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S1 A detailed description of the BAMM method

BAMM [0] employs a birth-death process model in which a phylogeny, U, is assumed to diversify under a—
theoretically infinite—mixture of time-dependent birth-death processes ¢ (“regimes”). The objective is to
infer the number and location of diversification-rate shifts across branches of the tree, and the diversification-
rate parameters for every branch. The model is implemented in a Bayesian framework, such that inference
is based on the joint posterior probability distribution of ¢ given the observed phylogeny, ¥, and prior
information about the nature of diversification-rate variation, #. The model has two primary components:
1) a joint prior distribution that reflects our belief about the nature of the diversification process before we
observe the data, ¥; and 2) a likelihood function that defines the probability of observing ¥ given ¢, which
updates our prior belief to provide the posterior estimate that reflects our belief in the parameter values
after we observe the available data. The joint posterior distribution of ¢ is given by Bayes’ theorem:

P(¢ | V,0) o< P(V | ¢,0) P(¢ | 0) (S1)

We describe the details of the underlying model, the likelihood function, and joint prior distribution used
by BAMM in the following sections, but introduce the notation here (see Table I for a summary). Following
Rabosky [@], we refer to the countably infinite set of all possible diversification processes as ¢. Each process
has a location (lineage index and time), &, initial speciation rate, A, extinction rate, u, and time-dependence
parameter, z; the i process is therefore specified as ¢; = {&;, \i, i, z: }. We refer to the set of all processes
as ¢ = {&, A\, pu, z}. The initial process at the root of the tree is called ¢g. The nature of diversification-rate
variation is described by a vector of hyperparameters 6 = {fix, fi, ptz, 02, A}: oy and g, specify the mean of
the exponential priors for the speciation and extinction rates for a process, respectively; pu, and o, specify
the mean and the standard deviation of normal prior for the time-dependence parameter z, respectively; and
A is the expected number of derived processes (i.e., those beyond the root process) on the phylogeny.

For notational clarity, we introduce a set of convenience functions: A(i,t) is the time-dependent speciation
rate of the process for lineage ¢ at time ¢, and u(i,t) is the extinction rate of the process for lineage i at time
t. For example, if lineage 7 belongs to process j at time ¢, then these functions have values:

where &;[2] is the initial time of the j*® process. The time-dependence function A(i, t) corresponds to Equation
1 of Rabosky (2014).

We note that Rabosky [[] parameterizes the expected number of non-root processes operating on the tree,
A, which we refer to as the ‘A-parameterization’. Under this parameterization, the diversification-process
parameters are 0 = {fix, fiu, ftz, 02, A}. For reasons that we describe in Section BT, it is generally more
natural to parameterize the rate at which new processes arise, 17, which we refer to as the ‘n-parameterization’.
Under this parameterization, the diversification-process parameters are 0, = {fix, tby, ftz, 0,1}

S1.1 The compound-Poisson birth-death process

The rooted, ultrametric phylogeny, W, as well as the processes operating on the tree, ¢, are assumed to be
generated by a compound-Poisson birth-death stochastic-branching process (CPBDP):

(¥, ¢) ~ CPBDP(6,))

The compound-Poisson birth-death process begins at time 0 with two lineages. A diversification process is
drawn at the root of the tree, ¢r = {{r, AR, iRr, 2R}, With parameters chosen according to 6, (i.e., according
to their prior distributions, see Section EIT). Initially, each lineage belongs to the process ¢r. Each
lineage i gives rise to exactly one new lineage with rate \(i,t), goes extinct with rate u(i,t), and evolves
a new diversification process with rate . When a lineage speciates, both daughter lineages inherit the
diversification-process parameters of their ancestor. When lineage i evolves a new diversification process at
time ¢, a new diversification process, ¢; = {&;, \j, 115, 2;}, is chosen according to #,. This process continues
until the present at time 7.



Table S1: BAMM model parameters and their interpretation

Parameter Interpretation

v Phylogenetic tree with divergence times.

¥ Prior mean of the Poisson rate A.

A Prior mean of the Poisson-distributed number £ of shift events.
k Number of diversification-rate shifts.

I3 Vector of locations of the diversification-rate shifts.
& Location of the it diversification-rate shift.

A Vector of speciation rates per process.

A Speciation rate of the i*" process.

o Vector of extinction rates per process.

i Extinction rate of the i*" process.

z Vector of the speciation-rate modifiers per process.
o Speciation-rate modifier of the i*" process.

A realization of this branching process potentially contains extinct lineages; following Nee et al. [2], we
refer to (¥, ¢) outcomes of the “complete” compound-Poisson birth-death process (Figure EIA). Deleting
the extinct lineages results in the so-called “reconstructed” compound-Poisson birth-death process (Figure
EIB). Removing the extinct lineages also has the potential to remove entire diversification processes, which
has important implications described below (see Section BT T4). As the study tree ¥ generally includes only
extant species, we assume it is generated by the reconstructed compound-Poisson birth-death process.

A) the complete process B) the reconstructed process

speciation new process extinction
event event event

i i
0 T 0 T
time time

Figure S1: A realization of the complete (A) and reconstructed (B) compound-Poisson-birth-death process.

S1.1.1 Sampling new diversification processes

At certain times during the compound-Poisson-birth-death process (specifically, when the process is initiated
and each time a new diversification process arises), new diversification-process parameters must be chosen
according to ¢,,. When this occurs, the parameters for diversification process ¢ are sampled according to the
following rules:

A; ~ Exponential(1/py)
; ~ Exponential(1/p,,)

z; ~ Normal(p,,0.)

The values of §; are determined by the branch and time on which the new process arises.



S1.1.2 Extinct diversification processes

Importantly, the deletion of extinct species can result in the deletion of entire diversification processes (e.g.,
the green process in Figure §1A), which confounds the interpretation of the expected number of diversification
processes, A. Indeed, the A-parameterization does not yield a well-defined stochastic process that can be
used as a generative model (i.e., we cannot simulate data under this parameterization of the process) because
there is no obvious way to transform 6, into 8,,. It is tempting to expect that A = nL, where L is the length
(i.e., the sum of all branch lengths) of the reconstructed tree, under the assumption that new diversification
processes arise as a (homogeneous) Poisson process over the reconstructed tree. However, this is incorrect.
For example, consider a process that begins at t = 0 with Ag = 1, ug = 0 (a pure-birth, or Yule, process).
Further, assume that each time a new diversification process ¢; arises, A; = 0 and p; — oo (an extreme
pure-death process). In this case, each time a new diversification process arises, the lineage bearing it will
immediately go extinct (since p; — 00). As a result, the reconstructed process in this case can contain no
diversification processes besides ¢g; here it is obvious that A = 0 # nL. Unfortunately, the relationship
between ¢, and the expected number of diversification processes is complex and unknown, and there is no
obvious way to specify 6, such that the expected number of processes is A.

While seemingly innocuous, the inability to simulate data under the parameterization used by BAMM
precludes the application of useful software diagnostics that depend on simulating data from the prior [e.g.,
3], and obscures characterization of the frequentist properties of the joint posterior distribution [e.g., H].
More critically, the deletion of diversification processes leads to a serious error in computing the likelihood,
which we discuss in more detail in Section ET23.

S1.2 Likelihood function

We introduce the likelihood function by analogy to the BiSSE (Binary State Speciation and Extinction)
model developed in Maddison et al. [5], from which BAMM borrows heavily. We note that the diversification
processes of BAMM are equivalent to the state-specific branching processes of the BiSSE model, and that the
birth-death process model used in BAMM is merely a more elaborate version of the BiSSE branching process.
Specifically, the BiSSE model assumes a finite number of processes (two; one for each of the binary states),
where the process to which each extant species belongs is known (indeed, it is an observed discrete trait),
whereas the BAMM model assumes a countably infinite number of processes, where the membership of species
to processes is unknown.

The general approach adopted by both BiSSE and BAMM models is to derive a set of ordinary differential
equations (ODEs) that describe how the probability of observing a descendant clade changes along a branch
in the observed phylogeny. Each equation in this set describes how the probability of observing the clade
changes through time if it is in a particular process over that time period; collectively, these equations are
called d’%}f(t), where the subscript N refers to the descendant clade and the subscript i refers to i*? process.

