- Supporting Information -

Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution

Sean C. McConnell^{*}, Kyle M. Hernandez, Dustin J. Wcisel, Ross N. Kettleborough, Derek L. Stemple, Jeffrey A. Yoder, Jorge Andrade, and Jill L.O. de Jong^{*}

*Corresponding authors:

Sean C. McConnell email: <u>scmcconnell@uchicago.edu</u>

Jill L.O. de Jong email: jdejong@peds.bsd.uchicago.edu

Contents

Figure S1. Predicted peptide cleavage site residues selected from the alignment of human and zebrafish proteasome subunits
Figure S2. Dotplot comparison of the zebrafish core MHC haplotype 19D assembly with haplotype 19B from the zebrafish reference genome
Figure S3. Conserved synteny of the <i>psmb10</i> gene outside the core MHC region in jawed vertebrates
Figure S4. Conserved synteny of the <i>tap2t</i> gene outside the core MHC region in teleosts.
Figure S5. Phylogenetic tree for Psmb5, Psmb8, and Psmb11 predicted amino acid sequences from representative vertebrates
Figure S6. Phylogenetic tree for Psmb6, Psmb9, and Psmb12 predicted amino acid sequences from representative vertebrates
Figure S7. Phylogenetic tree for Psmb7, Psmb10, and Psmb13 predicted amino acid sequences from representative vertebrates
Figure S8. Phylogenetic tree for Abcb9, Tap1, Tap2 and Tap2t predicted amino acid sequences across representative vertebrates
Table S1. Comparison of genes from the haplotype 19D assembly with genes fromhaplotype 19B from the zebrafish reference genome.17

Table S2. MHC-pathway related genes found outside the core MHC locus of the Zv9reference genome compared with sequences within the CG2 clonal zebrafish
Table S3. Selected residues of the specificity loop within Tap2 molecules from species with polymorphic alleles
Table S4. Proteasome subunit combinations in zebrafish
Table S5. Comparison of SNP variant calls identified from whole exome sequencing22
Table S6. Zebrafish proteasome subunit nomenclature. 23
Table S7. Zebrafish TAP and tapbp gene nomenclature
Table S8. Accession numbers for selected teleost Psmb13 subunits. 25
Table S9. Polymorphic peptide binding residues conserved between zebrafish and human MHCI molecules
Table S10. Polymorphic peptide binding residues conserved between zebrafish andhuman MHCI molecules (continued)
Table S11. Divergent alleles encoding proteasome, TAP, and MHCI molecules within different vertebrates.
Table S12. Divergent alleles encoding proteasome, TAP, and MHCI molecules within additional vertebrates
Table S13. Combined allelic diversity estimates for proteasome, TAP, and MHCI molecules. 33
Dataset S1. Accession numbers and sequence data for proteasome subunits
Dataset S2. Accession numbers and sequence data for TAP subunits
Dataset S3. Transcripts associated with zebrafish chromosome 19 core MHC haplotype D genes
Dataset S4. Zebrafish antigen processing genes from the divergent chromosome 19 haplotype D
Dataset S5. Zebrafish chromosome 19 core MHC scaffold sequences
Supplementary references

А															
	1	17	20	31	33	35	45	48	49	53	114	115	116	118	120
PSMB5	Т	D	А	V	К	1	М	G	А	S	D	S	Е	Ν	- Ĭ
Psmb5	Т	D	А	V	К	I	Μ	G	А	S	D	S	Е	Ν	V
PSMB8	Т	D	А	V	К	1	Μ	С	А	Q	D	Е	Н	Т	L
Psmb8a	Т	D	A	A	К	I.	M	S	A	Q	D	D	N	Т	L
Psmb8f	Т	D	Α	F	K	I.	Μ	N	A	V	S	S	S	Т	L
PSMB11	Т	D	S	S	К	1	Т	Т	S	А	Y	S	D	Т	L
Psmb11b	Т	D	S	S	К	1	L	Т	S	А	С	S	D	Т	L
Psmb11a	Т	D	А	Т	К	Μ	Μ	S	G	Μ	С	S	D	Т	L
В															
	1	17	20	31	33	35	45	48	49	53	114	115	116	118	120
PSMB6	Т	D	Т	Т	К	Т	R	S	А	Q	Р	Μ	G	Μ	V
Psmb6	Т	D	Т	Т	К	Т	R	S	А	Q	Ρ	V	G	Μ	Т
PSMB9	Т	D	V	F	Κ	S	L	S	А	Q	-	L	G	Μ	Т
Psmb9a	Т	D	V	M	K	S	L	S	А	Q	12	Ρ	S	L	Т
Psmb9b	Т	D	V	М	К	S	L	S	A	Q	-	Р	S	L	Т
Psmb12	Т	D	А	1	K	1	1	S	L	Q	S	L	G	Μ	L
С															
	1	17	20	31	33	35	45	48	49	53	114	115	116	118	120
PSMB7	Т	D	А	С	К	н	G	Т	А	D	Y	Ρ	Н	S	D
Psmb7	Т	D	А	С	К	Н	G	Т	А	Е	Y	Ρ	Н	S	D
PSMB10	Т	D	А	С	К	Н	G	V	А	Е	Н	Ρ	Н	S	S
Psmb10	Т	D	А	С	Κ	Н	G	V	А	Е	Y	Ρ	Н	S	D
Psmb13a	Т	D	A	С	K	Н	G	Т	A	Е	G	Ρ	Y	S	D
Psmb13b	Т	D	A	С	Κ	Н	G	Т	А	Q	G	Ρ	Y	D	D

Figure S1. Predicted peptide cleavage site residues selected from the alignment of human and zebrafish proteasome subunits.

Names for the human proteasome subunits are labeled in uppercase; zebrafish subunits are labeled with both uppercase and lowercase according to standard nomenclature and introduced names (Table S5). Sequences from zebrafish core MHC haplotype 19B (Zv9 reference genome) are highlighted in blue; sequences from core MHC haplotype 19D (CG2 clonal zebrafish) are highlighted in red. Sequences are provided in Dataset S1.

