Spiro[pyrrolidine-3, 3'-oxindole] as potent anti-breast cancer compounds: Their design, synthesis, biological evaluation and cellular target identification

Santanu Hati,¹ Sayantan Tripathy,² Pratip Kumar Dutta,¹ Rahul Agarwal,² Ramprasad Srinivasan,³ Ashutosh Singh,² Shailja Singh,² and Subhabrata Sen^{1, *}

- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Gautam Buddha Nagar, 201314, Uttar Pradesh, India. Email: <u>Subhabrata.sen@snu.edu.in</u>
- ^{2.} Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Gautam Buddha Nagar, 201314, Uttar Pradesh, India.
- ^{3.} Shantani Proteome Analytics Pvt. Ltd. 100 NCL Innovation Park, Dr. Homi Bhabha Road, Pune-411008, India

- 1. Chemistry
- 2. Biology
- 3. NMR spectra
- 4. HPLC spectra
- 5. HPLC-MS-Chip information for target deconvolution
- 6. Cell migration studies
- 7. Target validation for unique polymer technology (UPT) for target deconvolution

Chemistry

All reactions were carried out in flame-dried tubes with magnetic stirring. Unless otherwise noted, all experiments were performed under argon atmosphere. All reagents were purchased from Sigma Aldrich, Acros or Alfa Aesar. Solvents were treated with 4 Å molecular sieves or sodium and distilled prior to use. Purifications of reaction products were carried out by Flash chromatography using Biotage's 10 channel chromatographic system . ¹H NMR and ¹³C NMR spectra were recorded with tetramethylsilane (TMS) as internal standard at ambient temperature unless otherwise indicated Bruker 500 MHz for ¹H NMR and 120 MHz for ¹³C NMR. Chemical shifts are reported in parts per million (ppm) and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (bs), doublet (d), triplet (t). Splitting patterns that could not be interpreted or easily visualized are designated as multiple (m). The Mass Spectrometry analysis was done on the 6540 UHD Accurate-Mass Q-TOF LC/MS system (Agilent Technologies) equipped with Agilent 1290 LC system obtained by the Dept. of Chemistry, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 203207, India.

General procedure for the synthesis of 3, 3'-spiropyrrolooxoindole

To a solution of the tryptamine (1.0 eq.) in 1:1 THF/water (20 mL), was added appropriate benzaldehydes (1 eq.), catalytic trifluoroacetic acid (TFA)and the reaction mixture was cooled to 0° C, followed by portion wise addition of N-bromosuccinimide (NBS) (1.1 eq.).The resulting solution was stirred at 0° C for 6h after which it was gradually warmed to room temperature (rt). Once TLC confirms the total consumption of the starting imine, the reaction was quenched with saturated sodium carbonate solution. The aqueous layer was extracted twice with dichloromethane. The organic extracts were combined and washed with brine, dried over anhydrous magnesium sulphate and was evaporated to provide the crude compound. It was purified by flash column chromatography using a mixture of ethyl acetate and hexane as eluent to afford the desired 3, 3'-spiropyrroloxoindole **5a-m**.

2'-(p-tolyl)spiro[indoline-3,3'-pyrrolidin]-2-one (5a)

Following the general procedure tryptamine (200 mg, 1.25 mmol), *p*-tolualdehyde (150 mg, 1.25 mmol) 1:1 THF/water (20 mL) with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound **5a** in 260 mg (yield 75%) as viscous oil.¹H NMR (500 MHz; DMSO-d₆):

9.91 (s, 1H); 7.41 (d, J = 10 Hz, 1H); 7.21 (d, J = 10 Hz, 1H); 7.18-7.13 (m, 4H); 7.02-6.99 (t, J = 10 Hz, 1H); 6.97-6.93 (t, J = 10 Hz, 1H); 4.37 (s, 1H); 3.09-3.06 (m, 1H); 2.95-2.92 (m, 1H); 2.76-2.72 (m, 1H); 2.69-2.65 (m, 1H); 2.30 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): 181.1, 140.0, 136.3, 135.9, 135.4, 128.7, 128.4, 126.8, 120.5, 118.2, 111.0, 71.3, 59.5, 45.1, 37.2, 20.7. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₈H₁₉N₂O - 279.1492, Found - 279.1468; IR 3216.67, 2907.60, 1698.53, 1469.84.

2'-(3-(trifluoromethyl)phenyl)spiro[indoline-3,3'-pyrrolidin]-2-one (5b)

Following the general procedure tryptamine (200)1.25 mmol).3mg, trifluoromethylbenzaldehyde (217.6 mg, 1.25 mmol), 1:1 THF/water (20 mL), catalytic TFA and NBS (197.5 mg, 1.37mmol) provided the desired compound 5b in 289 mg (yield 70%) as gummy solid. ¹H NMR (500 MHz; DMSO-d₆): 10.00 (s, 1H); 7.53-7.49 (m, 2H); 7.37-7.34 (t, J =10 Hz, 1H); 7.21 (s, 1H); 7.17-7.16 (t, J = 5 Hz, 1H); 7.11 (d, J = 10 Hz, 1H); 7.07-7.04 (t, J = 10 Hz, 2H); 7.07-7.04 5 Hz, 1H); 6.67 (d, J = 5 Hz, 1H); 4.46 (s, 1H); 3.53-3.49 (m, 1H); 3.47-3.43 (m, 1H); 3.17-3.11 (m, 1H); 3.06-3.01 (m, 1H) . ¹³C NMR (125 MHz; DMSO-d₆): 179.5, 142.0, 139.2, 131.8, 130.1, 128.6, 127.9, 123.9, 123.9, 122.9, 122.8, 122.8, 121.8, 109.0, 72.2, 59.0, 45.9, 37.5.HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₈H₁₆F₃N₂O - 333.1209, Found - 333.1180; IR 3252.51, 3006.19, 1674.57, 1440.16.

