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ABSTRACT Protein folding codes embodying local inter-
actions including surface and secondary structure propensities
and residue-residue contacts are optimized for a set of training
proteins by using spin-glass theory. A screening method based
on these codes correctly matches the structure of a set of test
proteins with proteins of similar topology with 100% accuracy,
even with limited sequence similarity between the test proteins
and the structural homologs and the absence ofany structurally
similar proteins in the training set.

The ability to predict the native tertiary structure of a protein
based solely on its amino acid sequence has long been a goal
of computational biophysics. The roughness of a realistic
free-energy landscape with its attendant numerous local
minima combined with the large number of conformational
degrees of freedom for a protein chain have led to attempts
to create alternative energy functions in terms of reduced
descriptions of the protein configuration. In previous work,
we explored the use of associative memory Hamiltonians, a
particular type of folding code introduced by Friedrichs and
Wolynes (1), which encodes correlations between the se-
quence of the target protein whose structure is to be deter-
mined and the sequences and structures of a set of "memo-
ry" proteins. Use of the associative memory formulation
allowed us to apply the theory of spin glasses, whose rele-
vance to protein folding has been explored (2-7), to create a
nonslavishly realistic energy function for protein tertiary
structure prediction optimized so as to facilitate rapid folding
while avoiding local energy minima. We demonstrated the
ability of an optimized associative memory Hamiltonian to
correctly predict low-resolution structures of target proteins
with low sequence similarity to the memory proteins by
either a screening method or molecular dynamics with sim-
ulated annealing (8).

This optimization methodology can be extended to a wide
range of different approaches that seek to create simplified
Hamiltonians by taking advantage of the data base of known
protein structures. One type of Hamiltonian introduced by
Eisenberg and coworkers (9) seeks to determine what amino
acid sequences are compatible with a particular protein fold

p= yP(Ai, C,), [1]

where yP is a function of both the identity of residue i, Ai, and
its context in the protein (e.g., surface accessibility, second-
ary structure, environmental polarizability), Ci. The values of
{C,} are an explicit function of the protein configuration,
providing the Hamiltonian's dependence on protein geome-
try. yP(Ai, C,) was calculated based on the frequency of
occurrence of particular residues in each possible context. A
profile Hamiltonian of this form is capable of encompassing

local propensities to particular backbone configurations and
multibody potentials such as protein-solvent interactions in
a simple way. A major advantage of such a Hamiltonian is
that it is easily amenable to dynamic programming tech-
niques, since it is manifestly invariant to insertions and
deletions (10). It is not, however, able to generalize many of
the specific two-body interactions such as disulfide and
hydrogen bonds and salt bridges that give protein structures
their specificity. Although their analysis was based on as-
sumptions of statistical independence, which is problematic
given the highly cooperative nature of protein folding, Luthy
et al. (11) were able to demonstrate the ability of a profile
Hamiltonian to distinguish the correctly folded state of a
protein from a set of possible configurations.
Another type of Hamiltonian is a contact-potential Hamil-

tonian such as that analyzed by Miyazawa and Jernigan (12)

NCc = y'C(Ai, Ci, Aj, Cj)u(r -rij),i~j
[2]

where yc is a function of both the identity of residues i and
j and their environment in the protein structure, and u(r, -
r,) is a unit step function equal to 1.0 when rij is less than some
cutoff distance r. Miyazawa and Jernigan used a quasi-
chemical approximation to derive the strength of the various
interactions, neglecting many local interactions and propen-
sities, and only roughly quantifying interactions ofthe protein
with the solvent. Skolnick and Kolinski have shown (13) that,
in spite of these limitations, with a modified version of
Hamiltonian (Eq. 2) combined with exact knowledge of local
backbone configuration it is possible to perform a lattice
simulation that terminates with a correctly folded structure.

In this paper, we use spin-glass theory to optimize these
two more traditional forms of Hamiltonians, both individu-
ally and in combination, for a set of training or example
proteins. We then demonstrate the ability of the resulting
Hamiltonians to predict the structures of a set of test proteins
that exhibit only limited homology to the training set.