Computing the likelihood proceeds by establishing an initial value problem: in principle, if we know the
probabilities of observing a lineage at some specific time (e.g., the present), and know how those probabilities
change over time (described by the ODEs), then we can compute the probabilities of observing those lineages
at some earlier time (e.g., the root). Assuming that there are exactly k possible processes, we initialize k
probabilities at each tip in the phylogeny; we then compute how each of those k probabilities changes down
each branch in the tree using the above set of & ODEs. At each node in the tree, we take the product
of each of the k probabilities for the descendants of that node (multiplied by the instantaneous speciation
rate for each of the k processes to account for the observed speciation event at the node) as the initial
values for the ancestral branch subtending that node. Proceeding in this way down the tree results in a
set of k probabilities at the root; these k probabilities represent the probability of observing the phylogeny
conditional on the root being in each of the processes (i.e., the i'" conditional probability is the probability
of observing the tree given that the root is in process ¢). The overall likelihood of the tree is a weighted
average of the k probabilities at the root, where the weighting scheme represents the assumed probability
that the root was in each of the k processes.

As with all birth-death process models, special care must be taken to account for the possibility of
extinction. Specifically, the above ODEs must accommodate lineages that may arise along each branch in
the tree that subsequently go extinct before the present (and so are unobserved). This requires a second



set of k ODEs, dEi(t), which define how the probability of extinction in process ¢ changes over time. These

dt
ODEs must be solved to compute the differential equations dDg’ij(t)

both sets of equations in the following sections.
This framework therefore requires four distinct pieces of information to compute the likelihood of the
data:

, as we will demonstrate when we derive

1. A set of ordinary differential equations describing how the probability of the data (observed lineages)
dDn,i(t)

changes through time, —3;

2. A set of ordinary differential equations describing how the extinction probability of unobserved (extinct
dE;(t)

or unsampled) lineages changes through time, =—~.

3. An appropriate set of initial conditions.
4. An appropriate weighting scheme for the root probabilities.

In the following sections we detail how each of these components is determined for increasingly complex
birth-death process models.

S1.2.1 Finite state space of diversification processes

Consider a time-independent birth-death process with two possible processes, ¢g = {Ag, o} and ¢ =
{A1,11}. Further, assume that a lineage changes its process at rate ¢ (for simplicity, we will assume an
equal rate of change between the two process). We define Dy () as the probability of observing lineage N
descending from a particular branch at time ¢, given that the process at that point is ¢ (with rate parameters
Ao, and po). To compute the probability of observing the lineage at some earlier point, Dy o(t + At), we
enumerate all possible events that could occur within the interval At. Assuming that At is small—so that the
probability of any two events occurring in the interval is negligible—there are four possible scenarios within
the interval: (1) nothing happens in the interval; (2) the process changes 0 — 1; (3) a speciation event
occurs and the left descendant subsequently goes extinct before the present, or; (4) a speciation event occurs
and the right descendant subsequently goes extinct before the present. We can thus compute Dy o(t + At)
as (see Maddison et al. [5] and FitzJohn et al. [G] for a more complete elucidation):

Dot + At) = (1 — poAt)x in all cases, no extinction of the observed lineage (S2)
[(1 = qAt)(1 — NAt)Dno(t) Case (1) nothing happens
+ qAt(1 — NAt)Dpy 1 (1) Case (2) process change but no speciation

+ (1 — gAt)A\oAtEy(t)Dn,o(t) Case (3) no process change, speciation, extinction
+ (1 — gAt)M\gAtEy(t)Dn,o(t)] Case (4) no process change, speciation, extinction

A matching equation can be written down for Dy 1 (t + At).

Define Ey(t) as the probability that a lineage in ¢ at time ¢ goes extinct before the present. To determine
the extinction probability at an earlier point, Ey(t + At), we can again enumerate all the possible events in
the interval At¢: (1) the lineage goes extinct within the interval; (2) the lineage neither goes extinct nor
speciates, resulting in a single lineage that must eventually go extinct before the present; (3) the lineage
neither goes extinct nor speciates, but there is a process change, resulting in a single lineage that must go
extinct before the present, or; (4) the lineage speciates in the interval, resulting in two lineages that must
eventually go extinct before the present.

Eo(t + At) = poAt+ Case (1) extinction in the interval — (S3)
(1 — poAt)x no extinction in the interval and ...
[(1 —qAt)(1 — NAt)Eg(t) Case (2) nothing happens, but subsequent extinction
+ qAt(1 — XAt E4 () Case (3) process change and subsequent extinction
+ (1 — gAt) N ALE(t)?] Case (4) speciation and subsequent extinctions



Again, a matching equation Fi(t + At) can be written down.
We can expand the BiSSE model to accommodate an arbitrary number of processes, k, by writing a set

of k difference equations Dy o(t + At), Dy 1(t + At), ..., Dy i(t + At):

DN’i(t + At) = (1 — ,U,iAt)X (84)
k
(1= qAt)(1 — \At) Dy (1)
J#i
k
+ (1= XA > gAtDy (1)
J#i
k
+2(1 = gA)NALE () Dy i(1)]
JFi

along with Ey(t + At), By (t + At), ..., Ex(t + At):

Ei(t + At) = p; At+ (S5)
(1 — ,U/ZAt) X
E
(1= qA) (1= NADE(1)
i
k
+ (1= XNAY) Y gALE;(t)
i
k
+ (1= gAONALE(1)’]
J#i
It is possible to derive differential equations from the difference equations 84 and B3 (see Maddison et al.
[6] for the two-process case and FitzJohn [i@] for the k-process case). For the general k-process case, the
differential equations are:

dDy.i(t) b b
7(1;5 =— | i+ + E q | Dn,i(t) + 2X\E;(t) Dy i(t) + g gDy ;(1)
e £
dE;(t) k ) a
FTana i+ i + E q | Ei(t) + NEi(t)” + pi + g qE;(t)
e i#£j

Initial probabilities are assigned according to the observed discrete states: if species ¢ has state j, then
D, ;(0) =1 for the observed state, and D; ;(0) = 0 for all other (# j) states. If the state is not observable,
then D; ;(0) =1 for all j, since all states have probability 1 of producing the observation; this is analogous
to the treatment of missing or ambiguous states in conventional phylogenetic likelihood calculation, c.f., [&].
Initial extinction probabilities are set to 0 (since there is no time for extinction to occur at the present).
Root probabilities are either weighted using equal probabilities (uniformly), by a vector of pre-defined root
stationary probabilities (informative), or by the stationary distribution of the model, to compute the overall
likelihood of the data.



S1.2.2 Infinite state space of diversification processes

Rabosky [] extends the above logic to the case where the number of processes is infinite, and the membership
of each extant species to processes is unknown. In this case, k = oo, and the rate of change away from the
current process (and towards any other process) is 7. In principle, we might extend equations §4 and B3 to
integrate over all possible processes by setting k = oo and proceed in the usual manner:

Dni(t + At) = (1 — p; At) x (S6)
(1 —nAt) (1 — NAt) Dy (1)

+ (1 = NAD i’l’}AtDN’j(t)
J#i
(1 — MzAt) X
[(1— A1 — \ALE; (L)

Ji
+ (1 — AN ALE; (1)?]

However, computing the infinite sums in equations 8@ and K4 is intractable.

S1.2.3 Infinite state space of diversification processes, with data-augmented histories

Rabosky [l] circumvents the issues associated with an infinite number of possible processes by using data
augmentation. In the data-augmentation scheme, likelihood computations are performed assuming the his-
tory of diversification processes generating the phylogeny are known. Such a history has a finite number
(k + 1) of processes, ¢ = {oR, b1,...,0r}, with ¢; = {&, \i, i, 2;}. Histories, as well as their associated
locations and diversification parameters, are then sampled with reversible-jump Markov chain Monte Carlo
(described in Rabosky [0]), which effectively (numerically) integrates over all possible histories, visiting each
history in proportion to its posterior probability under the model. The data-augmentation approach has a
number of advantages:

1. A single probability, Dy ;(0) = 1, needs to be initiated at each tip N in the tree (i.e., conditional on
the history, the process that each tip belongs to is known).

2. A single probability, Dy ;(t), needs to be integrated down each branch of the tree.

3. A single probability, Dy g(root), exists at the root of the tree, so D gr(root) is the likelihood of the
entire tree, conditional on the history.

4. The MCMC approximates posterior estimates of the number of diversification processes, as well as
their locations and branch-specific diversification-rate parameters.

Since the distribution of processes over the tree is assumed known, we can condition the terms in equation
on zero additional processes by setting nAt = 0:

[(1 = XAE)D;(t) + 2M\AtE; () D;i (1))
The resulting differential equation is:

dDyi(t)

a = —(>\¢ + ,U@)DN’Z‘(t) + 2)\iEi(t)DN,i(t), (89)

which is equation (10) from Rabosky [i].