A) The predicted cleavage site residues of non-MHC linked proteasome subunits are mostly well-conserved between humans and zebrafish, e.g. PSMB5 shares 14 of 15 residues with psmb5, indicating highly-conserved functions for these genes. Positions 1, 17 and 33 are

completely conserved throughout all subunits, representing catalytic residues in the active site. Substitutions at positions 31 and 53 in particular have been proposed to alter peptide cleavage specificities for Psmb8 subunits with divergent lineages. The Psmb8a subunit (chymotrypsinlike catalytic activity) is found in the MHC haplotypes of most species examined including humans. The Psmb8f subunit appears to be missing from mammals, but is found in many other representative vertebrates. Altered activity of the Psmb8f subunit, as a consequence of these substitutions (predicted elastase-like catalytic activity), may thus contribute to functionallyspecialized antigen processing pathways in organisms such as zebrafish.

B) In contrast, predicted cleavage specificity of the Psmb9b subunit encoded by on haplotype D is identical to the Psmb9a subunit encoded by haplotype B. In addition to carrying *psmb8a*, *psmb9a*, and *psmb13a* genes, the reference genome haplotype B also carries a *psmb12* gene. Unlike the divergent *psmb8f*, *psmb9b*, and *psmb13b* genes, the *psmb12* gene is missing from the divergent haplotype D assembly.

C) Position 53 may play a role in modulating peptide cleavage specificity among divergent zebrafish Psmb13 subunits, as the divergent Psmb13b subunit encoded by haplotype D maintains a unique substitution at position E53Q predicted to reduce trypsin-like cleavage specificity. Position 118 also has another interesting substitution within Psmb13b, S118D, but whether this could help compensate for any loss of charge within the cleavage site from the E53Q substitution remains to be determined.

Figure S2. Dotplot comparison of the zebrafish core MHC haplotype 19D assembly with haplotype 19B from the zebrafish reference genome. The dotplot was generated using zPicture (http://zpicture.dcode.org) with sequences from the haplotype 19D assembly (CG2v1.0, this study) compared with sequences from reference haplotype 19B (Zv9 coordinates chr19:7623109:7802660). Exon locations for genes from the reference assembly are highlighted in blue, centered on *mhc1uba* intron 2 positioned at 90 kb.

Figure S3. Conserved synteny of the *psmb10* gene outside the core MHC region in jawed vertebrates.

The *psmb10* gene (also called *LMP-10* or *MECL-1*) is the only immunoproteasome gene not linked to the core MHC region. Conserved synteny for the *psmb10* gene (highlighted by the green arrowheads joined by a vertical line in the center) is maintained for some jawed vertebrate species, including sarcopterygii and teleosts. This conserved synteny includes flanking genes *smpd3*, *prmt7*, *slc7a6*, *pla2g15*, *lcat*, *pskh1*, *edc4*, *nutf2*, and *ranbp10*. The region surrounding the *psmb10* gene in some species such as *psmb10* on zebrafish (*Danio rerio*) chromosome 4 appears to have been more highly rearranged (not shown), compared with *psmb10* genomic sequences in other teleost species such as tilapia (*Oreochromis niloticus*), where neighboring syntenic genes for the *psmb10* gene are more readily identified (bottom line). Conserved synteny analysis was performed in 'AlignView' using the Genomicus tool (http://www.genomicus.biologie.ens.fr/), which is based on genomic sequences and annotation as found in Ensembl.

Figure S4. Conserved synteny of the *tap2t* gene outside the core MHC region in teleosts.

Unlike other transporter associated with antigen processing (TAP) genes, the *tap2t* gene was identified only in teleosts. Teleost species such as zebrafish (*Danio rerio*), fugu (*Takifugu rubripes*), stickleback (*Gasterosteus aculeatus*) and medaka (*Oryzias latipes*) maintain conserved synteny surrounding the *tap2t* gene. This conserved synteny surrounding *tap2t* (highlighted by the green arrowheads joined by a vertical line in the center) includes the *kcdt2*, *slc16a5*, *chad*, *acsf2*, *armc7*, *ndel1a*, *srcap*, *bc2*, *ttll6*, and *hoxb6b* genes. Conserved synteny analysis was performed using the Genomicus tool (http://www.genomicus.biologie.ens.fr/), which is based on genomic sequences and annotation as found in Ensembl.

Figure S5. Phylogenetic tree for Psmb5, Psmb8, and Psmb11 predicted amino acid sequences from representative vertebrates.

Three major lineage branches are highlighted. Subunits from all three major lineage branches, including constitutive β 5 subunit Psmb5, inducible β 5i subunit Psmb8, and thymoproteasome β 5t subunit Psmb11, are highly conserved across jawed vertebrates. Jawless vertebrates (e.g. lamprey) only have the constitutive Psmb5 subunit. Only jawed vertebrate species with MHC-based immunity have been shown to have additional (non-constitutive) proteasome subunit genes, reflecting the function of these genes.

The *psmb8* gene has two distinct forms in zebrafish associated with alternative haplotypes; *psmb8a* is present in the zebrafish reference genome chromosome 19 core MHC haplotype B, while *psmb8f* is expressed from core MHC haplotype D. These *psmb8* forms are ancient, being conserved for approximately 500 million years in sharks, some teleosts, and coelacanths. Interestingly, the *psmb8f* form appears to have been lost from most tetrapods and other teleosts (1). However, *psmb8f*-like forms appear to have been re-derived in some teleost lineages, as in medaka via a V31Y substitution. Furthermore, the *psmb8f* form appears to have been eroded in Xenopus, by sequence exchange events on either side of the bulky cleavage site residue A31F, making this *psmb8f* gene appear more *psmb8a*-like (2). In zebrafish, the Psmb8f subunit has the bulky A31F, and also a Q53V substitution predicted to alter peptide cleavage specificity. These observations indicate that the alternative forms of Psmb8 subunits conserve ancient, distinctive functions.

In another branch, the β 5t subunit Psmb11 maintains two duplicate genes that appear to be specific to teleosts, diverging on separate chromosomes. These genes are predicted to have distinct functions, with *psmb11b* more conserved than the *psmb11a* copy that is found adjacent to the *psmb5* gene (3). Coelacanths also maintain two *psmb11* copies, but these appear on the same chromosome and are much more closely related, thus appearing to be the result of a more recent tandem duplication event.

