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Supplementary Materials  
 

1. Source Code 

The source code of SparseAssembler, DBG2OLC and Sparc can be found here:  
https://github.com/yechengxi/SparseAssembler 
https://github.com/yechengxi/DBG2OLC 
https://github.com/yechengxi/Sparc 
To compile, download the code into separate folders and use:  
g++	
  -­‐O3	
  -­‐o	
  SparseAssebmler	
  *.cpp	
  
g++	
  -­‐O3	
  -­‐o	
  DBG2OLC	
  *.cpp	
  
g++	
  -­‐O3	
  -­‐o	
  Sparc	
  *.cpp	
  

 
 

2. Datasets used in the paper 

Table S1. Illumina datasets used in the paper 

Datasets Sequenci
ng Type 

Coverage 
Used 

Illumina Data Source 

S. cer w303 MiSeq 50x http://schatzlab.cshl.edu/data/ectools/ 
A. thaliana 
ler-0 

MiSeq 50x http://schatzlab.cshl.edu/data/ectools/ 

H. sapiens HiSeq   50x Accession No.: SRR1283824 
E.coli K12 MiSeq 50x  Accession No.: SRR826442, SRR826444, SRR826446, SRR826450 

 

Table S2. PacBio/Nanopore datasets used in the paper 

Datasets PacBio Data Source 
S. cer w303 http://schatzlab.cshl.edu/data/ectools/ 
A. thaliana ler-0 http://schatzlab.cshl.edu/data/ectools/ 
H. sapiens http://datasets.pacb.com/2014/Human54x/fast.html 
E. coli K12 http://gigadb.org/dataset/100102  

 

Table S3. Reference genomes used in the paper 

Datasets Reference Data Source 
S. cer w303 1. http://www.cbcb.umd.edu/software/PBcR/mhap/asm/yeast.quiver.all.fasta 	
  

2. Accession No.: GCA_000292815.1 
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000292815.1_ASM29281v1/GCA_000292815.1_ASM29281v1_genomic.fna.gz 

A. thaliana 
ler-0 

http://www.cbcb.umd.edu/software/PBcR/mhap/asm/athal.quiver.all.fasta 

H. sapiens Accession No.: GCA_000772585.3  
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000772585.3_ASM77258v3/GCA_000772585.3_ASM77258v3_genomic.fna.gz 

E. coli K12 Accession No.: NC_000913 
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000005845.2_ASM584v2/GCA_000005845.2_ASM584v2_genomic.fna.gz 

 

3. Exemplary Assembly Commands  

Step0. [Optional] Preparations: 

We have provided code to help you select a subset of the reads: 



https://github.com/yechengxi/AssemblyUtility 

The utility functions can be compiled in the same way as the main programs. After compilation, you can 
use the following command to select a subset of reads from fasta/fastq files. Note that longest 0 is used here, 
if you set it to 1 it will select the longest reads. 

./SelectLongestReads	
  sum	
  600000000	
  longest	
  0	
  o	
  Illumina_50x.fastq	
  f	
  Illumina_500bp_2x300_R1.fastq	
  

./SelectLongestReads	
  sum	
  260000000	
  longest	
  0	
  o	
  Pacbio_20x.fasta	
  f	
  Pacbio.fasta	
  

And you can use the following command to evaluate an assembly. 

./AssemblyStatistics	
  contigs	
  YourAssembly.fasta	
  

The program will generate two txt files containing essential statistics about your assembly. 

 

Step1. Use a DBG-assembler to construct short but accurate contigs. Please make sure they are the raw 
DBG contigs without using repeat resolving techniques such as gap closing or scaffolding. Otherwise you 
may have poor final results due to the errors introduced by the heuristics used in short read assembly 
pipelines. 

SparseAssembler command format: 

./SparseAssembler	
  GS	
  [GENOME_SIZE]	
  NodeCovTh	
  [FALSE_KMER_THRESHOLD]	
  EdgeCovTh	
  
[FALSE_EDGE_THRESHOLD]	
  k	
  [KMER_SIZE]	
  g	
  [SKIP_SIZE]	
  f	
  [YOUR_FASTA_OR_FASTQ_FILE1]	
  f	
  
[YOUR_FASTA_OR_FASTQ_FILE2]	
  f	
  [YOUR_FASTA_OR_FASTQ_FILE3_ETC]	
  

A complete example on the S.cer w303 dataset: 

Download the Illumina reads from 

 ftp://qb.cshl.edu/schatz/ectools/w303/Illumina_500bp_2x300_R1.fastq.gz 

Normally with ~50x coverage, NodeCovTh 1 EdgeCovTh 0 can produce good results. 