Unfortunately, the history of diversification processes on the tree does nothing to simplify equation §a:
the data-augmented processes ¢ do not describe how diversification processes have varied on extinct side-
branches of the tree (i.e., realizations of the process obviously cannot be mapped onto unobserved lineages).
It is not possible to perform the infinite sum in equation B4 analytically, although the extinction probability
can be approximated by computationally expensive Monte Carlo methods (we describe this approach in
Section BZ). Rather than use a correct extinction probability that corresponds to the model, Rabosky I
assumes that extinct lineages evolve at constant speciation- and extinction-rates (i.e., they cannot generate
new diversification processes). The resulting (incorrect) quantity dE;(t)/dt used by BAMM is:

dE(t)

3 = M (e A)E() + ME (1), (S10)

which implies that extinct lineages evolve under the diversification process they had at time ¢ (i.e., thereby
disallowing subsequent diversification-rate shifts along these extinct lineages).

BAMM uses numerical integration to compute equations and BI0 down each branch in the observed
phylogeny; at the root of the tree, the probability of the data, Dy r(root) is taken as the likelihood of the
data:

P(¥ | ¢,0) = Dy g(root), (S11)

which is the likelihood function used by equation K.

S1.3 Joint prior distribution

Computing the conditional distribution of diversification processes given the phylogeny ¥ requires both
a likelihood function (described above), as well as a prior distribution for each parameter in the model.
Accordingly, we need to specify a prior distribution for the set of diversification processes, ¢ (technically,
this is a joint prior probability distribution, since each element of ¢ is multivariate).

Rabosky [0] assumes the joint prior distribution on diversification processes is a compound Poisson
process (CPP) prior model. The CPP model specifies the prior distribution on the number of diversification
processes, k, the locations of the diversification-rate shifts, €, and the parameters of the birth-death process
model, A\, p, z.

Under the CPP prior model, the diversification process is inherited identically over ancestor-descendant
branches between events. These events—diversification-rate shifts—arise along the tree according to a Pois-
son process with rate n (i.e., the waiting times between diversification-rate shifts are exponentially distributed
with rate n). Under a Poisson process with rate 7 evolving over a tree of length L, the number of processes
(not counting the root process), k, over the entire tree follows a Poisson distribution with rate A = nL.
Additionally, Rabosky [l] assumes that rate shifts are uniformly distributed across the entire tree:

k ~ Poisson(A)
& ~ Uniform(0, L)

When a diversification-rate shift occurs, a new birth-death process is specified by drawing diversification-
rate parameters from their corresponding prior distributions. By default, those prior distributions are:

A; ~ Exponential(1/y)
i ~ Exponential(1/p,,)
z; ~ Normal(p,,0,),
with p, = 0 by default.
To relax the assumption that diversification-rate shifts occur at a fixed rate, A, Rabosky [0] constructs

a hierarchical model in which the parameter A is itself a random variable. Specifically, A is drawn from an
exponential distribution with an expected value of ~:

A ~ Exponential(1/7)



S1.3.1 Analytical solution for the prior number of diversification-rate shifts

Under the constructed hierarchical model, the number of events, k, and the expected number of events, A,
are both random variables. Therefore, the prior probability of k events (which BAMM uses to compute Bayes
factors for hypothesis testing) depends on v, P(k | 7). The prior probability distribution for number of
events k is approximated by simulation in BAMM (these numerical methods are described in Section EI=33).
Here, we present an analytical solution for prior number of diversification-rate shifts.

Conditional on the expected number of diversification processes, A, the number of diversification pro-
cesses, k, follows a Poisson distribution with rate A:

k| A ~ Poisson(A)

The number of expected events itself follows an exponential distribution with expectation . For simplicity,
we replace the expectation of the exponential distribution with the rate parameter, 8 (8 = 1/7):

A ~ Exponential(8 = 1/7)

Additionally, we can replace the exponential distribution with a gamma distribution with shape parameter
a=1

A ~ Gamma(a =1, 3)
The joint prior distribution of k£ and A is thus:
P(k,A | B) =P(k|A)P(A]B)

_ Akef/\ 604 AaflefﬁA
k' T(a)

The distribution P(k | 3) is obtained by integrating over A:

o Ak —A a
Pl 18) = [ R e

)

This is the negative binomial, or gamma-Poisson, distribution [9]. When « = 1 (the exponential distribution

used in BAMM), this simplifies to:
k
1 B
Pk =— —
(k18 <1+5) (1+ﬂ)

() (k)

1
k ~ Geometric () .
1+~

which implies

The mean of this geometric distribution is

E(k): p: 11-‘1—’7:7

p T+

Interestingly, while E(k) = ~, the mode(k) = 0 for all 4: the prior mode on the number of events is 0
regardless of the value of 4. For this reason, the MAP (= mode of the posterior probability distribution) is
an unfortunate choice for assessing the sensitivity of inferences to the assumed ~ prior when the data were
generated by a constant-rate birth-death process (c.f., Figures 5, EI8).



S1.3.2 Numerical approximation of the prior number of diversification-rate shifts

The ability to derive an analytical solution for the prior distribution on the number of diversification-rate
shifts (see Section BT=3Tl) provides two main benefits: (1) an analytical solution provides an efficient means
for calculating the exact prior probabilities, and so obviates the need to approximate these probabilities using
numerical methods (MCMC simulation), and; (2) an analytical solution allows us to validate the numerical
methods (MCMC algorithms) implemented in BAMM that are used to estimate the target (i.e., the joint prior
and posterior probability) distributions. This latter point is particularly important; the analytical prior
provides a means to establish that the MCMC algorithms implemented in BAMM are correct, and therefore
allows us to rule out simple implementation errors (i.e., programming bugs) as the cause of the pathologies
that we have identified with the BAMM method.

BAMM provides two methods for approximating the marginal prior distribution of the number of diversifi-
cation processes, k. The first approach, which is invoked using the sampleFromPriorOnly command, relies
on the same MCMC algorithm used by BAMM to approximate the joint posterior distribution of the param-
eters, but simply forces the log-likelihood function to always return O so that it simulates the prior. The
second approach, which is invoked using the fastSimulatePrior command, relies on an entirely separate,
stand-alone MCMC algorithm that simply samples the number of diversification processes under the prior.

The marginal prior distribution of the number of diversification processes estimated using these two
algorithms conforms precisely to the analytical prior (Figure B2). The correspondence of the simulated and
analytical priors confirms that the MCMC algorithms implemented in the (modified version of) BAMM can
correctly target the intended joint (prior and posterior) probability distribution. However, we show below
that the intended joint prior probability distribution is statistically incoherent (Section ET-33).

1.0 sampleFromPriorOnly
fastSimulatePrior
X analytical prior
0.8
206
=
[
e}
[S
2 0.4
0.2 N
0.0 t " — Y- - e 3

0 2 4 6 8 10

number of events

Figure S2: Simulated (numerically estimated) and analytical prior distributions of k¥ under the BAMM model.
BAMM provides several approaches for estimating the prior distribution on & (i.e., the prior number of diversification-rate shifts).
The first (and conventional) approach for estimating the prior distribution uses the same MCMC algorithm used to estimate
the posterior distribution. This approach is invoked using the sampleFromPriorOnly command (green symbols). The second
approach for estimating the prior distribution on k relies on a stand-alone MCMC algorithm (fastSimulatePrior; orange
symbols); prior probabilities used to compute branch-specific Bayes factors (to identify significant diversification-rate shifts) are
estimated using the fastSimulatePrior algorithm. These two numerical estimates of the prior distribution on the number of
diversification-rate shifts are compared to the analytical prior (blue symbols; described in Section EI=3l). The correspondence
between the estimated and analytical priors confirms that the MCMC algorithm implemented in (the corrected version of)
BAMM is able to successfully target the intended joint prior probability distribution. Accordingly, the pathologies that we have
identified in this study cannot be attributed to prosaic implementation errors.
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S1.3.3 The distribution of the location of diversification-rate shifts is not uniform