The Maximum Likelihood method based on the JTT matrix-based model was used to construct the phylogenetic tree within the MEGA6 program. To model evolutionary rate differences among sites, a discrete Gamma distribution was used (5 categories, +*G* parameter = 0.5036), which allowed some sites to be evolutionarily invariable (0.0000% sites). Tree is drawn to scale, and branch lengths represent the number of substitutions per site. Bootstrap values greater than or equal to 60% are provided next to the branches, as calculated using 500 replicate trees. Positions with less than 95% site coverage were eliminated, providing a total of 234 positions for the 37 sequences in the dataset. For zebrafish genes, chromosome number is provided in parentheses, while for chromosome 19 core MHC genes a specific haplotype suffix is also provided.

Figure S6. Phylogenetic tree for Psmb6, Psmb9, and Psmb12 predicted amino acid sequences from representative vertebrates.

Three major lineage branches are highlighted. Both β 1 subunit Psmb6, and β 1i subunit Psmb9, are highly conserved across jawed vertebrates. Jawless vertebrates (e.g. lamprey) only have constitutive Psmb6. The β 1t subunit Psmb12 appears to be teleost-specific as it is not found in other vertebrate lineages. The *psmb12* gene undergoes presence/absence variation in zebrafish, e.g. while present in the zebrafish reference genome chromosome 19 core MHC haplotype B, it is missing from core MHC haplotype D.

The Maximum Likelihood method based on the JTT matrix-based model was used to construct the phylogenetic tree within the MEGA6 program. To model evolutionary rate differences among sites, a discrete Gamma distribution was used (5 categories, +*G* parameter = 0.9091), which allowed some sites to be evolutionarily invariable (5.2118% sites). Tree is drawn to scale, and branch lengths represent the number of substitutions per site. Bootstrap values greater than or equal to 60% are provided next to the branches, as calculated using 500 replicate trees. Positions with less than 95% site coverage were eliminated, providing a total of 214 positions for the 23 sequences in the dataset. For zebrafish genes, chromosome number is provided in parentheses, while for chromosome 19 core MHC genes a specific haplotype suffix is also provided.

McConnell et al.

Figure S7. Phylogenetic tree for Psmb7, Psmb10, and Psmb13 predicted amino acid sequences from representative vertebrates.

Three major lineage branches are highlighted. The β2 subunit Psmb7, as well as the β2i subunit Psmb10, are both highly conserved across most jawed vertebrates. Jawless vertebrates such as lamprey only have the constitutive Psmb7. The β2t subunit Psmb13 was not found in some other vertebrate lineages and appears to be specific to teleost and sharks. The *psmb13* gene has two forms in zebrafish associated with alternative haplotypes; *psmb13a* is present in the zebrafish reference genome chromosome 19 core MHC haplotype B, while *psmb13b* is expressed from core MHC haplotype D. The divergent Psmb13b zebrafish proteasome subunit has an E53Q substitution predicted to alter peptide cleavage specificity.

The Maximum Likelihood method based on the JTT matrix-based model was used to construct the phylogenetic tree within the MEGA6 program. To model evolutionary rate differences among sites, a discrete Gamma distribution was used (5 categories, +*G* parameter = 0.9279), which allowed some sites to be evolutionarily invariable (12.3292% sites). Tree is drawn to scale, and branch lengths represent the number of substitutions per site. Bootstrap values greater than or equal to 60% are provided next to the branches, as calculated using 500 replicate trees. Positions with less than 95% site coverage were eliminated, providing a total of 274 positions for the 25 sequences in the dataset. For zebrafish genes, chromosome number is provided in parentheses, while for chromosome 19 core MHC genes a specific haplotype suffix is also provided.

McConnell et al.

Figure S8. Phylogenetic tree for Abcb9, Tap1, Tap2 and Tap2t predicted amino acid sequences across representative vertebrates.

Three major lineage branches are highlighted. The presumed ancestral Abcb9 subunit, as well as the derived heterodimeric Tap1 and Tap2 subunits, are each highly conserved across most jawed vertebrates. Jawless vertebrates such as lamprey only have the Abcb9 subunit. The Tap2t subunit was not found in other vertebrate lineages and appears to be specific to teleosts; Tap2t subunits from teleosts cluster as a distinctive branch within the larger Tap2 family. The *tap2* gene has five forms in zebrafish associated with alternative haplotypes. The *tap2a* gene is present in the zebrafish reference genome chromosome 19 core MHC haplotype B. The *tap2a*, *tap2b*, and *tap2c* are all found in core MHC haplotype A. In addition, *tap2d* and tap2e are expressed from core MHC haplotype D. The divergent zebrafish Tap2 subunits maintain several substitutions predicted to alter peptide cleavage specificity.

The Maximum Likelihood method based on the JTT matrix-based model was used to construct the phylogenetic tree within the MEGA6 program. To model evolutionary rate differences among sites, a discrete Gamma distribution was used (5 categories, +*G* parameter = 1.9675), which allowed some sites to be evolutionarily invariable (2.7601% sites). Tree is drawn to scale, and branch lengths represent the number of substitutions per site. Bootstrap values greater than or equal to 60% are shown are provided next to the branches, as calculated using 500 replicate trees. Positions with less than 95% site coverage were eliminated, providing a total of 560 positions for the 51 sequences in the dataset. For zebrafish genes, chromosome number is provided in parentheses, while for some chromosome 19 core MHC genes a specific haplotype letter suffix is also given. Three major lineage branches are highlighted.

RNA-Seq contig	Genomic scaffold(s)	Hap D gene	%ID	Hap B gene (best match)	Chr.
17561	13206	daxx	99	daxx	19
3129	13206	tapbp	98	tapbp	19
218	13206, 51738	mhc1uga	49	mhc1uba	19
10154	15837	tap2d	65	tap2a	19
11205	15837	psmb9b	86	psmb9a	19
2067	15837, 2546	psmb13b	71	psmb13a	19
818	2546	psmb8f	64	psmb8a	19
14104, 23407	2546	tap2e	50	tap2a	19
2621	2546	brd2a	100	brd2a	19
12208	2546	hsd17b8	99	hsd17b8	19

Table S1. Comparison of genes from the haplotype 19D assembly with genes from haplotype 19B from the zebrafish reference genome. For each gene found within the CG2 haplotype D assembly, RNA-Seq contigs and genomic scaffold identifiers are provided. Blue font highlights genes with high levels of pairwise percent identity (%ID) relative to the reference genome sequences, and red font highlights genes having divergent sequences relative to the reference genome (below 90%). Pairwise percent identity (%ID) was calculated with BLAST using predicted amino acid sequences for genes from haplotype 19D, compared with sequences from the most closely matched genes from reference haplotype 19B (Zv9).

