
DBG2OLC: Efficient Assembly of Large Genomes Using Long
Erroneous Reads of the Third Generation Sequencing
Technologies
	

Chengxi	
 Ye1§,	
 Christopher	
 M.	
 Hill1,	
 Shigang	
 Wu2,	
 Jue	
 Ruan2,	
 Zhanshan	
 (Sam)	
 Ma3§	
 	

1Department	
 of	
 Computer	
 Science,	
 Institute	
 for	
 Advanced	
 Computer	
 Studies,	
 University	
 of	
 Maryland,	
 College	
 Park,	

MD	
 20742,	
 USA.	

2Agricultural	
 Genome	
 Institute,	
 Chinese	
 Academy	
 of	
 Agricultural	
 Sciences,	
 No.7	
 Pengfei	
 Road,	
 Dapeng	
 New	
 District,	

Shenzhen,	
 Guangdong	
 518120,	
 China.	

3Computational	
 Biology	
 and	
 Medical	
 Ecology	
 Lab,	
 State	
 Key	
 Laboratory	
 of	
 Genetic	
 Resources	
 and	
 Evolution,	
 Kunming	

Institute	
 of	
 Zoology,	
 Chinese	
 Academy	
 of	
 Sciences,	
 Kunming,	
 650223	
 China.	

Correspondence	
 email	
 addresses:	
 Chengxi	
 Ye:	
 cxy@umd.edu,	
 Sam	
 Ma:	
 samma@uidaho.edu	
 	

	

Supplementary Materials

1. Source Code

The source code of SparseAssembler, DBG2OLC and Sparc can be found here:
https://github.com/yechengxi/SparseAssembler
https://github.com/yechengxi/DBG2OLC
https://github.com/yechengxi/Sparc
To compile, download the code into separate folders and use:
g++	
 -­‐O3	
 -­‐o	
 SparseAssebmler	
 *.cpp	

g++	
 -­‐O3	
 -­‐o	
 DBG2OLC	
 *.cpp	

g++	
 -­‐O3	
 -­‐o	
 Sparc	
 *.cpp	

2. Datasets used in the paper

Table S1. Illumina datasets used in the paper

Datasets Sequenci
ng Type

Coverage
Used

Illumina Data Source

S. cer w303 MiSeq 50x http://schatzlab.cshl.edu/data/ectools/
A. thaliana
ler-0

MiSeq 50x http://schatzlab.cshl.edu/data/ectools/

H. sapiens HiSeq 50x Accession No.: SRR1283824
E.coli K12 MiSeq 50x Accession No.: SRR826442, SRR826444, SRR826446, SRR826450

Table S2. PacBio/Nanopore datasets used in the paper

Datasets PacBio Data Source
S. cer w303 http://schatzlab.cshl.edu/data/ectools/
A. thaliana ler-0 http://schatzlab.cshl.edu/data/ectools/
H. sapiens http://datasets.pacb.com/2014/Human54x/fast.html
E. coli K12 http://gigadb.org/dataset/100102

Table S3. Reference genomes used in the paper

Datasets Reference Data Source
S. cer w303 1. http://www.cbcb.umd.edu/software/PBcR/mhap/asm/yeast.quiver.all.fasta 	

2. Accession No.: GCA_000292815.1
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000292815.1_ASM29281v1/GCA_000292815.1_ASM29281v1_genomic.fna.gz

A. thaliana
ler-0

http://www.cbcb.umd.edu/software/PBcR/mhap/asm/athal.quiver.all.fasta

H. sapiens Accession No.: GCA_000772585.3
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000772585.3_ASM77258v3/GCA_000772585.3_ASM77258v3_genomic.fna.gz

E. coli K12 Accession No.: NC_000913
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000005845.2_ASM584v2/GCA_000005845.2_ASM584v2_genomic.fna.gz

3. Exemplary Assembly Commands

Step0. [Optional] Preparations:

We have provided code to help you select a subset of the reads:

https://github.com/yechengxi/AssemblyUtility

The utility functions can be compiled in the same way as the main programs. After compilation, you can
use the following command to select a subset of reads from fasta/fastq files. Note that longest 0 is used here,
if you set it to 1 it will select the longest reads.

