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Induction of I-PpoI by dexamethosone results in cell death in Arabidopsis roots
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Dexamethasone does not affect germination performance of wild type
germination paper pre-wetted with 10 µM dexamethasone or 0.5% DMSO (control) and stratified at 4°C for
48h before transfer to 20°C
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PpoI by dexamethosone results in cell death in Arabidopsis roots of 7 d seedlings.
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PpoI by dexamethosone results in cell death in Arabidopsis roots of 7 d seedlings.
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Table S1: Heat map of DNA repair gene transcript levels in dormant seeds.

Data are mean absolute transcript values obtained from Arabidopsis eFP browser
(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) based on published microarray experiments (1-4).

Abbreviation Treatment
PDD Primary dormant: seeds dry (will not complete germinate when imbibed in Light or dark).
DDL Primary dormant seeds, dry after-ripened: seeds dry (will germinate when imbibed in the

light).
PD24h Primary dormant seeds imbibed for 24 h (will not complete germination).
PD48h Primary dormant: seeds imbibed for 48 h in the dark (will not complete germination).
PD30d Primary dormant: seeds imbibed for 30 days in the dark (will not complete germination).
SD1 Secondary dormant: DL seeds imbibed in the dark for a further 24 days (sensitive to nitrate).
SD2 Secondary dormant: SD1 seeds imbibed at 3°C in the dark for 20 days (insensitive to nitrate).
PDC Primary dormant seeds after-ripened for 117 days and then imbibed for 4 days at 3°C (will not

complete germination unless exposed to light).
PDL Primary dormant seeds after-ripened for 91 days and then imbibed for 24 h in the light (will

not complete germination).
ND Dry after-ripened seeds imbibed for 24 h (will germinate if placed in the light).
PDN Primary dormant seeds after-ripened for 91 days and then imbibed for 24 h on a 10 mM KNO3

solution (will not complete germination unless exposed to light).
PDLN Primary dormant seeds after-ripened for 91 days and then imbibed in white light for 24 h on a

solution 10 mM KNO3 (will complete germination).
LIG Dry after-ripened seeds imbibed for 20 h in the dark and then 4 h in red light (will complete

germination).
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Figure S6: Initiation of S-phase in germination

Figure S6: Initiation of S-phase in germination
EdU labelling of unaged wild type seeds reveals S-phase cells in the tip of the embryonic root and spreading up
the root axis as germination progresses. Autofluorescence is observed in cotyledons. DAPI staining of nuclear
DNA is shown as magenta and newly synthesized EdU labeled DNA is colored green and indicated by arrows in
panel B and D and circled in panels C and E. The outline of the embryo is inducted in the merged images by a
dotted white line. Panels A to F are seeds at progressively further stages though germination. (A) ungerminated
(B-D) seed coat split (E-F) germinated with the radicle fully emerged from the seed coat. Bar is 50μm. 

A B C

D E F



Figure S7: Initiation of S

Figure S7. DNA replication in seeds aged for 14 days at 35°C, 83% RH.
cells in S-phase
phase cells relative to wild type controls, correlating with increased viability observed in the mutant lines
3).

: Initiation of S

. DNA replication in seeds aged for 14 days at 35°C, 83% RH.
phase as described in Fig.4

phase cells relative to wild type controls, correlating with increased viability observed in the mutant lines

: Initiation of S-phase in seeds aged

. DNA replication in seeds aged for 14 days at 35°C, 83% RH.
as described in Fig.4

phase cells relative to wild type controls, correlating with increased viability observed in the mutant lines

phase in seeds aged for 14d

. DNA replication in seeds aged for 14 days at 35°C, 83% RH.
as described in Fig.4. Both atr

phase cells relative to wild type controls, correlating with increased viability observed in the mutant lines

for 14d .

. DNA replication in seeds aged for 14 days at 35°C, 83% RH.
atr and atm mutants display greater number of embryos with S

phase cells relative to wild type controls, correlating with increased viability observed in the mutant lines

. DNA replication in seeds aged for 14 days at 35°C, 83% RH. Embryos were scored for the presence of
mutants display greater number of embryos with S

phase cells relative to wild type controls, correlating with increased viability observed in the mutant lines

Embryos were scored for the presence of
mutants display greater number of embryos with S

phase cells relative to wild type controls, correlating with increased viability observed in the mutant lines

Embryos were scored for the presence of
mutants display greater number of embryos with S

phase cells relative to wild type controls, correlating with increased viability observed in the mutant lines

Embryos were scored for the presence of
mutants display greater number of embryos with S

phase cells relative to wild type controls, correlating with increased viability observed in the mutant lines (Fig

8

Embryos were scored for the presence of
mutants display greater number of embryos with S-

(Fig.



Figure S8: Analysis of WEE1 in seed germination

Figure S8 Analysis of WEE1 in seed germination
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Figure S10: Transcript levels of SMR5 Arabidopsis seeds during dormancy cycling in the seed soil bank.