2'-(3,5-dimethylphenyl)spiro[indoline-3,3'-pyrrolidin]-2-one (5c)

Following the general procedure tryptamine (200 mg, 1.25 mmol), 3, 5-dimethylbenzaldehyde (167.7 mg, 1.25 mmol), 1:1 THF/water (20 mL)with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound **5c** in 271 mg (yield 74%) as yellow liquid. ¹H NMR (500 MHz; DMSO-d₆): 9.98 (s, 1H); 7.54 (d, J = 10 Hz, 1H); 7.32 (d, J = 5 Hz, 1H); 7.14-7.11 (m, 2H); 7.07-7.04 (t, J = 10 Hz, 1H); 7.02 (s, 2H); 4.24 (s, 1H); 3.49-3.41 (m, 2H); 3.15-3.11 (m, 1H); 3.04-3.00 (m, 1H); 2.29 (s, 6H). ¹³C NMR (125 MHz; DMSO-d₆):179.9, 138.1, 136.6, 134.7, 131.2, 128.6, 127.5, 125.7, 121.9, 119.1, 111.7, 71.0, 54.9, 44.7, 37.7, 20.9. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₉H₂₁N₂O - 293.1648, Found - 293.1623; IR 3230.46, 2923.48, 1673.98, 1470.75.

2'-(2,6-difluorophenyl)spiro[indoline-3,3'-pyrrolidin]-2-one (5d)

Following the general procedure tryptamine (200 mg, 1.25 mmol), 2, 6-difluorobenzaldehyde (177.5 mg, 1.25 mmol), 1:1 THF/water (20 mL) with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound **5d** in 291 mg (yield 78%) as colorless liquid. ¹H NMR (500 MHz; DMSO-d₆): 10.34 (s, 1H); 7.66-7.63 (m, 1H); 7.55-7.51 (m, 1H); 7.39-7.37 (m, 1H); 7.29-7.23 (m, 2H); 7.12-7.10 (m, 1H); 7.06-7.04 (m, 1H); 4.91 (s, 1H); 3.62-3.60 (m, 1H); 3.51-3.49 (m, 1H); 3.12-3.09 (m, 1H), 3.03-3.01 (m, 1H). ¹³C NMR (125 MHz; DMSO-d₆):181.9, 162.9, 160.9, 138.7, 136.9, 128.5, 126.5, 122.4, 119.7, 118.8, 113.2, 113.1, 112.1, 66.3, 48.2, 29.9. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₇H₁₅F₂N₂O - 301.114, Found - 301.1116; IR 3253.06, 2962.24, 1667.18, 1473.61.

2'-(3-fluorophenyl)spiro[indoline-3,3'-pyrrolidin]-2-one (5e)

Following the general procedure tryptamine (200 mg, 1.25 mmol), 3-fluorobenzaldehyde (155 mg, 1.25 mmol) 1:1 THF/water (20 mL) with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound **5e** in 310 mg (yield 88%) as light yellow liquid. ¹H NMR (500 MHz; DMSO-d₆): 10.25 (s, 1H); 7.63-7.60 (m, 2H); 7.58-7.55 (m, 1H); 7.52 (d, J = 10 Hz, 1H); 7.44 (d, J = 10 Hz, 1H); 7.40-7.36 (t, J = 10 Hz, 1H); 7.24-7.20 (t, J = 10 Hz, 1H); 7.10-7.07 (t, J = 10 Hz, 1H); 4.64 (s, 1H); 3.60-3.57 (m, 1H); 3.50-3.46 (m, 1H); 3.14-3.06 (m, 1H), 3.05-2.96 (m, 1H).¹³C NMR (125 MHz; DMSO-d₆):181.3, 161.2, 139.8, 137.0, 130.6, 127.2, 124.8, 124.2, 123.9, 119.6, 116.7, 114.8, 112.8, 65.8, 47.9, 29.3. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₇H₁₆FN₂O-283.1241,Found - 283.1210; IR 3392.30, 2918.94, 2848.13, 1485.07.

2'-(3-methoxyphenyl)spiro[indoline-3,3'-pyrrolidin]-2-one(5f)

Following the general procedure tryptamine (200 mg, 1.25 mmol), 3-methoxybenzaldehyde (170.2 mg, 1.25 mmol), 1:1 THF/water (20 mL) with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound with catalytic TFA and NBS (158 mg, 1.1 mmol) in water (10 mL) provided the desired compound **5f** in 301 mg (yield 82%) as light yellow oil. ¹H NMR (500 MHz; DMSO-d₆): 9.96 (s, 1H); 7.41 (d,J = 10 Hz, 1H); 7.26-7.22 (m, 2H); 7.02-6.99 (t,J = 10 Hz, 1H); 6.96-6.93 (t, , J = 5 Hz, 1H); 6.88-6.85 (t, , J = 5 Hz, 3H); 4.37 (s, 1H); 3.73 (s, 3H), 3.10-3.07 (m, 1H); 2.95-2.92 (m, 1H); 2.75-2.72 (m, 1H), 2.68-2.63 (m, 1H). ¹³C NMR (125 MHz; DMSO-d₆):180.9, 159.2, 144.6, 135.9, 135.2, 129.1, 126.8, 120.6, 120.5,

117.5, 114.2, 112.5, 111.1, 71.2, 59.8, 56.6, 45.1, 37.2. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₈H₁₉N₂O₂ - 295.1441,Found -295.1420; IR 3299.7, 2895.16, 1698.53, 1596.14.

2'-(3,4-dimethoxyphenyl)spiro[indoline-3,3'-pyrrolidin]-2-one(5g)

Following the general procedure tryptamine (200 mg, 1.25 mmol), 3, 4-dimethoxybenzaldehyde (207.5 mg, 1.25 mmol), 1:1 THF/water (20 mL) with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound **5g** in 381 mg (yield 94%) as colorless liquid. ¹H NMR (500 MHz; DMSO-d₆): 9.83 (s, 1H); 7.40 (d, J = 10 Hz, 1H); 7.23 (d, J = 5 Hz, 1H); 7.01-6.98 (t, J = 10 Hz, 1H); 6.96-6.94. (m, 2H); 6.89 (d, J = 10 Hz, 1H); 6.76 (d, J = 5 Hz, 1H); 4.32 (s, 1H); 3.73 (s, 3H), 3.71 (s, 3H); 3.13-3.11 (m, 1H); 2.94-2.92 (m, 1H); 2.76-2.73 (m, 1H), 2.67-2.63 (m, 1H). ¹³C NMR (125 MHz; DMSO-d₆):181.2, 148.6, 148.1, 135.9, 135.8, 135.6, 126.9, 120.4, 118.1, 117.5, 112.2, 111.4, 111.0, 71.4, 59.9, 55.6, 55.4, 44.9, 37.3. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₉H₂₁N₂O₃- 325.1547, Found 325.1550.