./SelectLongestReads	
 sum	
 600000000	
 longest	
 0	
 o	
 Illumina_50x.fastq	
 f	
 Illumina_500bp_2x300_R1.fastq	

./SelectLongestReads	
 sum	
 260000000	
 longest	
 0	
 o	
 Pacbio_20x.fasta	
 f	
 Pacbio.fasta	

And you can use the following command to evaluate an assembly.

./AssemblyStatistics	
 contigs	
 YourAssembly.fasta	

The program will generate two txt files containing essential statistics about your assembly.

Step1. Use a DBG-assembler to construct short but accurate contigs. Please make sure they are the raw
DBG contigs without using repeat resolving techniques such as gap closing or scaffolding. Otherwise you
may have poor final results due to the errors introduced by the heuristics used in short read assembly
pipelines.

SparseAssembler command format:

./SparseAssembler	
 GS	
 [GENOME_SIZE]	
 NodeCovTh	
 [FALSE_KMER_THRESHOLD]	
 EdgeCovTh	

[FALSE_EDGE_THRESHOLD]	
 k	
 [KMER_SIZE]	
 g	
 [SKIP_SIZE]	
 f	
 [YOUR_FASTA_OR_FASTQ_FILE1]	
 f	

[YOUR_FASTA_OR_FASTQ_FILE2]	
 f	
 [YOUR_FASTA_OR_FASTQ_FILE3_ETC]	

A complete example on the S.cer w303 dataset:

Download the Illumina reads from

 ftp://qb.cshl.edu/schatz/ectools/w303/Illumina_500bp_2x300_R1.fastq.gz

Normally with ~50x coverage, NodeCovTh 1 EdgeCovTh 0 can produce good results.

./SparseAssembler	
 LD	
 0	
 k	
 51	
 g	
 15	
 NodeCovTh	
 1	
 EdgeCovTh	
 0	
 GS	
 12000000	

f	
 ../Illumina_data/Illumina_50x.fastq	

In this test run, the N50 is 29 kbp. As we have selected the beginning part of the sequencing file, which
usually is of lower quality, the next step may help to improve the assembly quality.

[Miscellaneous]

For other more complex genomes or a different coverage, the first run may not generate the best result. The
previous computations can be loaded and two parameters can be fine-tuned to construct a cleaner de Bruijn/
k-mer graph:

./SparseAssembler	
 LD	
 1	
 NodeCovTh	
 2	
 EdgeCovTh	
 1	
 k	
 51	
 g	
 15	
 GS	
 12000000	

f	
 ../Illumina_data/Illumina_50x.fastq	

The N50 is improved to 32kbp in my run.

The output Contigs.txt will be used by DBG2OLC.

Step2. Overlap and layout. Feed DBG2OLC with the contig file in fasta format from the previous step
(Contigs.txt in this example).

Download the PacBio reads from:

ftp://qb.cshl.edu/schatz/ectools/w303/Pacbio.fasta.gz

The basic command format of DBG2OLC is:

./DBG2OLC	
 k	
 [KmerSize]	
 AdaptiveTh	
 [THRESH_VALUE1]	
 KmerCovTh	
 [THRESH_VALUE2]	
 MinOverlap	

[THRESH_VALUE3]	
 Contigs	
 [NGS_CONTIG_FILE]	
 f	
 [LONG_READS.FASTA]	
 RemoveChimera	
 1	
 	

In the following example, the first 20x PacBio reads are extracted from the abovementioned file and we can
assemble with:

./DBG2OLC	
 k	
 17	
 AdaptiveTh	
 0.0001	
 KmerCovTh	
 2	
 MinOverlap	
 20	
 RemoveChimera	
 1	
 Contigs	
 Contigs.txt	

f	
 ../Pacbio_data/Pacbio	
 _20x.fasta	
 	

In our test run, the N50 is 583kbp.

There are three major parameters that affect the assembly quality:

M = matched k-mers between a contig and a long read.

AdaptiveTh: adaptive k-mer matching threshold. If M < AdaptiveTh* Contig_Length, this contig cannot
be used as an anchor to the long read.

KmerCovTh: fixed k-mer matching threshold. If M < KmerCovTh, this contig cannot be used as an anchor
to the long read.

MinOverlap: minimum overlap score between a pair of long reads.