./SparseAssembler	
  LD	
  0	
  k	
  51	
  g	
  15	
  NodeCovTh	
  1	
  EdgeCovTh	
  0	
  GS	
  12000000	
  
f	
  ../Illumina_data/Illumina_50x.fastq	
  

In this test run, the N50 is 29 kbp. As we have selected the beginning part of the sequencing file, which 
usually is of lower quality, the next step may help to improve the assembly quality. 

 

[Miscellaneous] 

For other more complex genomes or a different coverage, the first run may not generate the best result. The 
previous computations can be loaded and two parameters can be fine-tuned to construct a cleaner de Bruijn/ 
k-mer graph: 

./SparseAssembler	
  LD	
  1	
  NodeCovTh	
  2	
  EdgeCovTh	
  1	
  k	
  51	
  g	
  15	
  GS	
  12000000	
  
f	
  ../Illumina_data/Illumina_50x.fastq	
  

The N50 is improved to 32kbp in my run. 

The output Contigs.txt will be used by DBG2OLC. 

 



Step2. Overlap and layout. Feed DBG2OLC with the contig file in fasta format from the previous step 
(Contigs.txt in this example).  

Download the PacBio reads from: 

ftp://qb.cshl.edu/schatz/ectools/w303/Pacbio.fasta.gz 

The basic command format of DBG2OLC is: 

./DBG2OLC	
  k	
  [KmerSize]	
  AdaptiveTh	
  [THRESH_VALUE1]	
  KmerCovTh	
  [THRESH_VALUE2]	
  MinOverlap	
  
[THRESH_VALUE3]	
  Contigs	
  [NGS_CONTIG_FILE]	
  f	
  [LONG_READS.FASTA]	
  RemoveChimera	
  1	
  	
  

In the following example, the first 20x PacBio reads are extracted from the abovementioned file and we can 
assemble with: 

./DBG2OLC	
  k	
  17	
  AdaptiveTh	
  0.0001	
  KmerCovTh	
  2	
  MinOverlap	
  20	
  RemoveChimera	
  1	
  Contigs	
  Contigs.txt	
  
f	
  ../Pacbio_data/Pacbio	
  _20x.fasta	
  	
  

In our test run, the N50 is 583kbp. 

 

There are three major parameters that affect the assembly quality: 

M = matched k-mers between a contig and a long read. 

AdaptiveTh: adaptive k-mer matching threshold. If M < AdaptiveTh* Contig_Length, this contig cannot 
be used as an anchor to the long read. 

KmerCovTh: fixed k-mer matching threshold. If M < KmerCovTh, this contig cannot be used as an anchor 
to the long read. 

MinOverlap: minimum overlap score between a pair of long reads. 

For each pair of long reads, an overlap score is calculated by aligning the compressed reads and score with 
the matching k-mers. 

  

[Miscellaneous] 

At this point, the parameters may be fine-tuned to get better performance. As with SparseAssembler, LD 1 
can be used to load the compressed reads/anchored reads.  

Suggested tuning range is provided here: 

For 10x/20x PacBio data: KmerCovTh 2-5, MinOverlap 10-30, AdaptiveTh 0.001~0.01. 

For 50x-100x PacBio data: KmerCovTh 2-10, MinOverlap 50-150, AdaptiveTh 0.01-0.02.  

 

Some other less flexible or less important parameters: 

k: k-mer size, 17 works well. 

Contigs: the fasta contigs file from existing assembly. 

MinLen: minimum read length.  

RemoveChimera: remove chimeric reads in the dataset, suggest 1 if you have >10x coverage.  



 

For high coverage data (100x), there are two other parameters: 

ChimeraTh: default: 1, set to 2 if coverage is ~100x. 

ContigTh: default: 1, set to 2 if coverage is ~100x. 

These two are used in multiple alignment to remove problematic reads and false contig anchors. When we 
have high coverage, some more stringent conditions shall be applied as with the suggested parameters. 

 

Step 3. Call consensus. Install Blasr and the consensus module (Sparc/PBdagcon). Make sure they are in 
your path variable.  

The input files for consensus are:  

(1) backbone_raw.fasta by DBG2OLC 

(2) DBG2OLC_Consensus_info.txt by DBG2OLC 

(3) DBG contigs (in FASTA format) 

(4) PacBio reads (in FASTA format) 

You can check the N50 of (1) to see if it meets your standard, otherwise keep tuning and don’t proceed. 