Under a birth-death process, events on different lineages occur independently. Thus, to show that the
distribution of diversification-rate shifts is not uniform when conditioning on the tree length (the sum of all
branch lengths for a given tree), we need only show that the distribution for a single branch is not uniform
when conditioning on the branch length. Moreover, the Yule process [I1] is a special case of the birth-death
process (with u = 0); accordingly, demonstrating that the distribution is not uniform for the Yule process
demonstrates that it is not uniform in general for the birth-death process. We define 7 as the rate at which
speciation-rate shifts occur in a Yule process, where y is the number of speciation-rate shifts after time t¢.
The initial speciation rate of the Yule process is A\g and the speciation rate after speciation-rate shift 7 is
Ai. The joint probability that exactly one speciation-rate shift (y = 1) from Ay to A; occurs at time x on a
branch of length ¢ and no speciation events occur on (0,¢) is:

f(ﬂﬁy = 1) = 776_(/\0+77)Ie_(>\1+77)(t—w)7

where we assume that 77, Ay and A\; are known parameters. The marginal probability density of y = 1 is

t —(/\1+7])t(1 _ e—()\o—/\l)t)
)= ~Qotmz o= atn)(t—2) . — 1
fly=1) /0 ne e T N ,

and the conditional density of z is

flaly =1y = Ly =D _ 00 = 0)

fly=1) ~ 1o Oon

(512)

It is easily shown that this is a legitimate density function for z on (0,t) since

te—(Ro=A)z () _
/ ¢ (Ao Al)dx =1,
0 1 _ e—()\o—)\l)t

and the limit A\g — A\ exists such that

. 1
Jm fely=1) =
Thus, the density of speciation-rate shifts on the branch is uniform only in the case that A\g = A1, which is
the trivial case that the prior on rates is degenerate so that no actual speciation-rate shifts occur at each
event. Figure B3 illustrates the probability density of x on a branch of length 1 with Ay < A1, in which case
the probability density of a rate shift increases with time. Conversely, if Ag > A1, it decreases with time.
This shows that the uniform prior on diversification-rate shifts assumed by Rabosky [0] is not a reasonable
model if diversification-rate shifts occur according to a stochastic process along lineages of the tree.
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Figure S3: The probability density of a single event through time on a branch. We plot the conditional density
function of an event as a function of time (described by equation EI2) for Ag = 1 and various values of Ay = {0,0.2,0.4,...,2}.
The probability density for the event time is only uniform in the special case where A\g = A1; otherwise, the probability density
of an event increases in time when A\; > \g, whereas the probablity density of an event decreases in time when A1 < Ag.
When Ao and A; are assumed to come from an exponential distribution (with rate 1), and the probability density function is
(numerically) integrated over Ao and A1, the resulting density function remains non-uniform (dashed grey line).
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S1.3.4 The distribution of the number of diversification-rate shifts is not Poisson

Consider a continuous-time pure-birth process that alternates between two instantaneous speciation rates,
Ao and A;. Rate changes occur along a branch from either A; to Ag or vice-versa with instantaneous rate 7.
The process terminates for a particular branch when a speciation event occurs. The process can be described
using the instantaneous rate matrix

—(n+ Xo) n Ao
n —m+XM) A,
0 0 0

where the indices of columns/rows correspond to the following states: (1) process has rate Ag; (2) process
has rate A1, and; (3) process has terminated due to a speciation event. The distribution of the number of
events (speciation-rate changes) on a branch of length ¢ under this process can be derived by integrating over
the positions of the events. If the process is initiated with rate A\g the probabilities of 0, 1 or 2 rate-change
events and no speciation event are

e~ (Qotn)t

po =
t
P = /ne—(Ao+n)ye—(>\1—Hv)(t—y)dy
0
— e (amt (1_ —(Ao—M)t)L
e e =M
t ry1
- / / 2e= (o o= (a-+m)a o= (otn) (=v1=92) gy .
0 JO

2
= o Qothmt (Aot g ehatpy o aor 1)) (L) .
e (eMf + M\ 0 ) Sy

The probabilities (conditioned on no speciation event) converge to those of the Poisson distribution for
A1 — Ao as expected

1
I = e
<)\11_)H§\0 pO) 67A0 € 3
lim pq L = e yt,
A1 — Ao e~ Ao
1 e " (nt)”
li = 2\
</\11_1)r£\0 pz) e~o 2

If a distribution is Poisson with expectation A¢, then in general
gi—1 i)’

B Ay
qo

and in particular

However, for the process outlined above

po A1 — Ao

P _ (1= ey

In general, for any choice of function A = f(Ag, A1) that is independent of ¢, we have p1/po # ¢1/qo except in
the trivial case where A\ = \g, demonstrating that the distribution of the number of events on a branch of
length ¢ under the two-rate process is not Poisson (Figure B4). Note that it is not necessary to condition on
the branch length in this proof because we are using ratios of probabilities conditioned on the same branch
length, ¢. If the distribution of events is not Poisson for the two-rate pure-birth process studied here, it is
not strictly Poisson for the birth-death process with a countably infinite distribution of rates, as the two-rate
model is a special case of this more general process.
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Figure S4: The distribution of the number events on a branch is not Poisson. We plot the probability of k events
occuring on a branch of length 1 when Ao = 1 and for various values of Ay = {0,0.2,...,2}. The probability depends on the
ratio A1/Ag. The distribution is only Poisson in the special (and trivial) case where Ag = A\1. When A\g and A1 are assumed to
come from an exponential distribution (with rate 1), and the probability mass function is (numerically) integrated over Ao and
A1, the resulting probability mass function remains non-Poisson (dashed grey line).
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S2 Monte Carlo simulation of extinction probabilities

We developed a Monte Carlo simulation approach for approximating the probability that a single lineage
evolving under the compound-Poisson birth-death process initiated at time t goes extinct before reaching
the present. For simplicity, we only implemented the time-independent version of the CPBDP (i.e., z = 0).

We simulate under the time-independent compound-Poisson birth-death process as described Algorithm
E1. Briefly, we initialize the process at time ¢ with speciation and extinction rates Aiyit and pinis, respectively.
The process continues forward in time, with the diversification process changing on each lineage at rate 7.
The process terminates when the number of species drops to 0, or it exceeds a pre-defined stopping point,
tmax (the present). We record the termination time of each process, tenq, and repeat this simulation for N
replicates. For the N replicate simulations, the Monte Carlo estimate of the extinction probability at time

—

t, E(t), is simply computed as the fraction of simulations that terminated before time p,ay:

_— 1 :
E(t) = N;I( end)7
where
, 1oife <t
I 7 — end max
(tena) {0 otherwise.
The simulator is implemented in R and C++ using Repp [, [2], and is included elsewhere as an archived

file (link: https://www.dropbox.com/sh/cua2p8i77kwsdmi/AAD_LdqYMZdBDFA4VO1QQpuea?dI=0).

S2.1 Extinction probability validation

We conducted a simulation study to characterize the behavior of the Monte Carlo simulator. We simulated
extinction probabilities under a variety of parameter settings (Table B2). For each combination of parameter

settings, we performed 50,000 Monte Carlo replicates and estimated the extinction probability, F(t).

Table S2: Parameters used for Monte Carlo simulation study

Parameter Values

t 0.0

Frnan {0.0,0.3,0.6,....,3.0}
Ainit 1.0

finit {0.1,0.2,0.3,...,0.9}

’ {0.0,0.5,1.0,2.0, 4.0, 8.0}
[Z5N 1.0

Hy 0.5

We note that the constant-rate birth-death process (CRBDP) is a special case of the compound-Poisson
birth-death process when n = 0. For the constant-rate birth-death process, the extinction probability is
known analytically [I3]:

_ A—p
B(t) =1 = 5 i (S13)

To validate our Monte Carlo simulator, we compared the extinction probabilities estimated by Monte
Carlo simulation to the analytical extinction probabilities under the constant-rate birth-death process. Our
simulations show good agreement between the analytical constant-rate extinction probability (Figure B3,
grey lines) and the Monte Carlo estimated extinction probability when n = 0 (Figure 85, dark blue dots).