RNA-Seq					
contig	Genomic scaffold(s)	CG2 gene	%ID	Zv9 (best match)	Chr.
4054	75501	psmb5	99	psmb5	2
12947	6167, 48866, 28756	psmb6	99	psmb6	23
6794	70674, 78660, C10987108	psmb7	100	psmb7	21
10534	18415, 26616	psmb10	100	psmb10	4
NA	75501	psmb11a	99	psmb11a	23
NA	26712	psmb11b	100	psmb11b	2
4392	86824	abcb9	99	abcb9	5
1051	16168, 7509, 70724	tap1	100	tap1	16
9121	10598, 26828	tap2t	99	tap2t	12
18099	17582	tapbpl	99	tapbpl	16
777	17862	b2m	100	b2m	4
NA	11566	b2ml	99	b2ml	8
15805	68974	cd8a	99	CD8a	21
32479	71708	cd8b	100	CD8b	7
6200	1788	mhc2daa	99	mhc2daa	8
2953	1788	mhc2dab	91	mhc2dab	8
14906	44652	mhc2dbb	98	mhc2dbb	18

Table S2. MHC-pathway related genes found outside the core MHC locus of the Zv9 reference genome compared with sequences within the CG2 clonal zebrafish. For each gene found within the CG2 genomic assembly, RNA-Seq contigs and genomic scaffold identifiers are provided. Blue font highlights genes with high levels of pairwise percent identity (%ID) relative to the reference genome sequences, and red font highlights genes having divergent sequences relative to the reference genome (below 90%). Pairwise percent identity (%ID) was calculated with BLAST using predicted amino acid sequences for genes from CG2 clonal zebrafish, compared with sequences from the most closely matched genes from zebrafish reference genome (Zv9). NA indicates that no expressed transcripts were found, as expected for the thymus-specific *psmb11* genes as no thymic tissue was included in the RNA preparation.

	2 1 5	2 1 6	2 1 7	2 1 8	2 1 9	2 2 0	2 6 0	2 6 1	2 6 2	2 6 3	2 6 4	2 6 5	2 6 6	2 6 7	2 6 8	2 6 9
Tap2a (19B)	М	С	Α	I	Ν	s	Μ	G	R	А	V	А	L	Ν	V	Ν
Tap2a (19A)	М	С	Α	I	Ν	S	Μ	G	R	А	V	А	L	Ν	V	Ν
Tap2c (19A)	т	С	V	I	Y	S	Μ	G	D	А	V	A	L	Ν	V	Ν
Tap2b (19A)	М	С	т	L	S	R	Μ	S	Q	S	V	А	М	Ν	V	Ν
Tap2d (19D)	М	L	т	I	S	R	Μ	S	Q	S	V	A	М	Ν	V	Ν
Tap2e (19D)	М	С	т	L	S	R	Μ	S	R	S	L	А	Α	Ν	V	Ν
Tap2t (12)	М	F	S	L	Ν	R	Μ	G	R	А	V	А	М	Ν	V	Ν
Salmon-2t	М	С	S	L	S	R	Μ	G	R	S	V	А	L	Ν	S	Ν
Salmon-2a	М	С	Α	I	Ν	s	Μ	G	R	А	V	А	L	Ν	V	Ν
Salmon-2b	М	С	Α	I	Ν	s	Μ	А	R	А	L	А	L	Ν	V	Ν
Shark Hfr	М	F	т	М	S	R	Μ	S	R	S	Ι	G	L	Ν	V	Ν
Shark Gci	М	F	т	М	Y	R	Μ	S	R	S	Ι	А	Α	Ν	V	Ν
Chick-B4	Т	F	I	R	F	R	А	S	Ν	V	L	А	L	Ν	I	Ν
Chick-B15	Т	F	I	G	F	R	А	S	Ν	V	L	т	L	Ν	I	Ν
Xenopus-2f	М	F	S	Н	S	s	V	S	R	А	Ι	А	Α	Ν	V	Ν
Xenopus-2j	М	F	S	L	А	R	V	S	R	S	I	А	Α	Ν	V	Ν
Mouse	L	F	т	М	S	R	Μ	S	R	W	L	Ρ	F	Ν	А	Ν
Rat-2B	L	F	т	М	S	R	Μ	S	R	W	L	Ρ	F	Ν	А	Ν
Rat-2A	L	F	Α	Е	S	R	Μ	S	Q	W	L	S	L	Ν	А	Ν
Human	Т	Y	т	М	S	R	Μ	S	Ν	W	L	Ρ	L	Ν	Α	Ν

Table S3. Selected residues of the specificity loop within Tap2 molecules from species with polymorphic alleles. An alignment of deduced amino acid sequences highlights three cis-modification (cim) residues at positions 217, 262, and 266 (above in bold) that have been shown to have functional roles in determining Tap2 peptide transport specificity (4). Zebrafish chromosome and core MHC haplotype identifiers are provided in parentheses (when applicable). Accession numbers and species identifiers are provided in Dataset S1.

Human

β5 β6 β7

5	6	7	Constitutive
8	6	7	Intermediate I
8	9	7	Intermediate I
8	9	10	Immuno-
11	9	10	Thymo-

β5	β6	β7	
			-
5	6	7	Constitutive
8a	6	7	Intermediate 1
8f	6	7	Intermediate 2
8a	9a	7	Intermediate 3
8f	9a	7	Intermediate 4
8a	9b	7	Intermediate 5
8f	9b	7	Intermediate 6
8a	9a	10	Immuno- 1
8f	9a	10	Immuno- 2
8a	9b	10	Immuno- 3
8f	9b	10	Immuno- 4
8a	9a	13a	Immuno- 5
8f	9a	13a	Immuno- 6
8a	9b	13a	Immuno- 7
8f	9b	13a	Immuno- 8
8a	9a	13b	Immuno- 9
8f	9a	13b	Immuno- 10
8a	9b	13b	Immuno- 11
8f	9b	13b	Immuno- 12
11a	9a	10	Thymo- 1
11b	9a	10	Thymo- 2

าลท		

Zebrafish

Table S4. Proteasome subunit combinations in zebrafish. Distinct proteasome subunit compositions in teleosts may number as high as 30, even when constrained according to cooperative subunit assembly rules (5), which specify for example Psmb8 incorporation before Psmb9. This suggests many additional subunit combinations in zebrafish compared with humans, where only five combinations are known.

