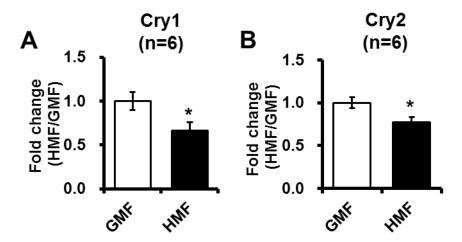
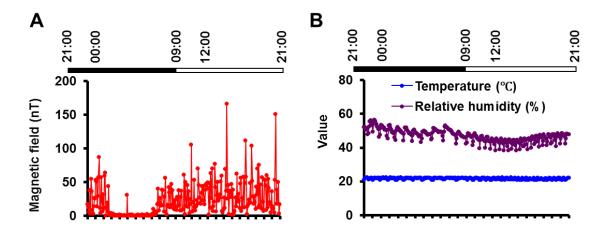


Elimination of the Geomagnetic Field Stimulates the Proliferation of Mouse Neural Progenitor and Stem Cells


Jing-Peng Fu^{1,3,†}, Wei-Chuan Mo^{12,†}, Ying Liu^{1,3,*}, Perry F. Bartlett², and Rong-Qiao He^{1,3,4,*}


Supplementary Figure S1. Representative images of NSs from day 2 to day 6 cultures. **A–E**: HMF-exposed NSs. **F–J**: GMF-control NSs. The morphologies of the NSs exposed to the HMF were similar to those exposed to the GMF but the size of the HMF-exposed NSs appeared to be larger.

Supplementary Fig. S2. Large NSs (diameter > 150 μ m) from the HMF-exposed or GMF control primary cultures could be continuously passaged for 9 passages from an independent experiment.

Supplementary Figure S3. Expression of the magneoreceptor genes Cry1 and Cry2 at the mRNA level, measured using qPCR. After 7 days exposure in the HMF condition, both Cry1 and Cry2 were down-regulated. n is the number of animals from three independent experiments. Data are shown as mean \pm SEM. p values were calculated using a one-way ANOVA for mean comparisons. *p<0.05.

Supplementary Figure S4. A representative daily records of the experimental environment. **A**: The daily fluctuation of the residual magnetic field at the center of the HCS at 5 min intervals. **B**: The daily record of the relative humidity and temperature in the experimental room at 5 min intervals.

Supplementary Table S1. Magnetic field conditions for animal assay (Mo et al. 2016) (Unit: μT).

	B	Frequency (Hz)	B _x	$ \mathbf{B}_{\mathbf{y}} $	B _z			
The static magnetic field								
HMF _{center}	0.029 ± 0.029	1	0.009 ± 0.018	0.007 ± 0.010	0.023 ± 0.025			
HMF _{avreage}	0.55 ± 0.30	1	0.22 ± 0.16	0.37 ± 0.29	0.22 ± 0.22			
GMF _{center}	46.3 ± 1.24	1	25.8 ± 1.29	0.85 ± 0.56	38.5 ± 0.64			
GMF _{average}	49.88 ± 1.82	1	30.62 ± 3.94	4.51 ± 2.38	38.85 ± 1.75			
The alternating magnetic field								
HMF _{center}	11.8 ± 1.3	50	1	1	1			
GMF _{center}	11.3 ± 0.5	50	1	1	1			
GMF	13.6 ± 0.6	50	1	1	1			

Data are shown as mean \pm SD from three measurements. IB_xI , component of |B| at the direction from South to North; IB_yI , from East to West; IB_zI , vertically downward. HMF_{center} , residue magnetic field at the center of the HCS under "zero" mode; $HMF_{avreage}$, average magnetic field of the central plane of the HCS at "zero" mode; GMF_{center} , GMF at the center of the HCS when the power supplies were turned off; $GMF_{average}/GMF$, average GMF on the control table with HCS under "zero" mode.

Supplementary table S2. The primers used for qPCR assay.

Gene	primer	Sequence (5' to 3')	Tm (°C)	length (bp)
Tubulin 5α (Tubb5)	forward reverse	TCACTGTGCCTGAACTTACC GGAACATAGCCGTAAACTGC	58	318
Gapdh	forward reverse	AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA	58	123
Nestin	forward reverse	CCCACCTATGTCTGAGGCTC GGGCTAAGGAGGTTGGATCAT	58	166
Sox2	forward reverse	GCGGAGTGGAAACTTTTGTCC CGGGAAGCGTGTACTTATCCTT	62	157
Gfap	forward reverse	CCCTGGCTCGTGTGGATTT GACCGATACCACTCCTCTGTC	60	238
ßIII-tubulin (Tubb3)	forward reverse	TAGACCCCAGCGGCAACTAT GTTCCAGGTTCCAAGTCCACC	60	127
Neurod1	forward	GCAGCTCTGGAGCCCTTCTT GCGGCACCGGAAGAGAAGA	58	190
Cry1	forward	CAGACTCTCGTCAGCAAGATG CAAACGTGTAAGTGCCTCAGT	62	204
Cry2	forward reverse	AGCACTTGGAACGGAAGG CAGGCGGTAGTAGAAGAGG	62	140