Spin Glasses and the Multiple-Minima Problem

For either molecular dynamics simulations or in vivo folding
to yield the native state of a protein, it is necessary not only
that the correct structure be stabilized by the various inter-
actions but also that incorrect local minima be destabilized
with respect to the native fold. Resolving, or even charac-
terizing, this multiple-minima problem is difficult given the
astronomically large number of possible conformations, even
in proteins of small size.
The statistical mechanics of the multiple-minima problem

in protein tertiary structure prediction can be understood
heuristically by using theoretical methods originally applied
to spin glasses (14). Spin glasses are spin systems with

Abbreviations: GCG, Genetics Computer Group; PDB, Brookhaven
National Laboratory Protein Data Bank.
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random, frustrated interactions that, in the most general case,
can compete with a simple nonfrustrated ordering interaction
(e.g., ferromagnetism) (15). Reflecting this is a competition
between two different phase transitions: an ordering transi-
tion (e.g., spin alignment) when the nonfrustrated interac-
tions dominate and there is a gap in the energy spectrum
between ordered and disordered states, and a glass transition
to a state of frozen-in disorder when the random interactions
dominate. For protein folding, these two transitions would
correspond to the transition from a liquid-like state to the
native folded state (at temperature Tf) or to a glassy state (at
temperature Tg) (8, 14). The glass transition represents the
transition to a state dominated by multiple minima; after the
transition, the folded state is no longer kinetically accessible
in the thermodynamic limit. Near the glass transition, the
potential energy landscape becomes rough and folding kinet-
ics become slow, nonexponential, and non-Arrhenius. Opti-
mizing a particular protein folding Hamiltonian by maximiz-
ing the ratio of Tf/Tg allows structure prediction by using
molecular dynamics simulations to be carried out at temper-
atures where trapping in local minima outside the folded state
is unimportant.
Our previous analysis based on a random energy model

indicated that Tf/Tg is maximized when R2 = AE2/8E2 is
maximized, where BE is the width of the distribution of
energy in the liquid-like states and AE is the average energy
difference between these states and the correctly folded state
(8). This provides a mathematical formulation of how opti-
mality in protein folding can be achieved by stabilizing the
correctly folded state with respect to all alternatively folded
states.

In general, optimization of AE2/6E2 represents a nonlinear
problem, with possible multiple solutions. In the particular
case when the Hamiltonian is linear with respect to a set of
parameters {yi}, it is possible to express the energy of protein
, in its native state by El = XikNyi, and in liquid-like state
k by Ek = X1A yi One can then write AE and BE as AE = Ay
and 6E2 = yBy, where A is a vector and B is a matrix given
by

Ai = AN -(Ak)k [3]

Bij = (kAk)k - (A)k (Akk)k, [4]

respectively, where the averages are over all of the liquid-like
states k. Maximization of Tf/Tg leads to the explicit form for
the optimal y: y = B-1A.

y can be optimized for a set of training proteins by
averaging A and B over the training set. Once optimized,
molecular dynamics can be used to generate the predicted
structure of a given target protein. In this paper, however, we
continue to use the screening method used by us and others
(8, 9, 16-18). As has been pointed out, there is both theo-
retical and empirical evidence that there are a limited number
of structural motifs found in globular proteins (9, 19-22). The
tertiary structure prediction problem accordingly can be
transformed from the problem of choosing the native state
from among the astronomically large number of possible
configurations to the problem of selecting between a much
smaller set of motifs. Finding the structural motif of lowest
energy for a given target protein can be done exhaustively or
by using a mean-field self-consistent approach (17). This
screening method can be related to lattice calculations, where
the lattice is provided by the structures of known proteins
(16). As a test of this methodology, we calculate the energy
of the target sequence in the configuration of a set of trial
structures representing structurally different proteins con-
tained in the Brookhaven National Laboratory Protein Data
Bank (PDB), using the Genetics Computer Group (GCG)

BESTFIT alignments with default gap parameters to determine
corresponding residues in the two proteins (23). The config-
uration of lowest energy or, alternatively, of largest R =
A'y/(yBy)1/2 as calculated in the trial structure configuration
using the optimized values for y is taken to represent the
predicted structure of the target protein.