As an additional validation, we analyzed the whale tree using BAMM under a constant-rate birth-death
process model (z = 0,A = 0). We assumed complete species sampling (to avoid potentially confounding

14


https://www.dropbox.com/sh/cua2p8i77kwsdmi/AAD_LdqYMZdBDFA4VOIQQpuea?dl=0

Algorithm S1 Compound-Poisson birth-death process simulator. The process begins at time ¢ with
speciation and extinction rates Ainit and pinit, respectively. New diversification parameters evolve at rate
7. When new diverisification rate parameters evolve, new values for A and p are sampled from exponential
distributions with expected value p and p,,, respectively. The process ends when the total number of species
is 0, or when the time exceeds the pre-defined stop time, ¢,,.x. The time of the end of the process is then
returned.
1: Inputs:
t: the starting time of the process.
tmax: the maximum time to run the process.
Ainit: the speciation rate at the start of the process.
Winit: the extinction rate at the start of the process.
7: the (per-lineage) rate at which new processes arise.
ux: the expected value of expontially distributed speciation rates.
py: the expected value of expontially distributed extinction rates.
2: Initialize:
tcurrent —t

np <1

¢1 = {n1 =1, A1 = Ninit, H1 = Hinit }

¢« {¢1}
3: while > n; >0 do // while the total number of species is greater than 0
4: for ¢; € ¢ do
5: At; ~ Exponential(n;(n + X\; + 1)) // generate a waiting time for each extant process
6: end for
7 x + argmin,; (At;) // get the index for the process with the minimum event time
8 teurrent < teurrent + Aty // increment tcyrrent
9: if teurrent > tmax then // if t is greater than t,,.x, stop the process
10: break
11: else
12: u ~ Uniform(0, 1)
13: if u<n/(n+ Az + pz) then // a new process arises
14: np<+np+1 // increment the number of processes
15: Ng < Ny — 1 // decrement the number of species in process x
16: Anp ~ Exponential(1/py) // get the new speciation rate
17: np ~ Exponential(1/s,,) // get the new extinction rate
18: Onp < {1np = 1, Anp, tnp } // make the new process
19: ¢ PUdpy // add the new process to ¢
20: else if u < (n+ Az)/(n+ Ay + py) then // the process has a speciation event
21: Ng Ny + 1 // increment the number of species in process
22: else // the process has an extinction event
23: Ng < Ny — 1 // decrement the number of species in process x
24: end if
25: if n, =0 then // if the process has no species left, remove it from ¢
26: ¢\ o,
27: end if
28: end if

29: end while
30: return fcurrent

effects of approaches used to accommodate incomplete sampling). The MCMC was run for 100,000 gener-
ations, sampling every 100 generations. We modified BAMM to output the extinction probability at the root
of the tree for each sample. We compared these extinction probabilities to those computed by Monte Carlo

—

simulation, E(t), and to the analytical constant-rate extinction probability using equation ET3. All three
methods yield identical extinction probabilities (within the tolerance of Monte Carlo error, see Figure B8).
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Figure S5: Monte Carlo estimates of extinction probabilities. We simulated extinction probabilities by Monte Carlo
simulation under the compound-Poisson birth-death process (CPBDP). We simulated under a variety of transition rates, n =
{0,0.5,1,2,4,8}, a variety of initial extinction rates, p = {0.1,0.2,...,0.9}. In all simulations, the speciation rate was A = 1
and remained constant, z = 0, and the duration of the simulation was three time units. In each panel, we compare the analytical
extinction probabilities under a constant-rate birth-death process (grey line) to the extinction probabilities estimated by Monte
Carlo simulation under the CPBDP when n = 0 (which corresponds to a process without diversification-rate shifts, i.e., a

constant-rate birth-death process; dark blue dots).
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Figure S6: Validating extinction-probability estimates for the whale tree under a constant-rate birth-death
process. We analyzed the whale tree using BAMM, assuming no diversification-rate shifts, n = 0 and time-homogeneous speciation
rates, z = 0. For each sample from the posterior distribution, we estimated the extinction probability at the root of the tree
using Monte Carlo simulation. Additionally, we computed the extinction probability analytically using equation EI3. The
extinction probability for each of these methods are in close agreement, validating our Monte Carlo estimator for the extinction
probability.
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S2.2 Likelihood calculation

We implemented a likelihood function that computes the probability of the data by substituting E(t) for
E(t) in equation E8. While computationally intense, this approach offers an approximately correct means
of computing the probability of the data under the model. The likelihood function is implemented in R and
C++ using Repp [0, 02], and is included as an archived file (see supplementary_data.zip).

We validated the likelihood function by analyzing the whale tree using BAMM under a time-homogeneous
model (z = 0). We assumed complete species sampling (to avoid potentially confounding effects of approaches
used to accommodate incomplete sampling). The MCMC was run for 100,000 generations, sampling every
100 generations. We then computed the likelihood of the whale tree using our likelihood function with
the speciation- and extinction-rate parameters estimated by BAMM, and with = 0 (i.e., disallowing new
diversification processes on extinct side-branches). With n = 0, our likelihood function should compute
likelihoods nearly identical to those of BAMM (allowing minor differences due to numerical aspects of the
algorithms). The likelihoods of the whale tree under BAMM and our likelihood function are identical, suggesting
that our likelihood function is correctly implemented (Figure §2).
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simulated log-likelihood
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Figure S7: Log-likelihood of the whale tree under BAMM and our likelihood function, disallowing diversification-
rate shifts on extinct lineages. We analyzed the whale tree using BAMM, assuming exactly two diversification-rate shifts
and time-homogeneous speciation rates (2 = 0). For each sample from the posterior distribution, we computed the likelihood
of the data using our likelihood function for the sampled diversification-rate parameters (A and p) and assuming that n = 0.
By assuming that n = 0, we effectively disallow diversification-rate shifts along extinct lineages (i.e., as assumed in BAMM).
Accordingly, in this case, the likelihoods computed by BAMM and our likelihood function should be nearly identical. Above, we
plot the log-likelihood computed by BAMM (x-axis) against the log-likelihood computed using our likelihood function (y-axis).
The close agreement between the log-likelihoods suggests our likelihood function is implemented correctly.
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S3 Simulation study

S3.1 Simulation design

We explored aspects of the statistical behavior of BAMM by simulating trees both under a constant-rate birth-
death process (i.e., where the diversification rate does not vary across branches of the tree), and under the
compound-Poisson birth-death process (i.e., where the diversification rate does vary across branches of the
tree). To ensure that our simulated trees are biologically realistic, we based our simulation on an empirical
dataset—the whale tree presented in the original study [0].

S3.1.1 Constant-rate birth-death simulations

We estimated the posterior probability distribution of the speciation and extinction rates for the whale tree
under a constant-rate birth-death model using RevBayes [[4]. We then simulated 100 trees with 87 species
(equal in size to the whale tree) under a constant-rate birth-death model using the R package TESS [, O6].
Each tree was simulated under speciation and extinction rates that were independently sampled from the
corresponding marginal posterior probability distributions that were previously estimated from the empirical
tree.

S3.1.2 Variable-rate birth-death simulations

We simulated 100 variable-rate trees under a compound-Poisson birth-death process that conforms as closely
as possible to the process assumed by BAMM. As in the constant-rate simulations, the variable-rate trees were
based on the whale dataset presented in the original study [0]. We sampled speciation- and extinction-rate
parameters from exponential distributions with means gy = 0.15 and p, = 0.05, which are approximately
centered on the means speciation- and extinction-rate estimates under the constant-rate birth-death model
using RevBayes (as described in the previous section). Each tree was initialized with diversification-rate
parameters sampled from these distributions; new diversification-rate parameters occurred with rate n =
/25 = 0.006. We retained all simulated trees that: (1) experienced one or more diversification-rate shifts
on an observed lineage, and; (2) had between 50 and 150 extant species. The mean number of diversification-
rate shifts on observed lineages was 4.35 (the 95% quantile ranges of rate shifts on observed lineages was 1 to
10). The average range in net-diversification rate (i.e., the difference between the branches with the lowest
and highest net-diversification rate) for the rate-variable trees was 9.95.

We note that our variable-rate simulation differs substantially from that of Rabosky (2014). The rate-
variable trees in that study were generated by first simulating a ‘backbone’ tree under a pure-birth (Yule)
process with a fixed speciation rate. A branch was then arbitrarily selected, pruned, and replaced with a
subclade that was simulated under a drastically different birth-death process. The simulated trees had a
43-fold average range in the net-diversification rate. Accordingly, our variable-rate trees explore a region of
parameter space that is both far more relevant to the BAMM model (the process used to simulate trees corre-
sponds more closely to the BAMM model) , and also to empirical datasets (the magnitude of net-diversification
rate variation is unrealistic).

S3.2 Data analysis

Prior specification—For the constant-rate trees, we specified priors for the expected speciation rate, py, and
extinction rate, 11, that were centered on the true parameter values (the values used to simulate that tree).
For the rate-variable trees, we used BAMMtools to select priors for p1) and p,,. We explored a range of values
for the prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2, 10}.