11a

11b

11a

11b

11a

11b

11a

11b

11a

11b

9b

9b

9a

9a

9b

9b

9a

9a

9b

9b

10

10

13a

13a

13a

13a

13b

13b

13b

13b

Thymo-3

Thymo-4

Thymo- 5

Thymo-6

Thymo-7

Thymo- 8 Thymo- 9

Thymo-10

Thymo-11

Thymo-12

	Hom.	Het.	% Het.
CG1	396319	7254	1.80
CG2	533084	8618	1.59
WT1	37161	6332	14.56
WT2	57103	6381	10.05

Comparison of SNP variant calls identified from whole exome Table S5. sequencing. CG1 and CG2 double haploid clonal zebrafish samples were subjected to whole exome sequencing and analyzed for genetic variation. Pooled samples of each clonal line showed a substantial number of SNPs that varied from the reference genome (approximately 400,000-500,000), but the vast majority (>98%) were called as homozygous, approaching fixation of homozygous SNPs within each clonal line. Comparison of the clonal zebrafish heterozygous SNP percentages with the percentage of heterozygous SNPs identified from two individual wild-type samples (WT1 and WT2) showed that heterozygous SNPs are enriched by nearly an order of magnitude in the wild-type samples. This was observed even though each wild-type was sequenced and processed as an individual and not pooled, which may lead to fewer confident calls for each individual wild-type fish compared with four pooled clonal samples, especially for heterozygous SNPs due to fewer reads for each possible genotype. Of note, this SNP analysis likely over-estimates the genetic variation of the double haploid clonal lines, due to possible ambiguous mapping of paralogs or repeats, along with potential errors in sequencing from either genome. 'Hom.' represents number of homozygous SNPs, 'Het.' is the number of heterozygous SNPs, and '%Het.' is the percentage of heterozygous SNPs when divided by the total, where Hom. + Het. = 100%.

Gene	Subunit	Additional	Previous		Ensembl	Chr.
names	names	Names	names		Gene	Haplo.
nomhE	h oto F	LMPX, constitutive		ZDB-GENE-	ENSDARG0	0
psnbb	Delas	proteasome subunit β5	-	990415-215	0000075445	2
nomb6	h ata 1	LMPY, delta, constitutive		ZDB-GENE-	ENSDARG0	22
psnbo	belai	proteasome subunit β6	-	990415-216	0000002240	23
nomh7	h ata Q	LMPZ, constitutive		ZDB-GENE-	ENSDARG0	04
psmb7	betaz	proteasome subunit β7	-	001208-4	0000037962	21
mamah Qa	h ete Cie	LMP7A, immune-	manah O	ZDB-GENE-	ENSDARG0	19
psmb8a	Detabla	proteasome subunit 5ia	psmb8	990415-141	0000001303	А
nombOf	h oto Fif	LMP7F, immune-		ZDB-GENE-		19
psmboi	Detabli	proteasome subunit β5if	-	050417-319		D
namhOa	hoto1io	LMP2A, immune-		ZDB-GENE-	ENSDARG0	19
psmb9a	Dela na	proteasome subunit β1ia	-	990415-140	000000656	A,B
nombOb	hoto1ih	LMP2B, immune-		ZDB-GENE-		19
psinb9b	Dela IID	proteasome subunit β1ib	-	001208-3		D
nomb10	hoto?i	LMP10, MECL1, immune-		ZDB-GENE-	ENSDARG0	4
psnibio	Delazi	proteasome subunit β2i	PSIVIDIU	040718-278	0000043781	4
nomb110	hoto Eto	Thymoproteasome		ZDB-GENE-	ENSDARG0	22
psmbrra	Delabla	subunit β5ta	-	040724-32	0000078253	23
nomb11b	hoto Eth	Thymoproteasome			ENSDARG0	0
psinorro	Delabib	subunit β5tb	-		0000068086	2
nemb12	boto1t	LMP2/delta-like, teleost	psmb9l,	ZDB-GENE-	ENSDARG0	19
psilibitz	Delan	proteasome subunit β1t	psmb11	001208-1	0000031885	A,B
nemb122	boto2to	PSMB7/10-like, teleost	psmb10,	ZDB-GENE-	ENSDARG0	19
psilipisa	Delazia	proteasome subunit β2ta	psmb12	001208-2	0000001656	A,B
nemb12b	hoto2th	PSMBb7/10-like, teleost				19
	Delazio	proteasome subunit β2tb	-			D

Table S6. Zebrafish proteasome subunit nomenclature. Gene names approved by the zebrafish nomenclature committee are listed in the first column of this table, and names advanced by this study highlighted in bold (accommodating the novel genes). The 'Subunit names' and 'Additional names' columns both provide alternate identifiers. 'Previous names' refers to other potentially conflicting zebrafish nomenclature. The ZFIN and Ensembl database identifiers are listed for each gene when available. The final column provides chromosome (Chr.) and specific haplotype identifiers (Haplo.) for the zebrafish core MHC locus (when applicable).

Gene	Additional	Previous		Ensembl	Chr.
names	Names	names		Gene	Haplo.
tan1	transporter associated with	abcb2	ZDB-GENE-	ENSDARG00	16
	antigen processing (TAP) 1	asosz	050517-43	000079766	10
tan2a	tan2 subunit type a	abch3l1	ZDB-GENE-	ENSDARG00	19
lapza	tapz subdrift type a	8000011	030616-245	000036787	A,B
ton2h	tan2 aubunit tuna b	abab212	ZDB-GENE-		19
ιαμευ	lapz subunit type b	abcbsiz	030616-225		А
40.000	ton? aubunit tuna a	abab 2	ZDB-GENE-		19
tapzc	tapz subunit type c	abcb3	990415-260		А
40m2d	ton? aubunit type d				19
ταρΖά	tapz subunit type d	-			D
40.000					19
tapze	<i>tapz</i> subunit type e	-			D
40.024	<i>tap2</i> subunit type t,	ton 2 like	ZDB-GENE-	ENSDARG00	40
tapzt	teleost-specific	арг-шке	130531-48	000033446	12
tanhn	tap binding protein, tapasin,				19
ιαρορ	tpsn	-			A,D
tonhn d	tap binding protein tandem		ZDB-GENE-	ENSDARG00	19
арор.1	duplicate 1, tapasin gene 1	IAPBP	010110-2	000045011	В
	tap binding protein tandem	tonha		ENSDARG00	19
ταρόρ.2	duplicate 2, tapasin gene 2	ταρορ		000079402	В
	· · · · ·				