Structural similarities were characterized by q scores,
where q measures what fraction of the pairwise distances
between corresponding residues in the two proteins match
within some tolerance (8)

= [N(N- 1)]' >.2(rl -rig
ioj

[5]

Here 6 is a gaussian function of width 1-2 A depending onj
- i, and rly and r2 , are distances between residues i andj of
protein 1 and corresponding residues i' and f' of protein 2,
respectively. The q scores are related to rms distance devi-
ations (drms values) used by Levitt (19), except q scores
emphasize similar regions in the two proteins rather than the
portions that are different. A q score > 0.4 was interpreted
as indicating structural similarity.

Results

Profile Hamiltonian. Various forms of the profile Hamilto-
nian (Eq. 1) were optimized. Because the purpose of this
work is more exploratory than definitive, a simpler repre-
sentation of the amino acid environment than that in ref. 9
was used. As distinguished from their 18 categories of
secondary structure, neighborhood polarity, and buried side-
chain surface area, we encoded two parameters-secondary
structure (helix, sheet, turn, or coil) and side-chain surface
accessibility (inside or outside)-yielding eight different en-
vironments. Secondary structures were defined using the
program DSSP (24), with 3-10 and ir helices classified as turns.
Side-chain accessible surface area was calculated by using
the algorithm of Richards (25) as implemented in MIDASPLUS
(26), with a residue side chain classified as outside if >15%
of its side-chain surface area was accessible to solvent,
compared with the surface area of the side chain in a
Gly-Xaa-Gly tripeptide (27). With side-chain surface acces-
sibility not defined, energy contributions for glycines de-
pended on secondary structure only. Energy contributions
were defined relative to the residue in an inside coil state,
resulting in a Hamiltonian with 136 adjustable parameters.
A set of 42 proteins 50-270 residues long selected from the

PDB were used as training proteins (28, 29). These proteins
represented a range of tertiary folds, including a-helical
proteins (e.g., sperm whale myoglobin; 5MBN), (-sheet
proteins [e.g., mouse Fab fragment heavy chain; 3HFM(H)],
and mixed proteins (e.g., chicken dehydrofolate reductase;
8DFR). We used the x-ray coordinates of a set of proteins
10-50%o larger than the training protein, including all possible
translations along the sequence, to model the liquid-like
states (8, 16). A and B were averaged over the set of training
proteins and used to calculate an optimal yP(Ai, Ci) listed at
the top of Table 1. Results are qualitatively similar to
propensities observed by others (9, 30), such as the correla-
tion between surface propensity and hydrophobicity, the
tendency of asparagines and glycines to be in turns, the
a-helical propensity of arginine and methionine, and the
p-sheet propensity of threonine and tyrosine.
Twenty-three test proteins were selected from the PDB

data set, also 50-270 residues long, of various structural
classes, so that a structurally homologous protein existed in
the training set with maximum sequence similarity of <40%o
identity based on GCG BESTFIT alignments. For our data
base, this cutoff represented the start of the region where
sequence similarity did not necessarily imply structural ho-
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Table 1. Context propensity vs. buried coil

Buried Surface

aa Helix Sheet Turn Helix Sheet Turn Coil

Profile Hamiltonian
Arg
Lys
Asp
Gln
Asn
Glu
His
Ser
Thr
Pro
Tyr
Cys
Gly
Ala
Met
Trp
Leu
Val
Phe
Ile