For each pair of long reads, an overlap score is calculated by aligning the compressed reads and score with
the matching k-mers.

[Miscellaneous]

At this point, the parameters may be fine-tuned to get better performance. As with SparseAssembler, LD 1
can be used to load the compressed reads/anchored reads.

Suggested tuning range is provided here:

For 10x/20x PacBio data: KmerCovTh 2-5, MinOverlap 10-30, AdaptiveTh 0.001~0.01.

For 50x-100x PacBio data: KmerCovTh 2-10, MinOverlap 50-150, AdaptiveTh 0.01-0.02.

Some other less flexible or less important parameters:

k: k-mer size, 17 works well.

Contigs: the fasta contigs file from existing assembly.

MinLen: minimum read length.

RemoveChimera: remove chimeric reads in the dataset, suggest 1 if you have >10x coverage.

For high coverage data (100x), there are two other parameters:

ChimeraTh: default: 1, set to 2 if coverage is ~100x.

ContigTh: default: 1, set to 2 if coverage is ~100x.

These two are used in multiple alignment to remove problematic reads and false contig anchors. When we
have high coverage, some more stringent conditions shall be applied as with the suggested parameters.

Step 3. Call consensus. Install Blasr and the consensus module (Sparc/PBdagcon). Make sure they are in
your path variable.

The input files for consensus are:

(1) backbone_raw.fasta by DBG2OLC

(2) DBG2OLC_Consensus_info.txt by DBG2OLC

(3) DBG contigs (in FASTA format)

(4) PacBio reads (in FASTA format)

You can check the N50 of (1) to see if it meets your standard, otherwise keep tuning and don’t proceed.

this is to concatenate the contigs and the raw reads for consensus

cat	
 Contigs.txt	
 pb_reads.fasta	
 >	
 ctg_pb.fasta	

we need to open a lot of files to distribute the above file into lots of smaller files

ulimit	
 -­‐n	
 unlimited	

#run the consensus scripts

sh	
 ./split_and_run_sparc.sh	
 backbone_raw.fasta	
 DBG2OLC_Consensus_info.txt	

ctg_reads.fasta	
 ./consensus_dir	
 2	
 >cns_log.txt	

Commands used to assemble other genomes:

The A. thaliana Ler-0 dataset:

20x PacBio reads:

./DBG2OLC	
 KmerCovTh	
 2	
 AdaptiveTh	
 0.005	
 MinOverlap	
 20	
 RemoveChimera	
 1	
 Contigs	
 Contigs.txt	
 k	
 17	

f	
 ../PacBio/20x.fasta	

40x PacBio reads:

./DBG2OLC	
 	
 KmerCovTh	
 2	
 AdaptiveTh	
 0.01	
 MinOverlap	
 20	
 RemoveChimera	
 1	
 Contigs	
 Contigs.txt	
 k	
 17	

f	
 ../PacBio/40x.fasta	

The H. sapiens dataset:

Longest 30x PacBio reads:

./DBG2OLC	
 k	
 17	
 KmerCovTh	
 2	
 MinOverlap	
 20	
 AdaptiveTh	
 0.01	
 RemoveChimera	
 1	
 Contigs	
 Contigs.txt	
 f	

30x.fasta	
 >DBG2OLC_LOG.txt	

Illumina-only Assembly

With the rapid advancement of sequencing technology, the length of the accurate NGS reads has also

become increasingly longer. As a prototype, we demonstrate that the approach can be extended to existing

Illumina data. Existing DBG based assembly algorithms resorted to stretches of perfectly matching k-mers

and are not robust to sequencing errors. Algorithms required growing k-mer sizes to find increasingly

perfect overlaps and extensive iterations to exploit the long read information. A costly error correction

module was critical in finding these perfect overlaps. In contrast, our work can quickly and reliably find the

best read overlaps without per-base level correction. Since our approach of utilizing the long read

information is certainly not restricted to low quality ones, we compared the performance of our assembler

on longer Illumina reads with several popular assemblers, including SGA 1, SOAPdenovo2 2, SPAdes3 3.