2'-(4-methoxyphenyl)spiro[indoline-3,3'-pyrrolidin]-2-one (5h)

Following the general procedure tryptamine (200 mg, 1.25 mmol), 3-methoxybenzaldehyde (170.2, 1.25 mmol), 1:1 THF/water (20 mL) with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound**5h** in 291 mg (yield 79%) as colorless liquid. ¹H NMR (500 MHz; DMSO-d₆): 9.86 (s, 1H); 7.41 (d,J = 10 Hz, 1H); 7.23-7.19 (m, 3H); 7.02-6.99 (t, J = 10 Hz, 1H); 6.97-6.93 (t, , J = 10 Hz, 1H); 6.90 (d, , J = 10 Hz, 2H); 4.38 (s, 1H); 3.74 (s, 3H), 3.10-3.08 (m, 1H); 2.96-2.93 (m, 1H); 2.75-2.72 (m, 1H), 2.69-2.66 (m, 1H). ¹³C NMR (125 MHz; DMSO-d₆):181.0, 158.6, 135.9, 135.4, 134.7, 129.6, 126.8, 120.5, 117.5, 113.5, 111.0, 70.9, 59.7, 56.0, 44.9, 37.3. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₈H₁₉N₂O₂ - 295.1441, Found -295.1411; IR 3308.93, 2917.17, 1673.91, 1608.89.

2'-(2,4,5-trimethoxyphenyl)spiro[indoline-3,3'-pyrrolidin]-2-one (5i)

Following the general procedure tryptamine (200 mg, 1.25 mmol), 2, 4, 5trimethoxybenzaldehyde (245 mg, mmol), 1:1 THF/water (20 mL) with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound **5i** in 325 mg (yield 73%) as white semi solid. ¹H NMR (500 MHz; DMSO-d₆): 9.82 (s, 1H); 7.56 (d, J = 5 Hz, 1H); 7.36 (d, J = 10Hz,1H); 7.16-7.13 (t, J = 10 Hz, 1H); 7.04-7.01 (t, J = 10 Hz, 1H); 6.93 (s, 1H); 6.82 (s, 1H),4.34 (s, 1H); 3.73 (s, 6H), 3.66 (s, 3H), 3.20-3.18 (m, 1H); 2.95-2.93 (m, 1H); 2.79-2.76(m, 1H), 2.67-2.63 (m, 1H). ¹³C NMR (125 MHz; DMSO-d₆):181.2, 157.9, 151.6, 150.5, 142.6, 136.6, 129.0, 124.7, 123.2, 119.3, 119.1, 113.7, 112.4, 71.4, 59.5, 56.1, 56.0, 55.8, 44.8, 37.0. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₀H₂₃N₂O₄ - 355.1652, Found-355.1656; IR 3312.03, 1719.32, 1458.50, 1215.77.

2'-(2-fluoro-4-methoxyphenyl)spiro[indoline-3,3'-pyrrolidin]-2-one (5j)

Following the general procedure tryptamine (200 mg, 1.25 mmol), 2-fluoro-4methoxybenzaldehyde (192.5 mg, 1.25 mmol), 1:1 THF/water (20 mL) with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound **5j** in 301 mg (yield 77%) as yellow liquid. ¹H NMR (500 MHz; DMSO-d₆): 10.18 (s, 1H); 7.42 (d, J = 10 Hz, 1H); 7.22 (d, J = 10Hz,1H); 7.03-7.00 (t, J = 10 Hz, 1H); 6.97-6.94. (t, , J = 5 Hz, 1H); 6.89-6.85 (m, 2H); 6.68 (d, J = 10 Hz, 1H), 4.69 (s, 1H); 3.75 (s, 3H), 3.03-3.00 (m, 1H); 2.94-2.92 (m, 1H); 2.75-2.72 (m, 1H), 2.68-2.64 (m, 1H). ¹³C NMR (125 MHz; DMSO-d₆): 181.6, 161.9, 160.0, 135.9, 134.4, 130.6, 126.8, 121.8, 120.6, 118.2, 117.5, 111.0, 108.9, 64.5, 55.6, 46.4, 37.7, 29.7. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₈H₁₈FN₂O₂ - 313.1347, Found - 313.1317; IR 3217.99, 2923.44, 1673.98, 1503.47.

2'-(4-methoxy-3-methylphenyl)spiro[indoline-3,3'-pyrrolidin]-2-one (5k)

Following the general procedure tryptamine (200 mg, 1.25 mmol), 4-methoxy-3-methylbenzaldehyde (187.5 mg, 1.25 mmol), with catalytic TFA and NBS (158 mg, 1.1 mmol) in water (10 mL) provided the desired compound **5k** in 342 mg (yield 88%) as white semi solid. ¹H NMR (500 MHz; DMSO-d₆): 9.83, (s, 1H); 7.46 (d, J = 5 Hz, 1H); 7.25 (d, J = 10 Hz,1H); 7.14-7.12 (m, 2H); 7.06-7.03. (t, J = 5 Hz, 1H); 7.00 (d, J = 5 Hz, 1H); 6.97-6.94 (m, 1H), 4.37 (s, 1H); 3.79 (s, 3H), 3.26-3.24 (m, 1H); 3.14-3.12 (m, 1H); 2.91-2.90 (m, 1H), 2.83-2.79 (m, 1H), 2.13 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): 181.2, 157.4, 136.2, 132.7, 131.0, 127.9, 126.4, 125.4, 121.1, 118.5, 117.8, 111.3, 110.1, 71.2, 59.7, 55.6, 44.9, 37.2, 20.4. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₉H₂₁N₂O₂ – 309.1598, Found -309.1608.