Posterior estimation—We inferred the joint posterior probability distribution for each simulated tree (under
each of the five v priors) using the Markov chain Monte Carlo (MCMC) algorithm implemented in the
modified BAMM code, performing two independent, replicate MCMC simulations for 107 cycles, and thinned
each chain by sampling every 1,000*" state.
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Prior estimation—We also inferred the joint prior probability distribution for each simulated dataset (un-
der each of the five  priors) using the two numerical options implemented in BAMM (described in Section
BT39): (1) we first inferred the prior using the sampleFromPriorOnly option by performing two indepen-
dent, replicate MCMC simulations for 107 cycles, and thinned each chain by sampling every 1,000t" state.
This approach uses the same MCMC algorithm used to estimate the joint posterior probability distribution,
but forces the the likelihood function to return a log-likelihood value of 0. (2) We also inferred the prior using
the fastSimulatePrior option, which provides a stand-alone algorithm for inferring the prior. Finally, we
calculated the prior on the number of diversification-rate shifts using the analytical solution (Section ET=3TI).

MCMC diagnosis—We assessed the reliability of the MCMC simulations using Tracer [[7] and coda [I¥].
Specifically, we assessed convergence of each MCMC simulation to the stationary (joint posterior or pior)
distribution by plotting the time series for every parameter, and by calculating the effective sample size
(ESS) [m9] diagnostic for every parameter (ensuring ESS values >> 500). We also assessed convergence by
comparing the parameter estimates from the two replicate MCMC simulations for each dataset by calculating
the potential scale reduction factor (PSRF) [20] diagnostic for all parameters (ensuring PSRF values ~ 1).
Our inferences are based on the combined stationary samples from the two independent chains.

S3.3 Results summary

We summarized two aspects of the statistical behavior of BAMM on the simulated datasets. First, we explored
the sensitivity of the inferred posterior number of diversification-rate shifts to the assumed ~ prior. To this
end, we combined samples from the joint posterior distributions of the 100 constant-rate birth-death trees
inferred under each of the « priors, and compared each of the estimated marginal posterior distributions
on the number of diversification-rate shifts to the corresponding ~ priors. Following Rabosky [l], we also
plotted the MAP (=mode) of the marginal posterior distributions inferred under each value of the « prior.
These results are summarized in Figure 4.

Second, we assessed the accuracy of the estimated speciation and extinction rates (and also the derivative
parameters, the net-diversification and relative-extinction rates) inferred using BAMM. To this end, for each
simulated tree, we computed the posterior mean rates for each branch-—marginalizing over all of the sampled
diversification rate shifts—using the BAMMtools function getMarginalBranchRateMatrix. We compared the
branch-specific estimates to their true rates using linear regression (as in Rabosky [I]). The linear regression
model assumes that the estimated rate for a particular branch i, y;, is predicted by:

Yi =+ Byi,true (814)

where y; (rue is the true rate of that branch. Accordingly, values of a (the intercept) close to 0 and values of 8
(the slope) close to 1 indicate approximately unbiased estimates; conversely, values of 3 close to 0 indicate no
relationship between true and estimated parameter, and negative values of 8 indicate a negative relationship
between true and estimated parameters.

For the constant-rate simulations, we fit the linear regression model to all of the branch-specific estimates
across the entire simulated dataset; these linear models therefore reflect the ability of BAMM to estimate
parameters averaged over an entire simulated dataset when diversification rates are constant. Because
individual constant-rate trees had a single set of diversification rate parameters, each estimated variable y;
had the same value of y; (rye, making it impossible to fit linear regression models to individual simulated trees.
For the rate-variable simulations, we fit a linear regression model for the branch-specific rate estimates for
each individual tree; these linear models thus reflect the accuracy of parameter estimates for individual BAMM
analyses when rates vary (i.e., when the likelihood is incorrect). We also computed the proportional error
in branch-specific diversification-rate parameter estimates for the rate-variable trees as the posterior-mean
estimate divided by the true parameter value. These results are summarized in Figures S8-5T4.

S3.4 Impact of tree size

To explore whether the prior sensitivity apparent in Figure 4 was driven by small tree sizes (and a concomi-
tantly low amount of data), we repeated the constant-rate simulation described above in Section B3, but
increased the tree size to 500. We performed data analysis as described in Section E32. We then compared
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the marginal posterior distribution of the number of rate shifts across all 100 trees. Results of this prior
sensitivity analysis are summarized in Figure ET8.
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Figure S8: Branch-specific diversification-rate parameters estimated by BAMM are inaccurate when rates vary
over the tree, v = 0.1. We simulated 100 constant-rate trees (without diversification-rate shifts) and 100 rate-variable trees
(with diversification-rate shifts) and analyzed each tree using BAMM. Left column: For the constant-rate trees, we plotted the
posterior-mean estimates (the mean of the estimated marginal posterior distributions) of the speciation rate (purple, top row),
extinction rate (red, second row), net-diversification (blue, third row), and relative-extn rate (orange, bottom row) for every
branch of each tree (y-axis) against the corresponding true rates (x-axis). Following Rabosky [l], we used linear regression to
estimate the relationship between the true rate and the estimated rates (solid grey line). For constant-rate trees, the branch-
specific rate estimates are approximately unbiased. Middle column: For the rate-variable trees, we similarly plotted the
posterior-mean estimates for the speciation, extinction, net-diversification, and relative-extinction rates for every branch of
each tree (y-axis) against the corresponding true value (x-axis). For each simulated tree, we used linear regression to estimate
the relationship between the true rates and the estimated rates (solid grey lines). Right column: For trees with diversification-
rate shifts, we computed proportional error of the speciation-rate estimates (upper panel) and extinction-rate estimates (lower
panel) for each branch in the tree, where the proportional error is simply the posterior-mean estimate of the rate divided by