Interestingly, for the relatively longer short NGS reads generated from the latest NGS technology,

traditional de Bruijn graph with a fixed k-mer size have already exposed its shortage and produces a non-

optimal assembly: smaller k-mer fails to resolve repetitive regions, while using a large k requires high

quality and high coverage data. This pair of contradictory requirements makes it hardly possible to obtain

the optimal assembly with limited computational resources. Iterative de Bruijn graph may partially deal

with the problem at the expense of more computational time, as well as more intricate algorithm design and

implementations. For example, an error correction procedure (with an exponential-complexity graph search)

would be necessary to produce long and correct k-mers. SGA utilized the FM-index 4 to find exact matches,

which also poses restriction on the quality of the data. In contrast, our algorithm is robust and poses loose

restriction on the quality of sequence reads, and hence can find overlaps efficiently and correctly. A dataset

of 50X 150bp Illumina Miseq reads of E. coli K-12 MG1655 (Accession no: SRA073308) is used here as a

test case. SparseAssembler5 with k = 31 is called to assemble the initial contigs and it reaches an N50 of

13.5 kbp. The compressed reads were calculated using the contigs and raw Illumina reads. Our overlap

graph construction took only around 1 second on this dataset while the compressing is taking most of the

computational time, which is roughly two minutes. The total computational time of SparseAssembler and

DBG2OLC is 5 minutes. DBG2OLC exhibits excellent adaptability and overall performance compared

with leading assemblers for the new types of the NGS data.

 Table S4. Assembly performance comparison on the E.coli genome using NGS MiSeq reads
 (Genome size: 4.6M bp)

Assembler Time
(hr)

Memory
Peak
(GB)

NG50 Identity
 (%)

NGA50 Misasse
m-blies

Longes
t

Sum

SGA 1 2 54,945 100.0% 54,800 0 185,52
8

4,629,362

SOAPdenovo
2

0.1 0.1 54,896 100.0% 52,788 0 160,08
4

4,600,372

SPAdes3 2 8 112,387 100.0% 107,855 0 327,03
1

4,659,050

DBG2OLC 0.1 0.1 118,892 100.0% 110,457 0 327,25
5

4,693,366

Commands for Illumina-only assembly:

The program command is slightly different.

Example command:

./DBG2OLC	
 LD	
 0	
 MinOverlap	
 70	
 PathCovTh	
 3	
 Contigs	
 Contigs.txt	
 k	
 31	
 KmerCovTh	
 0	
 f	
 ReadsFile1.fa	
 f	

ReadsFile2.fq	
 f	
 MoreFiles.xxx	

There are four critical parameters:

k: k-mer length (max size: 31).

KmerCovTh: # k-mer matches for a contig to be regarded as a genuine anchor, suggest 0-1.

MinOverlap: # ‘consistent’ k-mers between each pair of reads to be considered to overlap.

PathCovTh: the minimum occurrence for a compressed read for a compressed read to be used, suggest 1-
3.

Assembly is reported as DBG2OLC_Consensus.fasta.

The command we used for E. coli Illumina Miseq dataset:

./DBG2OLC	
 k	
 31	
 PathCovTh	
 2	
 MinLen	
 50	
 MinOverlap	
 31	
 Contigs	
 Contigs.txt	
 KmerCovTh	
 0	
 f	

Illumina_reads.fasta	
 	

4. Dotplots of Alignments to the Reference Genomes

The following commands were used to generate the dot plots:
nucmer	
 -­‐mumreference	
 -­‐b	
 200	
 -­‐g	
 200	
 -­‐c	
 200	
 –p	
 out	
 Reference.fasta	
 Assembly.fasta	
 	

mummerplot	
 -­‐-­‐png	
 -­‐-­‐l	
 -­‐-­‐large	
 -­‐f	
 -­‐-­‐fat	
 	
 out.delta	

Figure S1.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the reference created
using 454 sequencing (X-axis). 10x PacBio reads and 50x Illumina reads are used.

Figure S2.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the high coverage
PacBio assembly (X-axis). 10x PacBio reads and 50x Illumina reads are used.

Figure S3.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the reference created
using 454 sequencing (X-axis). 10x PacBio reads and 50x Illumina reads are used.

Figure S4.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the high coverage
PacBio assembly (X-axis). 20x PacBio reads and 50x Illumina reads are used.

Figure S5.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the reference created
using 454 sequencing (X-axis). 40x PacBio reads and 50x Illumina reads are used.

