
Supplementary information

MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds

Xiang Li¹, Kuaifei Xia¹, Zhen Liang², Kunling Chen², Caixia Gao² & Mingyong Zhang^{1*}

¹Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. ²State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. Correspondence and requests for materials should be addressed to M.Y. (email: zhangmy@scbg.ac.cn)

Figure S1. Supply of NH₄NO₃ triggered OsmiR393 accumulation. Small RNA gel blot analysis of OsmiR393 expression level in ZH11 under elevated NH₄NO₃ levels.

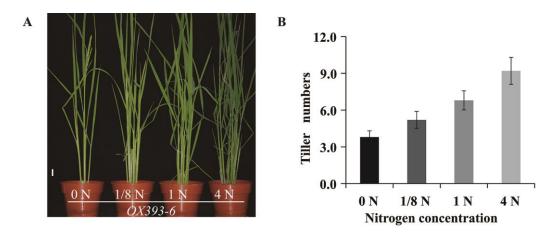


Figure S2. OsmiR393 overexpressing line (Ox393-6) treated with NH₄NO₃, exhibit increased tiller number, which is not to the extent of ZH11 in Fig. 1. B-C, Tillers of OX393-6 treated with gradient NH₄NO₃ concentrations. Bar = 3 cm. B, Statistical analysis of (A) by t-test, Vertical bars indicate standard error deviation. Three individual repeats were performed.

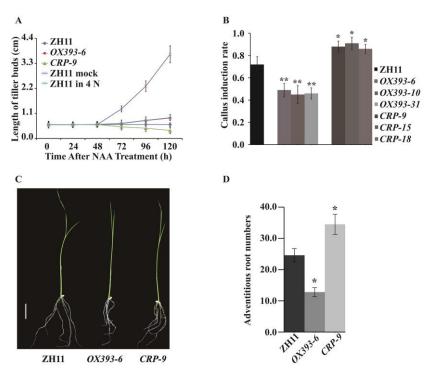
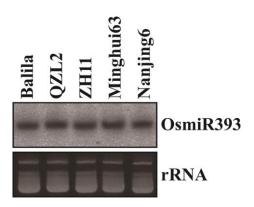



Figure S3. OsmiR393 involved in auxin signaling transduction.

A, Effect of NAA treatment on the outgrowth of rice tiller buds at the third leaf axils. Error bars represent mean \pm standard error (n = 20). The NAA spray concentration is 5 mg L⁻¹. **B**, Callus induction rate from seeds of ZH11, OsmiR393–overexpressing lines (*OX393*), and *OsMIR393* knock–out mutants (*CRP*) with 2 mg L⁻¹ NAA. **C**, Root architecture of ZH11, *OX393*–6, and *CRP*–9 under 1 N level. Bar = 3 cm. **D**, Statistical analysis of adventitious root numbers in ZH11, *OX393*–6, and *CRP*–9. Eighteen 7-day-old seedlings of each line were used for adventitious roots number counting. The error bar represents mean \pm SE. The asterisk indicates significant differences (* P \leq 0.05 and ** P \leq 0.01) compared with ZH11 by *t*-test.

Figure S4. OsmiR393 expression level in N less–responsive and highly sensitive rice varieties. A small RNA gel blot assay was performed to detect OsmiR393 expression in N less–responsive varieties (ZH11, QZL2, and Balila), and in highly sensitive varieties (Minghui 63 and Nanjing 6). The total rRNA was used as a loading control.

Supplementary Table S1 Primer sequences used in this study

Name	Sequence (5' - 3')		
393-q-F	GACTGTCCAAAGGGATCGCATT		
393-q-R	GTGCAGGGTCCGAGGTATTC		
Actin-q-F	CGGTGTCATGGTCGGAAT		
Actin-q-R	GCTCGTTGTAGAAGGTGT		
U6 q-F	CGATAAAATTGGAACGATACAGA		
U6 q-R	ATTTGGACCATTTCTCGATTTGT		
U6-RT	ATTTGGACCATTTCTCGATTTGT		
OsAFB2- q-F	GAGCGGGATGGTAGCAATGAAATG		
OsAFB2- q-R	CCGAGATAAGGGAGGCACACCAAC		
OsTIR1-q-F	TCCAGGTGCTCCGCCTCGTCTCCT		
OsTIR1-q-R	CCGGGAAGAGCCAATGAA		
393-RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGAT		
36080-q-F	TCAAGGAGGACCAGCAGTTCACCA		
36080-q-R	GAGGACACCCGTGCTGACCAAAGT		
41010-q-F	GCGGAGGTGGAGGCGGAAGG		
41010-q-R	CGCGAGGGAGACGAGGTGGTTG		
39790-q-F	TATGGTATGCCCGGTGGAAGAAGT		
39790-q-R	ATACTGCTGCCTCAGGATGATTGG		
52320-q-F	TGCTTCCCCTACCACCGTCACCAC		
52320-q-R	GCGCACTCTTCCACCTTCCCATTG		
58734-q-F	TTGCTTCCGCCTCCTCATCTTCCT		
58734-q-R	GCCGTGCGAACCATATTCCTTTGA		
393 probe	GATCAATGCGATCCCTTTGGA		
CRISPR-F	GGCAAAGGATCAATGCGATCCCTT		
CRISPR-R	AAACAAGGGATCGCATTGATCCTT		
CRISPR-g-F	CCTCACCAAAATACGAAAGAG		
CRISPR-g-R	CAGTCACGACGTTGTAAAAC		
cMYC-TIR1-F	GGATCC ATGGGGCGCGGCTCGCG		
MYC-TIR1-R	GGTACC CTAGAGTCCATGCATTTCCA		
cMYC-OsIAA6-F	GGATCC ATGGAAGAAGGGTCCAACAA		
cMYC-OsIAA6-R	GCGGCCGC GACCCTAGCAGTAGCTCCAA		

Supplementary Table S2 Statistical analysis data of axillary meristem between ZH11and *OX393-6*

	0 N	1 N	4 N (NAM/TP)	8 N (NAM/TP)
	(NAM/TP)	(NAM/TP)		
ZH11	2/20	9/20	17/20	20/20
OX393-6	/	13/20	/	/

ZH11 and *OX393-6* were sown and cultivated in hydroponic solution according to IRRI nutrient solution³⁸ under various levels of NH₄NO₃ fertilizer treatment whereas *OX393-6* was under normal (1 N) NH₄NO₃ fertilizer concentration. After 14 days, 20 samples were sectioned to observe axillary meristems both in ZH11 and in *OX393-6*. NAM: observed numbers of axillary meristem, TP: total plants sampled.