2'-phenylspiro[indoline-3,3'-pyrrolidin]-2-one (5l)

Following the general procedure tryptamine (200 mg, 1.25 mmol), benzaldehyde (132.5 mg, 1.25 mmol) 1:1 THF/water (20 mL) with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound **51** in 311 mg (yield 94%) as orange liquid. ¹H NMR (500 MHz; DMSO-d₆):

9.99 (s, 1H); 7.50 (d, J = 10 Hz,1H); 7.44-7.36 (m, 5H); 7.31 (d, J = 5 Hz, 1H); 7.11-7.07 (t, J = 10 Hz, 1H); 7.04-7.01 (t, J = 5 Hz, 1H); 4.48 (s, 1H); 3.29-3.26 (m, 1H); 3.22-3.18 (m, 1H); 2.98-2.93 (m, 1H), 2.90-2.85 (m, 1H). ¹³C NMR (125 MHz; DMSO-d₆): 181.3, 139.0, 136.3, 131.9, 129.2, 128.5, 128.1, 126.3, 121.3, 118.7, 111.4, 71.0, 59.4, 45.1, 37.1. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₇H₁₇N₂O- 265.1335,Found - 265.1312;IR 2993.23, 2559.81, 1667.05, 1433.91.

2'-(2,5-bis(trifluoromethyl)phenyl)spiro[indoline-3,3'-pyrrolidin]-2-one (5m)

Following the general procedure tryptamine (200)1.25 5mg, mmol), 2. bistrifluoromethylbenzaldehyde (302.5 mg, 1.25 mmol) with catalytic TFA and NBS (158 mg, 1.1 mmol) in water (10 mL) provided the desired compound 5m in 225 mg (yield 45%) as viscous liquid.¹H NMR (500 MHz; DMSO-d₆): 10.28 (s, 1H); 8.06 (s, 1H); 7.98 (s, 2H); 7.45 $(d, J = 10 \text{ Hz}, 1\text{H}); 7.26 (d, J = 5 \text{ Hz}, 1\text{H}); 7.06-7.03 (t, J = 10 \text{ Hz}, 1\text{H}); 7.00-6.97 (t, J = 10 \text{ H$ 1H); 4.67 (s, 1H); 3.09-3.06 (m, 1H); 3.01-2.97 (m, 1H); 2.81-2.77 (m, 1H), 2.71-2.68 (m, 1H). ¹³C NMR (125 MHz; DMSO-d₆): 177.2, 146.6, 136.1, 133.8, 129.9, 129.2, 126.7, 124.5, 122.4, 120.9, 118.5, 117.8, 111.1, 69.9, 56.8, 43.7, 35.2. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₉H₁₅F₆N₂O - 401.1087, Found -401.1084; IR 3168.91, 2932.39, 1673.80, 1452.21.

1-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-pyrido[3,4-b]indole (4a)

Following the general procedure tryptamine (50 mg, 0.31 mmol), *p*-tolualdehyde (38 mg, 0.31 mmol) 1:1 THF/water (7 mL) with catalytic TFA and NBS (50 mg, 0.34 mmol) provided the desired compound **4a** in 31 mg (yield 39%) as colorless solid in 4 hours time.¹H NMR (500 MHz; DMSO-d₆): 10.42 (s, 1H); 7.44 (d, *J* =8 Hz, 1H); 7.26 (d, *J* = 10 Hz, 1H); 7.21-7.13 (m, 4H); 7.04-7.03 (m, 1H); 7.01-6.96 (m, 1H); 5.09 (s, 1H); 3.11-3.08 (m, 1H); 2.98-2.93 (m, 1H); 2.76-2.75 (m, 1H); 2.71-2.69 (m, 1H); 2.32 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): 140.6, 136.8, 136.5, 135.9, 129.2, 128.9, 127.4, 120.9, 118.7, 118.01, 111.6, 108.6, 56.9, 41.8, 22.7, 21.3. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₈H₁₉N₂ – 263.2543, Found - 263.1531.

	1	2	3	4	5	6	7	8	9	10	11	12	
А		1.413	1.521	1.712	0.037	1.433	1.062	0.976	0.036	0.033	0.037	0.036	0.038
В		0.479	0.312	0.512	0.037	0.991	1.108	0.759	0.036	0.036	0.039	0.036	0.042
С		0.904	1.084	1.12	0.046	0.982	0.51	0.802	0.036	0.037	0.037	0.037	0.039
D		1.123	0.912	1.01	0.037	0.712	0.782	0.659	0.042	0.037	0.036	0.037	0.038
E		1.102	0.924	0.991	0.037	0.787	0.97	1.09	0.037	0.037	0.037	0.038	0.039
F		0.987	0.936	0.667	0.037	0.784	0.84	0.964	0.037	0.035	0.038	0.038	0.037
G		0.613	0.712	0.781	0.038	0.512	0.604	0.698	0.037	0.037	0.037	0.038	0.039
Н		1.173	1.042	0.953	0.036	0.037	0.037	0.037	0.037	0.039	0.036	0.04	0.038

1. Screening of compounds 5a-m against MCF-7 cells (48h)

	O.D1	O.D2	O.D3	AVG	CTRL-TST	CTRL-TST	*100	stdev
control	1.413	1.521	1.712	1.548667	0	0	0	0.151408
eto	0.479	0.312	0.512	0.434333	1.114333	0.719544	71.95437	0.107221
5b	0.904	1.084	1.12	1.036	0.512667	0.331037	33.10375	0.115724
5c	1.123	0.912	1.01	1.015	0.533667	0.344598	34.45975	0.105589
5a	1.102	0.924	0.991	1.005667	0.543	0.350624	35.06242	0.089902
5d	0.987	0.936	0.667	0.863333	0.685333	0.442531	44.25312	0.171931
5e	0.613	0.712	0.781	0.702	0.846667	0.546707	54.67068	0.084445
5m	1.173	1.042	0.953	1.056	0.492667	0.318123	31.81231	0.110666
5g	1.433	1.062	0.976	1.157	0.391667	0.252906	25.29057	0.24286
5f	0.991	1.108	0.759	0.952667	0.596	0.384847	38.48472	0.17763
5h	0.982	0.51	0.802	0.764667	0.784	0.506242	50.62419	0.238204
<mark>5i</mark>	0.712	0.782	0.659	0.717667	0.831	0.536591	53.65906	0.061695
5j	0.787	0.97	1.09	0.949	0.599667	0.387215	38.72148	0.152588
5k	0.784	0.84	0.964	0.862667	0.686	0.442962	44.29617	0.092116
51	0.512	0.604	0.698	0.604667	0.944	0.609557	60.95566	0.093002