 

# this is to concatenate the contigs and the raw reads for consensus 

cat	
  Contigs.txt	
  pb_reads.fasta	
  >	
  ctg_pb.fasta	
  

# we need to open a lot of files to distribute the above file into lots of smaller files 

ulimit	
  -­‐n	
  unlimited	
  

#run the consensus scripts 

sh	
  ./split_and_run_sparc.sh	
  backbone_raw.fasta	
  DBG2OLC_Consensus_info.txt	
  
ctg_reads.fasta	
  ./consensus_dir	
  2	
  >cns_log.txt	
  

 

Commands used to assemble other genomes: 

The A. thaliana Ler-0 dataset: 

20x PacBio reads: 

./DBG2OLC	
  KmerCovTh	
  2	
  AdaptiveTh	
  0.005	
  MinOverlap	
  20	
  RemoveChimera	
  1	
  Contigs	
  Contigs.txt	
  k	
  17	
  
f	
  ../PacBio/20x.fasta	
  

40x PacBio reads: 

./DBG2OLC	
  	
  KmerCovTh	
  2	
  AdaptiveTh	
  0.01	
  MinOverlap	
  20	
  RemoveChimera	
  1	
  Contigs	
  Contigs.txt	
  k	
  17	
  
f	
  ../PacBio/40x.fasta	
  

 



The H. sapiens dataset: 

Longest 30x PacBio reads: 

./DBG2OLC	
  k	
  17	
  KmerCovTh	
  2	
  MinOverlap	
  20	
  AdaptiveTh	
  0.01	
  RemoveChimera	
  1	
  Contigs	
  Contigs.txt	
  f	
  
30x.fasta	
  >DBG2OLC_LOG.txt	
  

 

Illumina-only Assembly 

With the rapid advancement of sequencing technology, the length of the accurate NGS reads has also 

become increasingly longer. As a prototype, we demonstrate that the approach can be extended to existing 

Illumina data. Existing DBG based assembly algorithms resorted to stretches of perfectly matching k-mers 

and are not robust to sequencing errors. Algorithms required growing k-mer sizes to find increasingly 

perfect overlaps and extensive iterations to exploit the long read information. A costly error correction 

module was critical in finding these perfect overlaps. In contrast, our work can quickly and reliably find the 

best read overlaps without per-base level correction. Since our approach of utilizing the long read 

information is certainly not restricted to low quality ones, we compared the performance of our assembler 

on longer Illumina reads with several popular assemblers, including SGA 1, SOAPdenovo2 2, SPAdes3 3. 

Interestingly, for the relatively longer short NGS reads generated from the latest NGS technology, 

traditional de Bruijn graph with a fixed k-mer size have already exposed its shortage and produces a non-

optimal assembly: smaller k-mer fails to resolve repetitive regions, while using a large k requires high 

quality and high coverage data. This pair of contradictory requirements makes it hardly possible to obtain 

the optimal assembly with limited computational resources. Iterative de Bruijn graph may partially deal 

with the problem at the expense of more computational time, as well as more intricate algorithm design and 

implementations. For example, an error correction procedure (with an exponential-complexity graph search) 

would be necessary to produce long and correct k-mers. SGA utilized the FM-index 4 to find exact matches, 

which also poses restriction on the quality of the data. In contrast, our algorithm is robust and poses loose 

restriction on the quality of sequence reads, and hence can find overlaps efficiently and correctly. A dataset 

of 50X 150bp Illumina Miseq reads of E. coli K-12 MG1655 (Accession no: SRA073308) is used here as a 

test case. SparseAssembler5 with k = 31 is called to assemble the initial contigs and it reaches an N50 of 

13.5 kbp. The compressed reads were calculated using the contigs and raw Illumina reads. Our overlap 

graph construction took only around 1 second on this dataset while the compressing is taking most of the 

computational time, which is roughly two minutes. The total computational time of SparseAssembler and 

DBG2OLC is 5 minutes. DBG2OLC exhibits excellent adaptability and overall performance compared 

with leading assemblers for the new types of the NGS data.  

 



 Table S4. Assembly performance comparison on the E.coli genome using NGS MiSeq reads  
   (Genome size: 4.6M bp) 

Assembler Time 
(hr) 

Memory 
Peak 
(GB) 

NG50 Identity 
 (%) 

NGA50 Misasse
m-blies 

Longes
t  

Sum 

SGA 1 2 54,945 100.0% 54,800 0 185,52
8 

4,629,362 

SOAPdenovo
2 

0.1 0.1 54,896 100.0% 52,788 0 160,08
4 

4,600,372 

SPAdes3 2 8 112,387 100.0% 107,855 0 327,03
1 

4,659,050 

DBG2OLC 0.1 0.1 118,892 100.0% 110,457 0 327,25
5 

4,693,366 

 

 

Commands for Illumina-only assembly: 

The program command is slightly different.   

Example command:  

./DBG2OLC	
  LD	
  0	
  MinOverlap	
  70	
  PathCovTh	
  3	
  Contigs	
  Contigs.txt	
  k	
  31	
  KmerCovTh	
  0	
  f	
  ReadsFile1.fa	
  f	
  
ReadsFile2.fq	
  f	
  MoreFiles.xxx	
  

 

There are four critical parameters: 

k: k-mer length (max size: 31). 

KmerCovTh: # k-mer matches for a contig to be regarded as a genuine anchor, suggest 0-1. 