the true rate. (Note that the proportional error is plotted on a log scale.)
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Figure S9: Branch-specific diversification-rate parameters estimated by BAMM are inaccurate when rates vary
over the tree, v = 0.5. We simulated 100 constant-rate trees (without diversification-rate shifts) and 100 rate-variable trees
(with diversification-rate shifts) and analyzed each tree using BAMM. Left column: For the constant-rate trees, we plotted the
posterior-mean estimates (the mean of the estimated marginal posterior distributions) of the speciation rate (purple, top row),
extinction rate (red, second row), net-diversification (blue, third row), and relative-extn rate (orange, bottom row) for every
branch of each tree (y-axis) against the corresponding true rates (x-axis). Following Rabosky [l], we used linear regression to
estimate the relationship between the true rate and the estimated rates (solid grey line). For constant-rate trees, the branch-
specific rate estimates are approximately unbiased. Middle column: For the rate-variable trees, we similarly plotted the
posterior-mean estimates for the speciation, extinction, net-diversification, and relative-extinction rates for every branch of
each tree (y-axis) against the corresponding true value (x-axis). For each simulated tree, we used linear regression to estimate
the relationship between the true rates and the estimated rates (solid grey lines). Right column: For trees with diversification-
rate shifts, we computed proportional error of the speciation-rate estimates (upper panel) and extinction-rate estimates (lower
panel) for each branch in the tree, where the proportional error is simply the posterior-mean estimate of the rate divided by
the true rate. (Note that the proportional error is plotted on a log scale.)
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Figure S10: Branch-specific diversification-rate parameters estimated by BAMM are inaccurate when rates vary
over the tree, v = 1.0. We simulated 100 constant-rate trees (without diversification-rate shifts) and 100 rate-variable trees
(with diversification-rate shifts) and analyzed each tree using BAMM. Left column: For the constant-rate trees, we plotted the
posterior-mean estimates (the mean of the estimated marginal posterior distributions) of the speciation rate (purple, top row),
extinction rate (red, second row), net-diversification (blue, third row), and relative-extn rate (orange, bottom row) for every
branch of each tree (y-axis) against the corresponding true rates (x-axis). Following Rabosky [l], we used linear regression to
estimate the relationship between the true rate and the estimated rates (solid grey line). For constant-rate trees, the branch-
specific rate estimates are approximately unbiased. Middle column: For the rate-variable trees, we similarly plotted the
posterior-mean estimates for the speciation, extinction, net-diversification, and relative-extinction rates for every branch of
each tree (y-axis) against the corresponding true value (x-axis). For each simulated tree, we used linear regression to estimate
the relationship between the true rates and the estimated rates (solid grey lines). Right column: For trees with diversification-
rate shifts, we computed proportional error of the speciation-rate estimates (upper panel) and extinction-rate estimates (lower
panel) for each branch in the tree, where the proportional error is simply the posterior-mean estimate of the rate divided by
the true rate. (Note that the proportional error is plotted on a log scale.)
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Figure S11: Branch-specific diversification-rate parameters estimated by BAMM are inaccurate when rates vary
over the tree, v = 2.0. We simulated 100 constant-rate trees (without diversification-rate shifts) and 100 rate-variable trees
(with diversification-rate shifts) and analyzed each tree using BAMM. Left column: For the constant-rate trees, we plotted the
posterior-mean estimates (the mean of the estimated marginal posterior distributions) of the speciation rate (purple, top row),
extinction rate (red, second row), net-diversification (blue, third row), and relative-extn rate (orange, bottom row) for every
branch of each tree (y-axis) against the corresponding true rates (x-axis). Following Rabosky [l], we used linear regression to
estimate the relationship between the true rate and the estimated rates (solid grey line). For constant-rate trees, the branch-
specific rate estimates are approximately unbiased. Middle column: For the rate-variable trees, we similarly plotted the
posterior-mean estimates for the speciation, extinction, net-diversification, and relative-extinction rates for every branch of
each tree (y-axis) against the corresponding true value (x-axis). For each simulated tree, we used linear regression to estimate
the relationship between the true rates and the estimated rates (solid grey lines). Right column: For trees with diversification-
rate shifts, we computed proportional error of the speciation-rate estimates (upper panel) and extinction-rate estimates (lower
panel) for each branch in the tree, where the proportional error is simply the posterior-mean estimate of the rate divided by
the true rate. (Note that the proportional error is plotted on a log scale.)
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Figure S12: Branch-specific diversification-rate parameters estimated by BAMM are inaccurate when rates vary
over the tree, v = 10.0. We simulated 100 constant-rate trees (without diversification-rate shifts) and 100 rate-variable trees
(with diversification-rate shifts) and analyzed each tree using BAMM. Left column: For the constant-rate trees, we plotted the
posterior-mean estimates (the mean of the estimated marginal posterior distributions) of the speciation rate (purple, top row),
extinction rate (red, second row), net-diversification (blue, third row), and relative-extn rate (orange, bottom row) for every
branch of each tree (y-axis) against the corresponding true rates (x-axis). Following Rabosky [l], we used linear regression to
estimate the relationship between the true rate and the estimated rates (solid grey line). For constant-rate trees, the branch-
specific rate estimates are approximately unbiased. Middle column: For the rate-variable trees, we similarly plotted the
posterior-mean estimates for the speciation, extinction, net-diversification, and relative-extinction rates for every branch of
each tree (y-axis) against the corresponding true value (x-axis). For each simulated tree, we used linear regression to estimate
the relationship between the true rates and the estimated rates (solid grey lines). Right column: For trees with diversification-
rate shifts, we computed proportional error of the speciation-rate estimates (upper panel) and extinction-rate estimates (lower
panel) for each branch in the tree, where the proportional error is simply the posterior-mean estimate of the rate divided by
the true rate. (Note that the proportional error is plotted on a log scale.)
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Figure S13: Linear model summaries of branch-specific diversification-rate parameters estimated by BAMM,
v = 0.1. We simulated 100 rate-variable trees (with diversification-rate shifts) and analyzed each tree using BAMM with priors
selected using BAMMtools. For each simulated tree, we used linear regression to estimate the relationship between the true and
estimated rates, and computed the proportional error of the rate estimates (i.e., the posterior-mean estimate divided by the
true rate) for each branch in the tree. For each diversification-rate parameter, speciation rate (purple, top row), extinction
rate (red, second row), net-diversification (blue, third row), and relative extinction (orange, bottom row), we show summaries
of the linear models. Left column: We plotted a frequency histogram of the slope parameter, 8. Center column: We
plotted a frequency histogram of the fraction of the variance explained by each linear model. Right column: We plotted the
proportional error in the parameter estimates across branches in the simulation study.
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Figure S14: Linear model summaries of branch-specific diversification-rate parameters estimated by BAMM,
v = 0.5. We simulated 100 rate-variable trees (with diversification-rate shifts) and analyzed each tree using BAMM with priors
selected using BAMMtools. For each simulated tree, we used linear regression to estimate the relationship between the true and
estimated rates, and computed the proportional error of the rate estimates (i.e., the posterior-mean estimate divided by the
true rate) for each branch in the tree. For each diversification-rate parameter, speciation (top row, purple), extinction (second
row, red), net-diversification (third row, blue), and relative extinction (bottom row, orange), we show summaries of the linear
models. Left column: We plotted a frequency histogram of the slope parameter, 3. Center column: We plotted a frequency
histogram of the fraction of the variance explained by each linear model. Right column: We plotted the proportional error
in the parameter estimates across branches in the simulation study.
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Figure S15: Linear model summaries of branch-specific diversification-rate parameters estimated by BAMM,
v = 1.0. We simulated 100 rate-variable trees (with diversification-rate shifts) and analyzed each tree using BAMM with priors
selected using BAMMtools. For each simulated tree, we used linear regression to estimate the relationship between the true and
estimated rates, and computed the proportional error of the rate estimates (i.e., the posterior-mean estimate divided by the
true rate) for each branch in the tree. For each diversification-rate parameter, speciation (top row, purple), extinction (second
row, red), net-diversification (third row, blue), and relative extinction (bottom row, orange), we show summaries of the linear
models. Left column: We plotted a frequency histogram of the slope parameter, 3. Center column: We plotted a frequency
histogram of the fraction of the variance explained by each linear model. Right column: We plotted the proportional error
in the parameter estimates across branches in the simulation study.
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Figure S16: Linear model summaries of branch-specific diversification-rate parameters estimated by BAMM,
v = 2.0. We simulated 100 rate-variable trees (with diversification-rate shifts) and analyzed each tree using BAMM with priors
selected using BAMMtools. For each simulated tree, we used linear regression to estimate the relationship between the true and
estimated rates, and computed the proportional error of the rate estimates (i.e., the posterior-mean estimate divided by the
true rate) for each branch in the tree. For each diversification-rate parameter, speciation (top row, purple), extinction (second
row, red), net-diversification (third row, blue), and relative extinction (bottom row, orange), we show summaries of the linear
models. Left column: We plotted a frequency histogram of the slope parameter, 3. Center column: We plotted a frequency
histogram of the fraction of the variance explained by each linear model. Right column: We plotted the proportional error
in the parameter estimates across branches in the simulation study.
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Figure S17: Linear model summaries of branch-specific diversification-rate parameters estimated by BAMM,
~v = 10.0. We simulated 100 rate-variable trees (with diversification-rate shifts) and analyzed each tree using BAMM with priors
selected using BAMMtools. For each simulated tree, we used linear regression to estimate the relationship between the true and
estimated rates, and computed the proportional error of the rate estimates (i.e., the posterior-mean estimate divided by the
true rate) for each branch in the tree. For each diversification-rate parameter, speciation (top row, purple), extinction (second
row, red), net-diversification (third row, blue), and relative extinction (bottom row, orange), we show summaries of the linear
models. Left column: We plotted a frequency histogram of the slope parameter, 3. Center column: We plotted a frequency
histogram of the fraction of the variance explained by each linear model. Right column: We plotted the proportional error
in the parameter estimates across branches in the simulation study.
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Figure S18: The posterior number of diversification-rate shifts is highly sensitive to the assumed prior.

We simulated 100 constant-rate trees with 500 species and analyzed each using BAMM under a variety of priors for the expected
number of diversification-rate shifts, v (columns). Top row: For each value of the « prior, we combined the MCMC samples
from analyses of the 100 trees and plotted the marginal posterior probability density of the number of rate shifts estimated
by BAMM (dashed orange lines) and the corresponding prior density (dashed blue lines). For all values of the ~ prior, the
estimated posterior is virtually indistinguishable from the assumed prior, and the mode of the prior densities is zero (i.e., zero
diversification-rate shifts). Bottom row: We then summarized the results of our simulation following Rabosky [I]. For each
value of the v prior, we recorded the mode of the posterior density (MAP) for each of the 100 trees, and then summarized these
100 MAP values as a histogram. For all values of the v prior, the most frequent MAP has a value of zero (simply because the
mode of the geometric prior is always zero, and the estimated posterior density closely mirrors the assumed prior).
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S4 Empirical analyses

At the time of our study, BAMM had been used to infer the number and location of diversification-rate shifts in a
total of 44 datasets within 35 published studies (83). We were able to obtain the necessary information—the
study phylogeny and control files—to reanalyze 15 of these datasets.

S4.1 Data analysis

Prior specification—For each empirical dataset, we specified priors for the speciation rate, A, extinction rate,
1, and time-dependence parameter, z, using BAMMtools [b64], and explored a range of values for the prior on
the expected number of diversification-rate shifts, v = {0.1,0.5, 1,2, 10}.