2.	Screening of compound 5a-m against COS-7 cells (48h)

	1	2	3	4	5	6	7	8	9	10	11	12	
Α		1.213	1.412	1.312	0.037	1.492	1.312	1.039	0.039	0.038	0.038	0.036	0.036
В		0.212	0.268	0.4	0.039	0.712	0.815	1.037	0.039	0.039	0.04	0.038	0.038
С		1.109	0.912	1.1	0.043	0.925	0.982	1.038	0.043	0.04	0.04	0.04	0.043
D		1.072	0.813	0.918	0.049	1.07	1.21	1.043	0.036	0.039	0.039	0.039	0.04
E		1.21	1.05	1.215	0.038	1.31	1.289	1.042	0.039	0.038	0.037	0.037	0.045
F		1.051	1.271	1.252	0.044	1.201	1.412	1.043	0.037	0.037	0.04	0.044	0.042
G		1.356	1.398	1.043	0.053	1.31	0.981	1.039	0.038	0.038	0.041	0.04	0.043
Н		1.091	1.217	1.649	0.042	0.042	0.038	0.036	0.04	0.036	0.041	0.038	0.047

	O.D1	O.D2	O.D3	AVG	CTRL-TES	CTRL-TEST/CTRL	*100	stdev
control	1.213	1.412	1.312	1.312333	0	0	0	0.0995
eto	0.212	0.268	0.4	0.293333	1.019	0.776479553	77.64796	0.096526
5b	1.109	0.912	1.1	1.040333	0.272	0.207264415	20.72644	0.111231
5c	1.072	0.813	0.918	0.934333	0.378	0.288036576	28.80366	0.13027
5a	1.21	1.05	1.215	1.158333	0.154	0.117348235	11.73482	0.093853
5d	1.051	1.271	1.252	1.191333	0.121	0.092202184	9.220218	0.121903
5e	1.356	1.398	1.043	1.265667	0.046667	0.035560071	3.556007	0.193975
5n	1.091	1.217	1.649	1.319	-0.00667	-0.00508001	-0.508	0.29265
5g	1.492	1.312	1.039	1.281	0.031333	0.023876048	2.387605	0.228086
5f	0.712	0.815	1.037	0.854667	0.457667	0.348742697	34.87427	0.166091
5h	0.925	0.982	1.038	0.981667	0.330667	0.251968504	25.19685	0.056501
5i	1.07	1.21	1.043	1.107667	0.204667	0.155956312	15.59563	0.089646
5j	1.31	1.289	1.042	1.213667	0.098667	0.07518415	7.518415	0.149038
5k	1.201	1.412	1.043	1.218667	0.093667	0.071374143	7.137414	0.185133
51	1.31	0.981	1.039	1.11	0.202333	0.154178308	15.41783	0.175616

3. EC₅₀ of compounds 5e, 5i and 5l

	1	2	3	4	5	6	7	8	9	10	11	12	
А		1.114	1.213	1.413	0.038	1.109	1.019	0.912	0.036	0.036	1.112	1.203	1.187
В		0.312	0.433	0.341	0.038	0.234	0.298	0.274	0.036	0.036	0.341	0.312	0.287
С		0.912	0.905	1.012	0.038	1.012	0.913	1.237	0.036	0.037	1.109	1.112	1.031
D		0.713	0.876	0.9	0.04	0.91	0.897	0.978	0.038	0.037	0.991	0.891	0.912
E		0.7	0.614	0.621	0.041	0.781	0.772	0.764	0.042	0.039	0.712	0.62	0.65
F		0.416	0.452	0.534	0.04	0.678	0.691	0.712	0.037	0.038	0.534	0.598	0.6
G		0.39	0.374	0.471	0.042	0.54	0.413	0.491	0.038	0.04	0.412	0.398	0.375
Н		0.036	0.037	0.037	0.036	0.046	0.042	0.04	0.038	0.038	0.039	0.037	0.037

		O.D1	O.D2	O.D3	AVG	CTRL-TST	CTRL-TST	*100	stdev	
ctrl		1.114	1.213	1.413	1.246667	0	0	0	0.152317	
eto		0.312	0.433	0.341	0.362	0.884667	0.709626	70.96257	0.063174	
1	0	0.912	0.905	1.012	0.943	0.303667	0.243583	24.35829	0.059858	
2	20	0.713	0.876	0.9	0.829667	0.417	0.334492	33.4492	0.101746	EC ₅₀ =3.53 micromolar
3	30	0.7	0.614	0.621	0.645	0.601667	0.48262	48.26203	0.04776	
4	10	0.416	0.452	0.534	0.467333	0.779333	0.625134	62.51337	0.060476	
5	50	0.39	0.374	0.471	0.411667	0.835	0.669786	66.97861	0.052003	
EC ₅₀ of 5	ie									
		0.D1	O.D2	O.D3	AVG	CTRL-TST	CTRL-TST	*100	stdev	
ctrl		1.109	1.019	0.912	1.013333	0	0	0	0.098622	
eto		0.234	0.298	0.274	0.268667	0.744667	0.734868	73.48684	0.032332	
1	0	1.012	0.913	1.237	1.054	-0.04067	-0.04013	-4.01316	0.166033	
2	20	0.91	0.897	0.978	0.928333	0.085	0.083882	8.388158	0.043501	EC ₅₀ =6 micromolar