MinOverlap: # ‘consistent’ k-mers between each pair of reads to be considered to overlap. 

PathCovTh: the minimum occurrence for a compressed read for a compressed read to be used, suggest  1-
3. 

Assembly is reported as DBG2OLC_Consensus.fasta. 

 

The command we used for E. coli Illumina Miseq dataset: 

./DBG2OLC	
  k	
  31	
  PathCovTh	
  2	
  MinLen	
  50	
  MinOverlap	
  31	
  Contigs	
  Contigs.txt	
  KmerCovTh	
  0	
  f	
  
Illumina_reads.fasta	
  	
  

 

 

4. Dotplots of Alignments to the Reference Genomes 
 
The following commands were used to generate the dot plots: 
nucmer	
  -­‐mumreference	
  -­‐b	
  200	
  -­‐g	
  200	
  -­‐c	
  200	
  –p	
  out	
  Reference.fasta	
  Assembly.fasta	
  	
  
mummerplot	
  -­‐-­‐png	
  -­‐-­‐l	
  -­‐-­‐large	
  -­‐f	
  -­‐-­‐fat	
  	
  out.delta	
  
 



 
 
 

Figure S1.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the reference created 
using 454 sequencing (X-axis). 10x PacBio reads and 50x Illumina reads are used.  

 



Figure S2.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the high coverage 
PacBio assembly (X-axis). 10x PacBio reads and 50x Illumina reads are used.  

 

 

 

 

 

 

 

 



Figure S3.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the reference created 
using 454 sequencing (X-axis). 10x PacBio reads and 50x Illumina reads are used.  

 

 

 

 

 

 

 

 

 



Figure S4.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the high coverage 
PacBio assembly (X-axis). 20x PacBio reads and 50x Illumina reads are used.  

 

 

 

 

 

 

 

 

 



Figure S5.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the reference created 
using 454 sequencing (X-axis). 40x PacBio reads and 50x Illumina reads are used.  

 

 

 

 

 

 

 

 

 



Figure S6.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the high coverage 
PacBio assembly (X-axis). 40x PacBio reads and 50x Illumina reads are used. 

  

 

 

 

 

 

 

 

 



Figure S7.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the reference created 
using 454 sequencing (X-axis). 80x PacBio reads and 50x Illumina reads are used.  

 

 

 

 

 

 

 

 

 

 



Figure S8.The alignment of DBG2OLC assembly of the S. cer genome (Y-axis) to the high coverage 
PacBio assembly (X-axis). 80x PacBio reads and 50x Illumina reads are used. 

 

 

 

 

 

 

 

 

 



Figure S9. Alignment of high coverage PacBio assembly of S. cer genome (Y-axis) to the 454 assembly. 

 

 

 

 

 

 

 

 

 



Figure S10.The alignment of DBG2OLC assembly of the A. thaliana genome (Y-axis) to the high 
coverage PacBio assembly (X-axis). 10x PacBio reads and 50x Illumina reads are used. 

 

 

 

 

 

 

 

 

 



Figure S11.The alignment of DBG2OLC assembly of the A. thaliana genome (Y-axis) to the high 
coverage PacBio assembly (X-axis). 20x PacBio reads and 50x Illumina reads are used. 

 

 

 

 

 

 

 

 

 



Figure S12.The alignment of DBG2OLC assembly of the A. thaliana genome (Y-axis) to the high 
coverage PacBio assembly (X-axis). 40x PacBio reads and 50x Illumina reads are used. 

 

 

 

 

 

 

 

 

 



Figure S13.The alignment of DBG2OLC assembly of the E. coli genome (Y-axis) to the reference genome 
(X-axis). 30x Oxford Nanopore reads and 50x Illumina reads are used. 

 
 
 
5. Commands used to run other pipelines 

MHAP 
PBcR -length 500 -partitions 200 -l yeast -s pacbio.spec -fastq 80x.fastq genomeSize=12000000 
 
HGAP 
smrtpipe.py -D NPROC=3 -D CLUSTER=BASH -D MAX_THREADS=4 --params=params.xml 

xml:input.xml >smrtpipe.log 
 
CA 
runCA -p yeast-trim -d yeast-trim -s yeast-trim.spec yeast-untrimmed.frg 
 
PacBioToCA 
pacBioToCA -length 500 -partitions 200 -l ec_pacbio -t 16 -s pacbio.spec -fastq 80x.fastq yeast.frg 
runCA -p asm -d asm -s asm.spec ec_pacbio.frg 
 
Falcon 
fc_run.py fc_run.cfg 
 
ECTools 
for i in {0001..000N}; do cd $i; qsub -cwd -j y -t 1:500 ../correct.sh; cd ..; done 
runCA -p assembly -d assembly -s assembly.spec organism.cor.frg 
 
Celera assembler specification files can be found in a different attachment. 
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