Table S7. Zebrafish TAP and *tapbp* gene nomenclature. Gene names approved by the zebrafish nomenclature committee are listed in the first column of this table, and names proposed during this study are highlighted in bold (accommodating novel genes). The 'Additional names' column provides alternative identifiers. 'Previous names' refers to other potentially conflicting zebrafish nomenclature. The ZFIN and Ensembl database identifiers are listed for each gene when available. The final column provides chromosome (Chr.) and specific haplotype identifiers (Haplo.) for the zebrafish core MHC locus (when applicable).

Psmb13_Salmon_(Salmo_salar) Psmb13_Fugu_(Takifugu_rubripes) Psmb13_Medaka_(Oryzias_latipes) Psmb13_Damselfish_(Stegastes_partitus) Psmb13_A_Zebrafish_(19B) Psmb13_B_Zebrafish_(19D) ABQ59647 XP_003978905 NP_001171882 XP_008301222 NP_571752 GDQH01002062.1

Table S8. Accession numbers for selected teleost Psmb13 subunits. For zebrafish (*Danio rerio*) sequence names, chromosome number and core MHC haplotype identifier are appended in parentheses.

HLA-A Specif.	С	FS T		м		L	Q	QH	V	S	н	IS	NH	А				
HLA-B Specif.	Н	DH	PT	EG K T	HF	Ρ	D	IT	C F SY	RI T	NK S		GY		CG	NK	Ρ	DH
HLA Common	Y	Y	AS	М	Y	RQ EG	NE	NK	М	AG	Q	AT	D	EV	ND S	п	AL	Y
Position	7	9	24	45	59	62	63	66	67	69	70	73	74	76	77	80	81	84
Uaa	Y	Y	V	т	Y	R	E	I	F	G	A	V	F	N	N	V	I	R
Uba	А	Y	Α	F	Y	Q	Q	I	L	G	Y	V	F	Ν	Ν	V	V	R
Uca	А	Y	Α	F	Y	Q	Q	I	L	R	н	к	F	Ν	Ν	V	Α	R
Uda	Y	F	Α	S	Y	R	Q	L	А	G	Y	V	Y	v	D	т	L	R
Uea	Y	Y	V	т	Y	R	Е	I	F	G	А	V	F	Ν	Ν	V	Ι	R
Ufa	V	Y	Α	V	F	R	Ν	I	R	Ν	М	L	F	Ν	Ν	Т	Α	R
Uga	Y	Y	М	А	Y	Ι	Ν	R	L	Α	Т	Α	F	Ν	Ν	V	Α	R
Uha	А	Y	Α	F	Y	Q	Е	Т	L	G	н	S	F	Ν	Ν	V	Α	R
Uia	Y	Ι	s	М	Y	R	Е	R	Е	G	Ι	V	F	Ν	Ν	Т	Α	R
Uja	Y	Y	Ι	М	F	R	Ν	I	А	G	Т	Ν	F	Ν	Ν	V	Α	R
Uka	А	Y	Α	F	Y	Q	Q	I	L	R	н	т	F	Ν	Ν	V	Α	R

Table S9. Polymorphic peptide binding residues conserved between zebrafish and human MHCI molecules. MHC Class I (MHCI) sequence polymorphisms predicted to be in contact with peptides in the binding cleft are shown for human HLA-A and HLA-B molecules. Residues are listed as specific to either HLA-A or HLA-B alleles, or common to both, as described (6). Columns provide MHCI residue numbering according to IMGT nomenclature. Amino acid polymorphism at these peptide binding sites is highly pervasive for the 11 zebrafish MHCI molecules, while the majority (~62% found across 34 positions) of these zebrafish polymorphic residues are also shared with HLA-A and/or HLA-B. Shared polymorphisms at each position are highlighted in bold. Polymorphisms are shared between zebrafish and humans at all positions, with the exception of position 84, where the Y84R substitution is found throughout non-mammalian vertebrates. This overlap in substitutions across species indicates either shared ancestry for these alleles preserved across species, or continued exploration through a highly conserved stereo-chemical space. Additional residues are shown in Table S10.

HLA-A Specif.	F٧	IK	н	R Q EP	V				V	RM	А Q S	ES	LP	PW	R	DI
HLA-B Specif.	W	NS T W V		NDK	L	С	IPS	GL		QT	DE T	т	СТ	М	L	
HLA Common	IL	RM	CF SY	н	N D HF S Y	Y	т	w	AP	A E VW	RL W	APV	Y	AR EG LT	GS W	HTY
Position	95	97	99	114	116	118	143	147	150	152	156	158	159	163	167	171
	F	w	v	м	v	v	т	w	т	۸	0	N	v	т	w	v
Uaa			v	101		· v	+		, т	,	ν. 	0	v			v
Uba	Г.	г _	T	vv	1	T	-	vv	1	A	vv	G	T	E	vv	T
Uca	L	E	Y	R	Y	Y	т	w	D	G	D	Ν	Y	E	w	Y
Uda	I	Е	Y	Y	D	Y	т	w	D	Α	Q	Ν	Y	Е	w	Y
Uea	F	Q	Y	D	T	Y	т	w	Ν	G	Y	G	Y	V	w	Y
Ufa	F	F	v	W	Y	Y	т	w	Ν	Α	R	Q	Y	Q	w	Y
Uga	F	v	Y	W	Y	Y	т	w	D	Α	т	S	Y	Е	w	Y
Uha	Ν	R	Y	F	D	Y	т	L	D	Α	Y	Ν	Y	Е	w	Y
Uia	V	Ν	Y	D	Y	Y	т	w	Ν	Α	Y	Ν	Y	Е	w	Y
Uja	V	А	Y	к	F	Y	т	w	D	G	D	Ν	Y	V	w	Y
Uka	F	Е	Y	R	Y	Y	т	w	D	G	D	Ν	Y	Е	w	Y

Table S10. Polymorphic peptide binding residues conserved between zebrafish and human MHCI molecules (continued). MHC Class I (MHCI) sequence polymorphisms predicted to be in contact peptides in the binding cleft are shown for human HLA-A and HLA-B molecules. Residues are listed as specific to either HLA-A or HLA-B alleles, or common to both, as described (6). Columns provide MHCI residue numbering according to IMGT nomenclature. Amino acid polymorphism at these sites is pervasive for the 11 zebrafish MHCI molecules, while the majority (>62% found across 34 positions) of these zebrafish polymorphic residues are also shared with HLA-A and/or HLA-B. Shared polymorphisms are highlighted in bold. Polymorphisms are shared between zebrafish and humans at all positions, with the exception of position 150. This overlap in substitutions across species indicates either shared ancestry for these alleles preserved across species, or continued exploration through a highly conserved stereo-chemical space. Additional residues are shown in Table S9.