 $0.712 \quad 0.693667 \quad 0.319667 \quad 0.315461 \quad 31.54605 \quad 0.017156$

0.525

0.532

0.241 0.237829 23.78289 0.008505

52.5 0.064049

EC₅₀ of 5i

30

40

50

0.781

0.678

0.54

0.772

0.691

0.413

0.764 0.772333

0.491 0.481333

		O.D1	O.D2	O.D3	AVG	CTRL-TST	CTRL-TST	*100	stdev	
ctrl		1.112	1.203	1.187	1.167333	0	0	0	0.048583	
eto		0.341	0.312	0.287	0.313333	0.854	0.731582	73.1582	0.027025	
	10	1.109	1.112	1.031	1.084	0.083333	0.071388	7.138778	0.045924	
	20	0.991	0.891	0.912	0.931333	0.236	0.20217	20.21702	0.052729	
	30	0.712	0.62	0.65	0.660667	0.506667	0.434038	43.40377	0.046918	EC ₅₀ =4.01 micromolar
	40	0.534	0.598	0.6	0.577333	0.59	0.505425	50.54255	0.037541	
	50	0.412	0.398	0.375	0.395	0.772333	0.661622	66.16219	0.018682	

4. DNA ladder assay of compounds, 5e, 5i and 5l (Figure 1):

Interaction Type	Residue	Amino Acid	Distance (Å)
Hydrogen Bond	183	HIS	2.23
Hydrophobic Interaction	155	PHE	3.21
Hydrophobic Interaction	155	PHE	3.98
Hydrophobic Interaction	210	PHE	3.43
Hydrophobic Interaction	210	PHE	3.30
Hydrophobic Interaction	210	PHE	3.67
Hydrophobic Interaction	276	LEU	3.60
Pi-Stacking	209	TYR	6.70
Pi-Stacking	209	TYR	6.20

5. Table 1. Various interactions between 51 and the target protein with the amino acid involve in the binding and the distances between the binding atoms.

6. Annexin-PI FACS experiments:

Quadrants Q1: Necrosis (Ann -ve/PI +ve); Q2: Late apoptosis (Ann +ve/ PI +ve);

Q3: Ann -ve/ PI -ve; Q4: Early Apoptosis (Ann +ve/ PI -ve).

a. Figure 2 (Unstained)

b. Figure 3 (control @ 6h)

c. Figure 4 (control @ 12h)

d. Figure 5 (control @ 24h)

Experiment Nar Specimen Nam Tube Name: Record Date: Operator: GUID:	ne: e:	Experir Ann PI Cntrl 2- Apr 22, Admini 1416et	nent_046 4 hrs 2016 4:47:34 strator o37-625d-4bf5	PM j-ac6e-015
			SSC-A	FITC-A
opulation	#Events	%Parent	Mean	Mear
P1	8,769	43.8	17,359	87
🛛 Q1	1,451	16.5	35,531	138
🛛 Q2	7	0.1	57,741	1,867
🛛 Q3	7,303	83.3	13,661	74
🛛 Q.4	8	0.1	61,649	1,809
🛛 P2	25	0.3	55,521	1,577
🛛 РЗ	1,221	13.9	36,083	133

e. Figure 6 (Etoposide @ 6h)

Experiment Na	ame:	Experir	Experiment_046					
Specimen Nar	ne:	Ann Pl						
Tube Name:		Etopos	ide 6 hrs_001					
Record Date:		Apr 22,	2016 4:39:01	PM				
Operator:		Admini	strator					
GUID:		36cb30	:5f-267e-4866	-ad87-c59				
			SSC-A	FITC-A				
Population	#Events	%Parent	Mean	Mean				
📕 P1	14,043	70.2	39,121	116				
🛛 Q1	957	6.8	45,349	311				
🖂 Q2	19	0.1	86,915	2,222				
🛛 Q3	13,056	93.0	38,563	96				
🖂 Q.4	11	0.1	77,919	2,126				
🖾 P2	60	0.4	85,686	1,689				
🛛 РЗ	833	5.9	48,986	375				

f. Figure 7 (Etoposide @ 12h)

g. Figure 8 (Etoposide @ 24h)

h. Figure 9 (Compound 51 @ 6h)

i. Figure 10 (Compound 51 @ 12h)

j. Figure 11 (Compound 51 @ 24h)

FITC-A Mean

169

293

1,977

122

2,293

1,677

105

316

Compound 4a

Sample Name: 6s

Vial: 68

Inj. #: 1

Date Acquired: 3/27/2016 5:49:52 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	4.441	13336179	97.21	1236224
2	2998 Ch1 254nm@1.2nm	5.985	383189	2.79	62178

Sample Name:4sVial:66

lnj. #: 1

Date Acquired: 3/27/2016 5:26:12 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

		Processed Channel	Retention Time (min)	Area	% Area	Height
ĺ	1	2998 Ch1 254nm@1.2nm	6.391	231208	1.37	60465
	2	2998 Ch1 254nm@1.2nm	7.016	16374665	97.17	3195681
I	3	2998 Ch1 254nm@1.2nm	7.338	246202	1.46	62713

Sample Name: 5s

Vial: 67

Inj. #: 1

Date Acquired: 3/27/2016 5:38:00 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	4.399	16089285	97.13	1293590
2	2998 Ch1 254nm@1.2nm	5.014	198077	1.20	35262
3	2998 Ch1 254nm@1.2nm	5.978	277549	1.68	48635

Sample Name: 8s

Vial: 69

lnj. #: 1

Date Acquired: 3/27/2016 6:01:43 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	6.015	188891	1.58	44490
2	2998 Ch1 254nm@1.2nm	6.199	11802782	98.42	1953735

Sample Name: 9s

Vial: 70

lnj. #: 1

Date Acquired: 3/27/2016 6:13:30 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	5.987	188546	1.03	40505
2	2998 Ch1 254nm@1.2nm	6.293	18035527	98.97	2977405

Sample Name: 11tfas

Vial: 11

lnj. #: 1

Date Acquired: 3/28/2016 2:43:53 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	5.616	20490647	98.30	3019899
2	2998 Ch1 254nm@1.2nm	6.018	353810	1.70	56883