Posterior estimation—We inferred the joint posterior probability distribution for each empirical dataset
(under each of the five  priors) using the Markov chain Monte Carlo (MCMC) algorithm implemented
in the modified BAMM code, performing four independent, replicate MCMC simulations for 107 cycles, and
thinned each chain by sampling every 1,000*" state.

Prior estimation—We also inferred the joint prior probability distribution for each simulated dataset (under
each of the five v priors) using the two numerical options implemented in BAMM (described in Section EI-39):
(1) we first inferred the prior using the sampleFromPriorOnly option by performing four independent,
replicate MCMC simulations for 107 cycles, and thinned each chain by sampling every 1,000*" state. This
approach uses the same MCMC algorithm used to estimate the joint posterior probability distribution, but
forces the the likelihood function to return a log-likelihood value of 0. (2) We also inferred the prior using
the fastSimulatePrior option, which provides a stand-alone algorithm for inferring the prior. Finally, we
calculated the prior on the number of diversification-rate shifts using the analytical solution (Section EI=3TI).

MCMC diagnosis—We assessed the reliability of the MCMC simulations using the Tracer [I'7] and coda [I¥]
packages. Specifically, we assessed convergence of each MCMC simulation to the stationary (joint posterior)
distribution by plotting the time series for every parameter, and by calculating the effective sample size
(ESS) [9] diagnostic for every parameter (ensuring ESS values >> 500). We also assessed convergence by
comparing the parameter estimates from the replicate MCMC simulations by calculating the potential scale
reduction factor (PSRF) [20] diagnostic for all parameters (ensuring PSRF values ~ 1). Our inferences are
based on the combined stationary samples from each of the four independent chains.

S4.2 Results summary

For each of the 15 empirical datasets, we present the marginal posterior distribution on the number of
diversification-rate shifts inferred under each of the « priors, comparing these posterior estimates to the
corresponding estimated (simulated) and analytical priors.
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Table S3: Empirical studies using BAMM to infer diversification-rate shifts

Study

Study Group

Armstrong et al. [Z1]
Bouchenak-Khelladi et al. |
Bouchenak-Khelladi et al. |
Bouchenak-Khelladi et al. |
Burns et al. [23]
Condamine et al. [4]
Cook et al. [Z5]

Cook et al. [75]

Couvreur et al. [28]

Ebel et al. [27]

Estep et al. [2§]

Guo et al. [29]

Hamm and Fordyce [30]
Hammer et al. [1]

Hedges et al. [37]

Huang and Rabosky [33]
Hughes and Atchison [34]
Koenen et al. [35]

Kozak et al. [38]

Kraichak et al. [87]
Kraichak et al. [37]

Linder and Bouchenak-Khelladi [38]

McGuire et al. [39]
Meudt et al. [40]
Nirk et al. [d71)
Pena et al. [47)
Rabosky []
Rabosky et al.
Rabosky et al.
Salzman et al.
Schilling et al.
Schwery et al. [A7]
Spriggs et al. [4¥]
Verde Arregoitia et al. [dY]
Villarreal et al. [50]

43

3]
]

43
46|

Weeks et al. [52]
Willis et al. [63]
Zelditch et al. [54]
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Sapotaceae
Ericaceae
Fagales

Poales
Thraupidae
Cycads
Daviesia
Bossiaea
Arecaceae
Adelpha
Andropogoneae
Paphiopedilum
Nymphalidae
Ptilotus

Life

Aves

Lupinus
Meliaceae
Heliconius
Graphidaceae
Parmeliaceae
Danthonioideae
Hummingbirds
Veronica
Hypericum
Erebia
Cetaceans
Australian scincids
Aves

Costus
Brickellia
Ericaceae
Viburnum
Lagomorpha
Hornworts
Byttneria
Pleopeltis
Polygoneae
Senna

Turnera
Viburnum
Terebinthaceae
Malpighiaceae
Sciuridae



S4.2.1 Adelpha
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Figure S19: The marginal distribution on the number of shifts, k, as a function of the prior, v, for Adelpha

[24]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2,10}, we used the MCMC algoritm
in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared
these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm;
orange curve), and also the analytical prior distributions (blue curve).

S4.2.2 Byttneria
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Figure S20: The marginal distribution on the number of shifts, k, as a function of the prior, v, for Byttneria

[61]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2,10}, we used the MCMC algoritm
in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared
these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm;
orange curve), and also the analytical prior distributions (blue curve).

S4.2.3 Cetaceans
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Figure S21:

number of events

The marginal distribution on the number of shifts, k, as a function of the prior, v, for whales [].
For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2, 10}, we used the MCMC algoritm in BAMM
to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared these
marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm; orange
curve), and also the analytical prior distributions (blue curve).
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S4.2.4 Ericaceae
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Figure S22: The marginal distribution on the number of shifts, k£, as a function of the prior, v, for Ericaceae
[@7]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2,10}, we used the MCMC algoritm
in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared

these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm;
orange curve), and also the analytical prior distributions (blue curve).

S4.2.5 Graphidaceae
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Figure S23: The marginal distribution on the number of shifts, k, as a function of the prior, v, for Graphidaceae
[&4]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2,10}, we used the MCMC algoritm
in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared

these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm;
orange curve), and also the analytical prior distributions (blue curve).

S4.2.6 Nymphalidae

y=0.1 y=0.5 y=1 y=2 y=10
1.0 4 . N .
marginal posterior distribution
\ simulated prior distribution
08 | ™ analytical prior distribution
\
= \
=06 |
o ) \
3 \ \ \
O 0.4 \ \
S \ \ \ \
\ \ \
0.2 o \ N
\ \ \ N
N\ ~ N~ S~ | TT———
0.0 e ———— e ——— e | —— R —
L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L
0123456789 01234567829

L L L L L L
01234561789

number of events

012345617829

number of events number of events

01234567829

number of events number of events

Figure S24: The marginal distribution on the number of shifts, k, as a function of the prior, v, for Nymphalidae
[&0]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2,10}, we used the MCMC algoritm
in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared

these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm;
orange curve), and also the analytical prior distributions (blue curve).
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S4.2.7 Paphiopedilum
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Figure S25: The marginal distribution on the number of shifts, k, as a function of the prior, ~, for Paphiopedilum
[29]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2,10}, we used the MCMC algoritm
in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared

these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm;
orange curve), and also the analytical prior distributions (blue curve).

S4.2.8 Parmeliaceae
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Figure S26: The marginal distribution on the number of shifts, k, as a function of the prior, 7, for Parmeliaceae
[&4]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2,10}, we used the MCMC algoritm
in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared

these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm;
orange curve), and also the analytical prior distributions (blue curve).

S4.2.9 Pleopeltis
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Figure S27: The marginal distribution on the number of shifts, k, as a function of the prior, v, for Pleopeltis
[61]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2,10}, we used the MCMC algoritm
in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared

these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm;
orange curve), and also the analytical prior distributions (blue curve).
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S4.2.10 Polygonea
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Figure S28: The marginal distribution on the number of shifts, k, as a function of the prior, v, for Polygonea
[61]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2,10}, we used the MCMC algoritm
in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared

these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm;
orange curve), and also the analytical prior distributions (blue curve).

S4.2.11 Senna
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Figure S29: The marginal distribution on the number of shifts, k, as a function of the prior, v, for Senna [51].
For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2, 10}, we used the MCMC algoritm in BAMM
to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared these

marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm; orange
curve), and also the analytical prior distributions (blue curve).

S4.2.12 Terebinthaceae
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Figure S30: The marginal distribution on the number of shifts, k, as a function of the prior, v, for Tere-
binthaceae [62]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1, 2,10}, we used the MCMC
algoritm in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We

compared these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior
algorithm; orange curve), and also the analytical prior distributions (blue curve).
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S4.2.13 Turnera
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Figure S31: The marginal distribution on the number of shifts, k, as a function of the prior, v, for Turnera
[61]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1, 2,10}, we used the MCMC algoritm
in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared

these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm;
orange curve), and also the analytical prior distributions (blue curve).

S4.2.14 Viburnum
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Figure S32: The marginal distribution on the number of shifts, k, as a function of the prior, v, for Viburnum
[61]. For each prior on the expected number of diversification-rate shifts, v = {0.1,0.5,1,2,10}, we used the MCMC algoritm
in BAMM to estimate the marginal posterior distribution on the number of diversification-rate shifts, k (grey bars). We compared

these marginal posterior distributions to both the estimated prior distributions (inferred using fastSimulatePrior algorithm;
orange curve), and also the analytical prior distributions (blue curve).
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