Figure S10: Transcription of ATM and SMR5 and germination potential of seeds in the soil seed bank.
Transcription profiles of ATM and SMR5 in seeds recovered from the soil over 12 months from October
2007.Germination at 20°C in the light of seeds recovered from the soil at monthly intervals. Seedling
emergence (% of total emerged) in the field following monthly soil disturbance (n=4). Error bars indicate the
standard error of the mean, n=3. Germination and emergence data are from Footitt et al., 2011 (19) and with
ATM transcript levels are also displayed in Figure 2 of the main text.
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Figure S14: Construction of the pPPOΔGR vector:  Codon optimized I-PpoI. 

atggctaagtctaatcaagctagagttaacggaggatctaattatgattctcttactcct
M A K S N Q A R V N G G S N Y D S L T P
cttaatatggctcttactaatgctcaaattcttgctgttattgattcttgggaagaaact
L N M A L T N A Q I L A V I D S W E E T
gttggacaatttcctgttattactcatcatgttcctcttggaggaggacttcaaggaact
V G Q F P V I T H H V P L G G G L Q G T
cttcattgttatgaaattcctcttgctgctccttatggagttggatttgctaagaacgga
L H C Y E I P L A A P Y G V G F A K N G
cctactagatggcaatataagagaactattaatcaagttgttcatagatggggatctcat
P T R W Q Y K R T I N Q V V H R W G S H
actgttccttttcttcttgaacctgataatatcaacggaaagacttgtactgcttctcat
T V P F L L E P D N I N G K T C T A S H
ctttgtcataatactagatgtcataatcctcttcatctttgttgggaatctcttgatgat
L C H N T R C H N P L H L C W E S L D D
aataagggaagaaattggtgtcctggacctaacggaggatgtgttcatgctgttgtttgt
N K G R N W C P G P N G G C V H A V V C
cttagacaaggacctctttatggacctggagctactgttgctggacctcaacaaagagga
L R Q G P L Y G P G A T V A G P Q Q R G
tctcattttgttgtt
S H F V V

Figure S15: Map of pPPOΔGR. 
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Table S2: QPCR primers
Forward Reverse

At4g34270 Tip 41-like gtgaaaactgttggagagaagcaa tcaactggataccctttcgca
At4g12590 gagatgaaaatgccattgatgac gcacccagactctttgatg
AT3g48190 ATM gatggccatgaggcattatt tctcctttgaggaggttaccaa
AT5g40820 ATR ctggagaagcctgagttggt atgcccaaaccatcaatcat
AT1g66730 LIG6 cagaaagctgtttcagggaga aggaacaaccacgtccagag
AT3G18780 Actin tccctcagcacattccagcagat aacgaattctggacctgcctcatc
AT1G49250 AtLIG4 ctttagtttcgaaaagcgaaatg cttgtagtggatcctcatgg
AT5G20850 RAD51 gttcttgagaagtcttcagaagttag gctgaaccatctacttgcgcaactac
At5g09810 ACT7 ctttaggatgcttgtgatgatgct gcgccaatataacaatcgacaata
At1g07500 SMR5 tacggtgacggttgatgatg gctgctaccaccgagaagaa
At3g27630 SMR7 ccggtgaagacgaaactcat caccaactcgaaatctgaagg
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Supplementary methods

Nucleic acid purification and cloning
DNA procedures and bacterial manipulations were by established protocols (36). RNA was isolated from above
ground tissues of flowering Arabidopsis using the SV total RNA isolation kit (Promega) according to the
manufacturer’s instructions. Plasmid DNA was prepared using QIAGEN columns according to the
manufacturer’s instructions (Qiagen). cDNA synthesis was performed with Superscript II reverse transcriptase
(Invitrogen) and followed by amplification with iProof DNA polymerase (Bio-Rad). Analytical PCR was
performed using PCR Reddymix (ABGene) and analyzed by agarose gel electrophoresis. Real-time RT-PCR
analysis was performed on a CFX96 thermocycler (Bio-Rad), as described previously (5), using SYBR Green
Supermix (Bio-Rad). A plant codon-optimized I-PpoI gene was synthesized (Genscript, SI Appendix, Fig S14) and
cloned into pBI-ΔGR and the expression cassette subcloned into pCB1300 carrying a I-PpoI recognition site to 
create pPPOΔGR (SI Appendix, Fig S15). Propidium iodide (PI) staining was performed using 10μg.ml-1 PI in
water and EdU labeling was performed as described previously (6) and analyzed on a Zeiss LSM700 Inverted
confocal microscope. Quantification of anaphase figures was performed on radicle tissue isolated 6h into the
16h light phase of a 16/8h light dark cycle and analyzed using a Zeiss LSM880 Upright confocal laser scanning
Airyscan deconvolution microscope.

Dormancy analysis
Seeds production, harvest, storage and details of seed burial in, and recovery from field soils and post-recovery
seed handling are as described previously (7). RNA was extracted from seeds as described elsewhere (8). cDNA
synthesis and Quantitative PCR was performed in triplicate on each of three independent biological samples as
in ref 13 using a 1/25 dilution of cDNA and the following touchdown PCR thermal cycle: one cycle at 95°C for
10 min followed by 50 cycles at 95 °C for 30s, 70°C (decreasing by 0.2°C/cycle to a target temperature of 67°C)
for 30s, and 72 °C for 30s. Data was analyzed using LightCycler® 480 software (version 1.5; Roche Diagnostics).
Gene expression levels were determined using a cDNA dilution series of the primer pairs of each gene (SI
Appendix, Table S2) of interest with normalization against the combined mean at each time point of the
reference genes At4g34270 (Tip 41-like) and At4g12590. These reference genes have highly stable transcripts
in Arabidopsis seeds in both microarray and QPCR studies (2, 3, 9).
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