Arg
Lys
Asp
Gin
Asn
Glu
His
Ser
Thr
Pro
Tyr

Cys
Gly
Ala
Met
Trp
Leu
Val
Phe
Ile

0.26
-0.46
-0.13
0.26

-0.52
0.20
0.20

-0.16
-0.07
-1.37
-0.09
-0.75
-0.53
0.21
1.83

-0.36
0.69
0.19
0.72
0.91

0.19
-0.24
0.04
0.33

-0.32
0.35

-0.20
0.08
0.29

-1.51
-0.08
-1.46
-0.54
0.23
1.74

-0.77
0.75
0.32
0.61
1.14

0.07
-0.20
-0.09
-0.05
-0.66
-0.08
-0.75
-0.53
-0.03
-1.55
0.85

-0.67
-0.30
-0.37
-0.03
-0.48
0.65
1.07
0.70
1.18

0.18
-0.17
0.10
0.23

-0.51
-0.16
-0.66
-0.33
-0.20
-0.93
-0.43
-1.31
0.92

-0.61
-0.19
-0.46
-0.30
-0.55
0.24

-0.21

1.89
1.30
1.12
1.20

-0.12
1.58

-1.04
0.05
0.41

-1.15
-0.98
-1.03
-0.53
-0.27
-0.74
-1.78
-0.77
-0.59
-1.27
-0.79

0.95
1.18
0.31
1.01
0.02
0.87

-0.29
-0.23
1.68

-1.35
-0.43
-1.64
-0.30
-0.68
-0.32
-1.76
-0.67
-0.43
-0.09
-0.56

Combination Hamiltonian
0.41
0.00
0.27
0.14

-0.48
0.29

-0.19
-0.45
0.35

-1.44
0.87

-1.23
-0.43
-0.18
-0.20
-0.25
0.63
1.07
0.47
1.30

0.13
-0.40
-0.09
-0.05
-0.80
-0.46
-0.50
-0.57
-0.15
-1.21
-0.23
-1.13
0.70

-0.68
-0.29
-0.15
0.04

-0.33
0.42
0.09

1.82
1.36
1.01
1.25

-0.24
1.33

-0.97
0.04
0.60

-1.49
-0.28
0.02

-0.54
-0.06
-0.51
-1.25
-0.03
-0.12
-0.72
0.00

1.00
1.39
0.39
0.82
0.10
0.77
0.42

-0.48
1.87

-1.50
0.21

-0.76
-0.43
-0.32
0.03

-0.90
-0.17
-0.09
0.34

-0.01

0.85
1.16
1.41
1.28
0.94
1.23

-0.80
0.61
0.31
0.03

-0.78
-1.35
0.92

-0.57
-0.94
-1.38
-0.97
-0.99
-0.98
-0.96

0.67
1.06
1.04
0.72
0.58
0.62

-0.54
0.14
0.24

-0.49
-0.13
-0.11
0.70

-0.43
-0.60
-0.70
-0.18
-0.34
-0.19
-0.05

1.38
0.87
0.83
0.86
0.42
0.52

-0.84
0.49
0.58

-0.31
-1.08
-1.13
0.00

-0.71
-0.58
-2.04
-0.96
-0.82
-0.68
-0.68

1.64
1.16
0.89
0.71
0.36
0.43

-0.07
0.39
0.82

-0.41
-0.16
0.40
0.00

-0.27
0.28

-1.15
-0.19
-0.10
0.17
0.19

Optimized values yP(Ai, C,) for the profile Hamiltonian Xep and the
combination Hamiltonian MCT = ep + X, showing the propensity of
various amino acids (aa) to particular environments, relative to the
buried coil state. Environments are as defined in the text. fy values
for glycines are independent of side-chain solvent accessibility.
Positive values indicate favorable interactions.

mology. Liquid-like states were constructed in the same way
as for the training proteins. The set of trial structures for use
with the screening method was generated by using the 42
training proteins as aligned to the test proteins using the GCG
BESTFIT sequence alignment algorithm with default specifi-
cations. In contrast to our previous work, these alignments
did not alter the form of the Hamiltonian, but only the set of
trial structures. The profile Hamiltonian with optimized
yP(Ai, C,) was able to correctly predict the structure of 20 of
the 23 test proteins, failing with cro protein (2CRO), cy-
tochrome c-551 (351C), and Bence Jones protein (2RHE). In
two of these three cases, the incorrect prediction was lower
in energy than the test protein in its native configuration,
indicating that the problem was not in the use ofthe screening
method. It is possible that more elaborate profile Hamilto-
nians, such as that described in ref. 9, would yield better
results.