	Allele 1 Accession	Allele 2 Accession	Allelic Diver.	EST or TSA allele support	EST or TSA allele support	Species Identifier
Psmb8						
Human	NP_683720	<u>AHW47925.1</u>	0.4%	BQ053596.1	BM919976.1	H. sapiens
Xenopus	NP_001080028.1	NP_001084323.1	13.4%	<u>JZ824716.1</u>	DC123145.1	X. laevis
Shark	AAL59862.1	AAL59861.1	22.4%	-	-	H. francisci
Salmon	AAG43439.1	ACI66984.1	27.9%	DY720790.1	<u>GO056345.1</u>	S. salar
Zebrafish	<u>NP_571467.3</u>	<u>NP_001017791.1</u>	30.8%	<u>EH453180.1</u>	<u>CO813836.1</u>	D. rerio
Psmb9						
Human	AAV38527.1	CAA44603.1	0.9%	CR997314.1	BQ051470.1	H. sapiens
Xenopus	NP_001003660.1	XP_004920717.2	4.2%	DN061107.1	EL726920.1	X. tropicalis
Shark	AAL59852.1	-	NA	-	-	C. milii
Salmon	NP_001117174.1	ACI69781.1	0.5%	EG867804.1	EG797054.1	S. salar
Zebrafish	<u>NP_571466.1</u>	<u>NP_571753.1</u>	13.6%	<u>DN894394.1</u>	<u>AW076691.1</u>	D. rerio
Psmb13						
Human	-	-	NA	-	-	H. sapiens
Xenopus	-	-	NA	-	-	X. tropicalis
Shark	XP_007882653.1	AFK10751.1	1.5%	JK959871.1	<u>JK931281.1</u>	C. milii
Salmon	XP_013997221.1	ABQ59681.1	7.2%	DY734168.1	DY740375.1	S. salar
Zebrafish	<u>NP_571752.1</u>	GDQH01002062.1	29.5%	EH507326.1	GDQH01002062.1	D. rerio
Tap2						
Human	<u>NP_000535.3</u>	AAP36912.1	0.1%	BM549545.1	BG285267.1	H. sapiens
Xenopus	NP_001081860.1	NP_001085260.1	29.5%	EB467320.1	CD363178.1	X. laevis
Shark	AGQ17917.1	AAL59859.1	0.4%	-	-	G. cirratum
Salmon	NP_001133546.1	NP_001117161.1	9.1%	DW580394.1	GE796559.1	S. salar
Zebrafish	<u>GDQH01014094.1</u>	CAD58764.1	49.7%	GDQH01014094.1	<u>EB986911.1</u>	D. rerio
МНСІ						
Human	NP_001229687.1	<u>NP_002108.4</u>	20.8%	<u>BQ900919.1</u>	AL540488.3	H. sapiens
Xenopus	NP_001079871.1	AAF03407.1	18.9%	<u>CF284001.1</u>	CD329590.1	X. laevis
Shark	AAB97322.1	AAB97346.1	16.3%	-	-	T. scyllium
Salmon	<u>AAN75113.1</u>	AAN75119.1	29.1%	<u>GO056509.1</u>	<u>GE771800.1</u>	S. salar
Zebrafish	NP_571546.1	Q8HWF3	52.0%	EH497205.1	EH452240.1	D. rerio

Table S11. Divergent alleles encoding proteasome, TAP, and MHCI molecules within

different vertebrates. Divergent alleles were identified using the BLAST algorithm with 'EST', 'TSA', and 'nr' databases across representative vertebrate species. Highest divergence levels for predicted amino acid sequences ('Allelic Diver.') were calculated using BLAST, with Divergence(%) = 100(%) – Identity(%). Levels are likely to underestimate sequence diversity found among species, considering limitations such as under-sampling. No sequence found is indicated by '-', and 'NA' means not applicable (as no percentage could be calculated).