Figure S6.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the high coverage
PacBio assembly (X-axis). 40x PacBio reads and 50x Illumina reads are used.

Figure S7.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the reference created
using 454 sequencing (X-axis). 80x PacBio reads and 50x Illumina reads are used.

Figure S8.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the high coverage
PacBio assembly (X-axis). 80x PacBio reads and 50x Illumina reads are used.

Figure S9. Alignment of high coverage PacBio assembly of S. cer genome (Y-axis) to the 454 assembly.

Figure S10.The alignment of DBG2OLC assembly of the A. thaliana genome (Y-axis) to the high
coverage PacBio assembly (X-axis). 10x PacBio reads and 50x Illumina reads are used.

Figure S11.The alignment of DBG2OLC assembly of the A. thaliana genome (Y-axis) to the high
coverage PacBio assembly (X-axis). 20x PacBio reads and 50x Illumina reads are used.

Figure S12.The alignment of DBG2OLC assembly of the A. thaliana genome (Y-axis) to the high
coverage PacBio assembly (X-axis). 40x PacBio reads and 50x Illumina reads are used.

Figure S13.The alignment of DBG2OLC assembly of the E. coli genome (Y-axis) to the reference genome
(X-axis). 30x Oxford Nanopore reads and 50x Illumina reads are used.

5. Commands used to run other pipelines

MHAP
PBcR -length 500 -partitions 200 -l yeast -s pacbio.spec -fastq 80x.fastq genomeSize=12000000

HGAP
smrtpipe.py -D NPROC=3 -D CLUSTER=BASH -D MAX_THREADS=4 --params=params.xml

xml:input.xml >smrtpipe.log

CA
runCA -p yeast-trim -d yeast-trim -s yeast-trim.spec yeast-untrimmed.frg

PacBioToCA
pacBioToCA -length 500 -partitions 200 -l ec_pacbio -t 16 -s pacbio.spec -fastq 80x.fastq yeast.frg
runCA -p asm -d asm -s asm.spec ec_pacbio.frg

Falcon
fc_run.py fc_run.cfg

ECTools
for i in {0001..000N}; do cd $i; qsub -cwd -j y -t 1:500 ../correct.sh; cd ..; done
runCA -p assembly -d assembly -s assembly.spec organism.cor.frg

Celera assembler specification files can be found in a different attachment.

References

1	
 Simpson,	
 J.	
 T.	
 &	
 Durbin,	
 R.	
 Efficient	
 de	
 novo	
 assembly	
 of	
 large	
 genomes	
 using	

compressed	
 data	
 structures.	
 Genome	
 research	
 22,	
 549-­‐556,	
 doi:10.1101/gr.126953.111	

(2012).	

2	
 Luo,	
 R.	
 et	
 al.	
 SOAPdenovo2:	
 an	
 empirically	
 improved	
 memory-­‐efficient	
 short-­‐read	
 de	

novo	
 assembler.	
 GigaScience	
 1,	
 18,	
 doi:10.1186/2047-­‐217X-­‐1-­‐18	
 (2012).	

3	
 Bankevich,	
 A.	
 et	
 al.	
 SPAdes:	
 a	
 new	
 genome	
 assembly	
 algorithm	
 and	
 its	
 applications	
 to	

single-­‐cell	
 sequencing.	
 Journal	
 of	
 computational	
 biology	
 :	
 a	
 journal	
 of	
 computational	

molecular	
 cell	
 biology	
 19,	
 455-­‐477,	
 doi:10.1089/cmb.2012.0021	
 (2012).	

4	
 Ferragina,	
 P.	
 &	
 Manzini,	
 G.	
 in	
 Proceedings.	
 41st	
 Annual	
 Symposium	
 on	
 Foundations	
 of	

Computer	
 Science.	
 	
 390-­‐398.	

5	
 Ye,	
 C.,	
 Ma,	
 Z.	
 S.,	
 Cannon,	
 C.	
 H.,	
 Pop,	
 M.	
 &	
 Yu,	
 D.	
 W.	
 Exploiting	
 sparseness	
 in	
 de	
 novo	

genome	
 assembly.	
 BMC	
 Bioinformatics	
 13	
 Suppl	
 6,	
 S1,	
 doi:10.1186/1471-­‐2105-­‐13-­‐S6-­‐S1	

(2012).	