 Sample Name:
 11s

 Vial:
 12

 Inj. #:
 1

 Data Acquiradi
 2/28/2016 2:55:45 5

Date Acquired: 3/28/2016 2:55:45 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	1.730	4395221	92.99	838467
2	2998 Ch1 254nm@1.2nm	2.285	180280	3.81	27567
3	2998 Ch1 254nm@1.2nm	6.029	151156	3.20	26018

Sample Name:12sVial:13Inj. #:1

Date Acquired: 3/28/2016 3:07:38 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	4.124	20675103	97.11	1778445
2	2998 Ch1 254nm@1.2nm	4.931	575948	2.71	97453
3	2998 Ch1 254nm@1.2nm	6.010	39461	0.19	12536

Date Acquired: 3/28/2016 2:32:02 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

5	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	2.309	31794415	100.00	1723526

Reported by User: System Report Method: Sample Summary Table Report Method II 1479 Page: 1 of 1 Project Name: Sen Group Date Printed: 5/28/2016 12:19:30 PM Asia/Calcutta

 Sample Name:
 14s

 Vial:
 15

 Inj. #:
 1

Date Acquired: 3/28/2016 3:31:15 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	5.559	11064984	94.98	1647854
2	2998 Ch1 254nm@1.2nm	5.987	584412	5.02	96570

 Sample Name:
 16s

 Vial:
 16

 Inj. #:
 1

 Date Acquired:
 3/28/2016 3:43:08 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	2.555	7904195	85.38	935925
2	2998 Ch1 254nm@1.2nm	3.108	847858	9.16	48034
3	2998 Ch1 254nm@1.2nm	3.883	245112	2.65	27597
4	2998 Ch1 254nm@1.2nm	5.989	259993	2.81	44729

Vial: 17 Inj. #: 1

Date Acquired: 3/28/2016 3:55:30 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	5.501	6542991	95.80	925003
2	2998 Ch1 254nm@1.2nm	6.126	287087	4.20	52529

10s Vial: 12 Inj. #: 1 Date Acquired:

3/28/2016 7:00:22 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	2998 Ch1 254nm@1.2nm	2.865	15207752	<mark>93.1</mark> 0	1912139
2	2998 Ch1 254nm@1.2nm	3.638	660592	4.04	73161
3	2998 Ch1 254nm@1.2nm	7.765	466828	2.86	58186

Reported by User: System Report Method: Sample Summary Table Report Method IE1479 Page: 1 of 1

Project Name: Sen Group Date Printed: 5/28/2016 12:31:38 PM Asia/Calcutta

HPLC-CHIP-MS.

Agilent 1260 infinity HPLC-Chip/MS system is a microfluidic chip-based technology incorporates peptide enrichment and separation and provides high-sensitive nano-spray. Charged peptides from HPLC-Chip system were directly infused into mass-spectrometer for detection. Following HPLC-Chip-MS conditions were used for acquiring the MS and MS/MS spectrum of the peptides. Chip ID: G4240-62030 Chip Name: High Performace Chip, 360 nanoliter enrichment column, 150 mm X 75 µm separation column Solvent A: 0.1% Formic Acid Solvent B: 90% ACN / 10% (0.1% Formic Acid) Flow Rate: 0.3 µl / min Run Time: 65 minutes Gradient: 0 min – 3%B 56 min – 40% B 60 min – 95% B 62 min – 95% B 62.1 min 3%B 65 min – 3% B Sample Volume: 5 µl MS Scan Range: 275 to 1700 m/z MS Scan Rate: 8 spectra / sec MS/MS Scan Rate: 3 spectra / sec Ion Polarity: Positive Ions Fragmentor Voltage: 170 V Skimmer Voltage: 65 V Octopole RF Voltage: 750V Gas Temperature: 250°C Drying Gas: 5 L / min

Cell migration assay

This note describes the application of the technology in identifying/de-convoluting true positive targets of a non-derivatized 'test' molecule BIS-III.

Background and Overall Goal

Bisindolylmaleimide-III (Bis-III) a known inhibitor of GSK3 protein and it induces apoptosis in the cancerous cell-lines. At 1 μ M, Bis-III inhibits 93% of PKC α kinase activity and also inhibits many other protein kinases including, S6K1, MAPKAP-K1, RSK2 and MSK1 with similar potency. Additionally, it inhibits PDK1, an important kinase in the insulin signaling pathway.

In following experiments _{Shantani's} technology was utilized to identify primary and secondary targets of BIS-III.

Step-1) Immobilization of 'Bis-III' on Shantani's proprietary polymer matrix

- 1. Based on BIS-III compatibility with the polymer matrix; a 10 ml soluble stock solution of 0.3 mM BIS-III was prepared in HPLC water.
- 2. The molecule was quoted on the matrix in small amount (1 ml) and allowed to dry at RT. The coating and drying of membrane was carried out till the complete 10 ml solution of Bis-III was coated on the membrane.

Step-2) Capture and Identification of Targets

The molecule coated matrix was incubated with cell lysate for 2 minute. Excess lysate was removed and proteins were eluted with 2 ml elution buffer (1 mM Bis-III in TBST). Proteins were acetone precipitated, extracted and measured. Two similar experiments were performed - one for western blot analysis and another for Mass spec analysis.

Protein concentration from both control and test experiment was normalized and probed for GSK3-beta protein using western blot method.

The target protein, GSK3-beta was specifically enriched on the Bis-III bound matrix.

Step-3) Deconvolution of Targets

Following the protocol (UPT - Technical Notes) proteins were identified using the mass-spectrometry based methods and specific targets were de-convoluted. Table 1 summarizes the outcome of target deconvolution experiments.