	Allele 1 Accession	Allele 2 Accession	Allelic Diver.	EST or TSA allele support	EST or TSA allele support	Species Identifier
Psmb8						
Mouse	NP_034854.2	AAA75035.1	0.4%	CX233063.1	BI412709.1	M. musculus
Chicken		-	NA	-		G. gallus
Coelacanth	XP_006001021.1	-	31.4%	GAPS01019864.1	GAPS01046775.1	L. menadoe.
Gar	XP_015195220.1	XP_006643413.2	8.5%	-	-	L. oculatus
Medaka	NP_001171881.1	BAD93264.1	18.5%	BJ880842.1	BJ918390.1	O. latipes
Fugu	XP_003978904.1	-	1.5%	CA591128.1		T. rubripes
Psmb9						
Mouse	BAA40680.1	BAE31463.1	2.0%	<u>BI854415.1</u>	<u>BY708333.1</u>	M. musculus
Chicken	-	-	NA	-	-	G. gallus
Coelacanth	XP_006001022.1	-	0.9%	GAPS01037885.1	-	L. chalamnae
Gar	-	-	NA	-	-	L. oculatus
Medaka	NP_001265756.1	BAA19766.1	0.5%	DC274529.1	BJ508286.1	O. latipes
Fugu	CAC13120.1	-	NA	-	-	T. rubripes
Psmb13						
Mouse	-	-	NA	-	-	M. musculus
Chicken	-	-	NA	-	-	G. gallus
Coelacanth	-	-	NA	-	-	L. chalamnae
Gar	-	-	NA	-	-	L. oculatus
Medaka	NP_001171882.1	BAH29626.1	9.1%	DC251640.1	DC249921.1	O. latipes
Fugu	<u>XP_003978905.1</u>	-	1.0%	<u>BU805709.1</u>	-	T. rubripes
Tap2						
Mouse	AIC84017.1	BAE31870.1	1.1%	<u>BI659951.1</u>	CX227308.1	M. musculus
Chicken	NP_001092827.1	AEE25622.1	1.9%	CD217563.1	<u>BU304487.1</u>	G. gallus
Coelacanth	XP_006001020.1	-	0.0%	GAPS01015709.1		L. chalamnae
Gar	XP_006001020.1	-	NA	-	-	L. oculatus
Medaka	NP_001265816.1	BAB84549.1	1.8%	-	-	O. latipes
Fugu	<u>XP_011615666.1</u>	-	NA	-	-	T. rubripes
MHCI						
Mouse	<u>NP_001001892.2</u>	<u>NP_034510.3</u>	16.4%	CX226952.1	CX226363.1	M. musculus
Chicken	NP_001026509.1	BAD69566.1	23.0%	DR424122.1	DN930113.1	G. gallus
Coelacanth	AAA52345.1	AAA52352.1	14.7%	GAAA01059221.1	GAAA01003285.1	L. chalamnae
Gar	<u>XP_015195141.1</u>	XP_015195219.1	20.6%	-	-	L. oculatus
Medaka	NP_001265807.2	BAJ07296.1	22.7%	DK094922.1	FS531937.1	O. latipes
Fugu	XP_011607434.1	H2RYR0	20.3%	CA589387.1	CA589387.1	T. rubripes

Table S12. Divergent alleles encoding proteasome, TAP, and MHCI molecules within

additional vertebrates. Divergent alleles were identified using the BLAST algorithm with 'EST', 'TSA', and 'nr' databases across representative vertebrate species. Highest divergence levels for predicted amino acid sequences ('Allelic Diver.') were calculated using BLAST, with Divergence(%) = 100(%) – Identity(%). Levels are likely to underestimate sequence diversity found among species, considering limitations such as under-sampling. No sequence found is indicated by '-', and 'NA' means not applicable (as no percentage could be calculated). Sequences highlighted in green were used to calculate divergence.

	Diver.	Estimated
	Sum	Level
Human	22.2%	1
Xenopus	66.0%	3
Shark	40.6%	2
Salmon	73.8%	3
Zebrafish	175.6%	6
Mouse	19.9%	1
Chicken	24.9%	1
Coelacanth	47.0%	2
Gar	29.1%	2
Medaka	52.6%	2
Fugu	22.8%	1

Table S13. Combined allelic diversity estimates for proteasome, TAP, and MHCI

molecules. Sequences provided in tables S11-12 were used to calculate highest divergence levels for alleles from each of the five MHC pathway genes across eleven vertebrate species. Cumulative levels of divergence were summed across the five genes (Diver. Sum) for individual species, and then used to estimate the overall level of lineage diversity throughout the MHC pathway for each species (Estimated Level), using a bin of 30 for levels.

McConnell et al.

For Datasets S1-5, sequence data are provided in fasta format.

Dataset S1. Accession numbers and sequence data for proteasome subunits. Sequences were derived from tBLASTn searches of 'nr', 'WGS', 'TSA', and 'EST' databases within NCBI querying vertebrate species of interest. Additional searches of the Ensembl and Uniprot databases were used to add additional sequences. The resulting sequences were used for multiple sequence alignments, phylogenetic analysis, and conserved synteny analysis to help identify sequence relationships.

Dataset S2. Accession numbers and sequence data for TAP subunits. Sequences were derived from tBLASTn searches of 'nr', 'WGS', 'TSA', and 'EST' databases within NCBI querying vertebrate species of interest. Additional searches of the Ensembl and Uniprot databases were used to add additional sequences. The resulting sequences were used for multiple sequence alignments, phylogenetic analysis, and conserved synteny analysis to help identify sequence relationships.

Dataset S3. Transcripts associated with zebrafish chromosome 19 core MHC haplotype D genes. Transcripts assembled from immune tissues of CG2 clonal zebrafish are provided, as listed in Supplemental Table 2, derived from the non-normalized Transcriptome Shotgun Assembly (TSA) which has been deposited under accession GDQH00000000 (the version described in this paper is the first version, GDQH0100000).

Dataset S4. Zebrafish antigen processing genes from the divergent chromosome 19 haplotype D. Deduced Proteasome and TAP amino acid sequences are provided from zebrafish core MHC haplotype D. Chromosome number and haplotype identifier are given in parentheses.

McConnell et al.

Dataset S5. Zebrafish chromosome 19 core MHC scaffold sequences. Genomic scaffolds from the CG2 clonal zebrafish assembly (core MHC haplotype D) are provided as illustrated in Figure 2 ('rc' indicates reverse complement), derived from the CG2v1.0 *de novo* assembly which has been deposited under Whole Genome Shotgun (WGS) accession LKPD00000000 (the version described in this paper is the first version, LKPD0100000).

Supplementary references

- 1. Tsukamoto, K, Miura F, Fujito N, Yoshizaki G, Nonaka M (2012) Long-lived dichotomous lineages of the proteasome subunit beta type 8 (PSMB8) gene surviving more than 500 million years as alleles or paralogs. *Mol Biol Evol* 29(10):3071–3079.
- 2. Huang C-H, Tanaka Y, Fujito NT, Nonaka M (2013) Dimorphisms of the proteasome subunit beta type 8 gene (PSMB8) of ectothermic tetrapods originated in multiple independent evolutionary events. *Immunogenetics* 65(11):811–821.
- 3. Sutoh Y, et al. (2012) Comparative genomic analysis of the proteasome β5t subunit gene: implications for the origin and evolution of thymoproteasomes. *Immunogenetics* 64(1):49–58.
- 4. Deverson EV, et al. (1998) Functional analysis by site-directed mutagenesis of the complex polymorphism in rat transporter associated with antigen processing. *J Immunol* 160(6):2767–2779.
- 5. Guillaume B, et al. (2010) Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. *Proc Natl Acad Sci* 107(43):18599–18604.
- 6. Nielsen M, et al. (2007) NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. *PLoS ONE* 2(8):e796.