\delta_{\text{pyrrole}} = 9.80$ ppm) at 183 K. See main text for detail. (*) corresponds to solvent molecule THF.

Fig. S7. Crystal structure of (**3**)-DIMPI, showing weak intramolecular CH...F interactions identified by the dotted green lines. See main text for detailed discussion.

Fig. S8. Crystal structure of (4)-DIMPI, showing weak intramolecular CH...F interaction identified by the dotted green lines. See main text for detailed discussion.

UV-vis Spectral Titrations for (P)Fe^{II} + DIMPI. To a solution of (P)Fe^{II} (12 μ M, THF; P = P^{Py}, P^{Im}, P^{ImH}) was added 0.1 – 2.5 equiv of DIMPI in 0.1 equiv increments from a stock solution in THF. UV-vis spectrum was taken after each addition of DIMPI, showing isosbestic conversion of (P)Fe^{II} to (P)Fe^{II}-DIMPI. The reaction mixture was allowed to equilibrate fully until no further spectral change was observed prior to the next equivalent of DIMPI. A plot of the change in absorbance at 430 nm vs DIMPI resulted in the binding curve shown in Fig. S9 – S11 and could be well fit by a 1:1 binding model, eq 1–4. Using this equation, the best fit of the plot for P^{Py}, P^{Im} and P^{ImH} system gives K_a = 2.29 x 10⁷ M⁻¹, 1.19 x 10⁷ M⁻¹ and 1.29 x 10⁷ M⁻¹.

$$(P)Fe^{II} + DIMPI \implies (P)Fe^{II} - DIMPI \qquad (P) = P^{Py}, P^{Im}, P^{ImH} \qquad (1)$$

$$K_{a} = \frac{[(P)Fe^{II}-DIMPI]}{[(P)Fe^{II}][DIMPI]}$$
(2)

$$\frac{(A - A_0)}{\varepsilon_{\text{Fell-DIMPI}} - \varepsilon_{\text{Fell}}} = [(P)\text{Fe}^{II}\text{-DIMPI}]$$
(3)

$$[(P)Fe^{II}-DIMPI] = \frac{1}{2} \left[\left\{ [DIMPI] + [(P)Fe^{II}]_i + \left(\frac{1}{Ka}\right) \right\} - (4) \right]$$

$$\sqrt{\left(\left[\mathsf{DIMPI}\right] + \left[(\mathsf{P})\mathsf{Fe}^{\mathsf{II}}\right]_{\mathsf{i}} + \left(\frac{1}{\mathsf{Ka}}\right)\right)^2} - 4 \left[\mathsf{DIMPI}\right]\left[(\mathsf{P})\mathsf{Fe}^{\mathsf{II}}\right]_{\mathsf{i}}}$$

(

Fig. S9. Binding isotherm at 430 nm resulting from the reaction of $(P^{Py})Fe^{II}$ (12 μ M in 2.5 mL Tetrahydrofuran, THF, black) and DIMPI (red, $(P^{Py})Fe^{II}$ -DIMPI). $K_a = 2.29 \times 10^7 \text{ M}^{-1}$ See main text for detailed discussion.

Fig. S10. Binding isotherm at 430 nm resulting from the reaction of $(P^{Im})Fe^{II}$ (12 μ M in 2.5 mL Tetrahydrofuran, THF, black) and DIMPI (red, $(P^{Im})Fe^{II}$ -DIMPI). $K_a = 1.19 \times 10^7 \text{ M}^{-1}$ See main text for detailed discussion.

Fig. S11. Binding isotherm at 430 nm resulting from the reaction of $(P^{ImH})Fe^{II}$ (12 μ M in 2.5 mL Tetrahydrofuran, THF, black) and DIMPI (red, $(P^{ImH})Fe^{II}$ -DIMPI). $K_a = 1.29 \times 10^7 \text{ M}^{-1}$. See main text for detailed discussion.

Fig. S12. X-band EPR spectroscopy of ferrous heme-NO complexes recorded at 8K in frozen THF (red) and fit of

the spectrum using the program Easy Spin [1] (blue). Fit parameters: (a) (1)–NO ($g_1 = 2.0918$, $g_2 = 2.0074$, $g_3 = 2.0052$; N hyperfine: ^{NO}A₁ = 48.78, ^{NO}A₂ = 67.63, ^{NO}A₃ = 35.68) (b) (2)–NO ($g_1 = 2.0746$, $g_2 = 2.0081$, $g_3 = 1.9904$; N hyperfine: ^{NO}A₁ = 4.0, ^{NO}A₂ = 60.4, ^{NO}A₃ = 35.8; ^{Py}A₁ = 18.1, ^{Py}A₂ = 20.1, ^{Py}A₃ = 19.1)

(c) (3)–NO (g₁ = 2.0686, g₂ = 2.002, g₃ = 1.9662; N hyperfine: ^{NO}A₁ = 44.10, ^{NO}A₂ = 63.18, ^{NO}A₃ = 47.45; ^{Im}A₁ = 22.94, ^{Im}A₂ = 1.29, ^{Im}A₃ = 16.84) (d) (4)–NO (g₁ = 2.0690, g₂ = 2.0050, g₃ = 1.9643; N hyperfine: ^{NO}A₁ = 14.68, ^{NO}A₂ = 23.97, ^{NO}A₃ = 71.75; ^{ImH}A₁ = 2.0, ^{ImH}A₂ = 4.3, ^{ImH}A₃ = 10.2)

Reference

1. S. Stoll and A. Schweiger (2006) Journal of Magnetic Resonance 178:42-55; http://easyspin.org/