Uniprot ID	Protein Description	Maximum Number of Unique Peptides Identified	Protein Sequence Coverage (%)	Q-Value (%)
Q13418	Integrin-linked protein kinase	7	18.14	0
Q70UQ0	Inhibitor of nuclear factor kappa-B kinase	6	20.85	0
P28482	Mitogen-activated protein kinase 1	6	21.94	0
P60891	Ribose-phosphate pyrophosphokinase 1	5	20.44	0
E9PF82	Calcium/calmodulin-dependent protein kinase type II	4	10.46	0
P49841-2	Glycogen synthase kinase-3 beta	3	11.42	0
P63208	S-phase kinase-associated protein	3	19.63	0
P51570-2	Galactokinase	3	10.96	0

The primary target, GSK3-beta, of BIS-III was effectively captured using the described workflow. At the same time secondary targets of the molecule were also identified.

2'-(thiophen-2-yl)spiro[indoline-3,3'-pyrrolidin]-2-one (5n)

Following the general procedure tryptamine (200 mg, 1.25 mmol), thiophen-2-carbaldehyde (140.2 mg, 1.25 mmol), 1:1 THF/water (20 mL) with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound **5n** in 200 mg (yield 59%) as yellow gummy solid. ¹H NMR (500 MHz; DMSO-d₆): 9.89 (s, 1H); 7.73-7.72 (d, J = 5 Hz, 1H); 7.54-7.52 (d, J = 10 Hz, 1H); 7.34-7.30 (m, 2H); 7.18-7.12 (m, 2H); 7.07-7.04 (t, J = 5 Hz, 1H); 4.11 (s, 1H); 3.49-3.46 (t, J = 10 Hz, 2H); 3.10-2.99 (m, 2H). ¹³C NMR (125 MHz; DMSO-d₆): 178.2, 137.2, 136.4, 130.4, 128.8, 128.5, 127.4, 125.5, 122.2, 119.1, 111.6, 70.2, 59.7, 41.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₅N₂OS - 271.0900, Found - 271.072; IR 3151.43, 3016.39, 1663.65, 1240.36.

2'-(pyridin-4-yl)spiro[indoline-3,3'-pyrrolidin]-2-one (50):

Following the general procedure tryptamine (200 mg, 1.25 mmol), pyridine-4-carbaldehyde (134 mg, 1.25 mmol), 1:1 THF/water (20 mL) with catalytic TFA and NBS (197.5 mg, 1.37 mmol) provided the desired compound **50** in 212 mg (yield 64%) as light yellow solid. ¹H NMR (500 MHz; DMSO-d₆): 9.85 (s, 1H); 8.52-8.51 (d, J = 5 Hz, 2H); 7.43-7.41 (d, J = 10 Hz, 1H); 7.31-7.30 (d, J = 5 Hz, 2H); 7.25-7.23 (d, J = 10 Hz, 1H); 7.04-7.00 (t, J = 10 Hz, 1H); 6.98- 6.94 (t, J = 10 Hz, 1H); 4.09 (s, 1H); 2.99-2.95 (m, 2H); 2.71-2.67 (m, 2H). ¹³C NMR (125 MHz; DMSO-d₆): 175.1, 151.6, 149.4, 136.00, 133.9, 126.7, 123.5, 120.7, 118.3, 111.0, 72.1, 59.8, 40.8. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₆H₁₆N₃O - 266.1288,Found - 266.1263; IR 3112.07, 1689.19, 1398.50.

Compound 5n

Processed Channel: 2998 Ch1 254nm@1.2nm

4												
		Processed Channel	Retention Time (min)	Area	% Area	Height						
	1	2998 Ch1 254rm@1.2nm	2.196	4/202	0.51	10685						
1	2	2998 Ch1 254nm@1.2nm	4.552	9162467	99.40	1388411						

Reported by User: System Report Method: Sample Summary Table Report Method IC1479 Page: 1 of 1 Project Name: Sen Group Date Printed: 7/12/2016 11:00:05 PM Asia/Calcutta

Compound 50

Vial: 15 Inj.#: 1 Date Acquired:

e Acquired: 3/25/2016 4:28:35 PM IST

Processed Channel: 2998 Ch1 254nm@1.2nm

Ι		Processed Channel	Retention Time (min)	Area	% Arpa	Height
Ī	1	2998 Ch1 254rm@1.2nm	2.926	39105930	99.24	2534579
	2	2998 Ch1 254rm@1.2nm	3.518	298714	076	47413

Reported by User: System Report Method: Sample Summary Table Report Method IC 1479 Page: 1 of 1 Project Name: Sen Group Date Printed: 7/12/2016 10:54:48 PM Asia/Calcutta

Graphical depiction of the cell migration assay

Cytotoxicity assay with MCF 10A

					Experiment :MCF10A cytotoxicity assay 48 hours							
Raw Data{Wavelength:595.0}												
	1	2	3	4	5	6	7	8	9	10	11	12
A	1.279	1.218	1.002	0.042	0.064	0.061	0.068	0.037	0.036	0.037	0.039	0.036
В	0.519	0.3	0.438	0.038	0.065	0.061	0.063	0.039	0.041	0.038	0.037	0.065
С	1.154	1.203	0.985	0.037	0.152	0.072	0.066	0.039	0.037	0.038	0.038	0.039
D	1.347	1.219	0.902	0.039	0.067	0.075	0.08	0.04	0.037	0.039	0.038	0.037
E	1.118	0.944	0.922	0.04	0.083	0.081	0.078	0.04	0.041	0.04	0.037	0.041
F	1.005	1.109	1.382	0.037	0.074	0.079	0.085	0.04	0.04	0.037	0.037	0.036
G	0.063	0.072	0.072	0.039	0.069	0.073	0.071	0.039	0.04	0.039	0.039	0.039
н	0.083	0.071	0.074	0.037	0.041	0.042	0.039	0.038	0.04	0.039	0.036	0.037
	O.D1	0.D2	O.D3	AVG	CTRL-TEST	CTRL-TST/0	*100					
CONTROL	1.279	1.218	1.002	1.166	0	0	0					
DMSO	0.519	0.3	0.438	0.419	0.747333333	0.640755	64.07					
5e	1.154	1.203	0.985	1.114	0.052333333	0.04487	4.48					
5i	1.347	1.219	0.902	1.156	0.010333333	0.00886	0.8					
51	1.005	1.109	1.382	1.165	0.001	0.000857	0.08					