Contact Hamiltonian. There is a wide range of possible
forms for the contact potential Hamiltonian (Eq. 2). In
general, to avoid overfitting of the data, simplified encodings
of {A,} and {C,} were used. Allowing the value of yc(Ai, Ci, Aj,
Cj) to depend on contextual information as encoded in {CJ,
itself an explicit function of protein configuration, is one way
of incorporating feature detection into the Hamiltonian, as
proposed earlier (8, 10). Including environmental information
deepened the minima corresponding to the native configura-
tion of both the training and test proteins in their native
configurations but tended to degrade results with the screen-
ing method due to variations in the environments of corre-
sponding residues in similar structures. This variation is more
serious for the case of contact potentials than for the profile
Hamiltonian, as yC(Ai, Ci, Aj, Cj) is a function of the envi-
ronment of two different residues. A more exhaustive set of
possible configurations used with the screening method might
alleviate this problem. ru was defined as the distance between
the CO coordinates of the two residues, with the exception of
glycine residues, where the Ca coordinate was used.
The best results were obtained with r, = 10 A. Grouping

similar residues together did not significantly degrade the
performance of the contact Hamiltonian. The top part of
Table 2 shows the resulting optimized values of yc(Ai, A,),
where residues were grouped into six categories on the basis
of mutation rates as embodied in Dayhoff matrices (31), as
defined in the legend to Table 2. This categorization itself
could be optimized by using spin-glass theory. yc(Ai, A,) was
assumed to be symmetric, resulting in only 21 adjustable
parameters. Results are qualitatively what would be ex-
pected. The largest possible contribution comes from two
cystines in close proximity. Hydrophobic and aromatic res-
idues show a preference to cluster together, away from
interactions with the solvent. Acidic and basic residues prefer
to associate with each other, suggesting the effect of salt-
bridge formation.

This contact Hamiltonian showed similar capabilities to the
profile Hamiltonian, also correctly predicting 20 of the 23 test
proteins, failing not only for 2CRO and 2RHE but also for
leech Eglin-C [2TEC(I)]. In contrast with the results from the
profile Hamiltonian, the energy minima of the natively folded
test proteins were lower than the incorrect prediction in all
three cases, indicating that a more comprehensive screening
method might have yielded better results.

Table 2. Contact potentials
C S N H V F

Contact Hamiltonian
C 1.43 -0.03 -0.19 -0.11 0.68 0.87
S -0.03 -0.01 -0.03 -0.02 -0.05 -0.07
N -0.19 -0.03 -0.04 0.10 -0.29 -0.26
H -0.11 -0.02 0.10 -0.13 -0.17 -0.07
V 0.68 -0.05 -0.27 -0.17 0.84 0.68
F 0.87 -0.07 -0.26 -0.07 0.68 0.74

Combination Hamiltonian
C 1.63 0.03 -0.09 -0.05 0.70 0.87
S 0.03 0.04 0.02 0.04 -0.08 -0.07
N -0.09 0.02 0.04 0.19 -0.30 -0.24
H -0.05 0.04 0.19 0.01 -0.17 -0.04
V 0.70 -0.08 -0.30 -0.17 0.75 0.62
F 0.87 -0.07 -0.24 -0.04 0.62 0.73

Optimized values of yC(Ai, Aj) for the contact Hamiltonian Wc and the
combination Hamiltonian 7CT = Xep + We showing the propensity of
amino acids of various categories to be within 10 A of each other. The
categories are as defined in ref. 31: C (sulfbydryl: Cys), S (small
hydrophilic: Ser, Thr, Pro, Ala, Gly), N (acid, acid amide, hydrophilic:
Asn, Asp, Glu, Gln), H (basic: His, Arg, Lys), V (small hydrophobic:
Met, Ile, Leu, Val), and F (aromatic: Phe, Tyr, Trp). Positive values
indicate favorable interactions.
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Combined Hamiltonian. A complete Hamiltonian was con-
structed by combining the two Hamiltonians discussed
above: XCT = ep + Mc. As in previous examples, .yP(Ai, C,)
depended on the identity of the respective residue and its
environment, defined by surface accessibility and secondary
structure, while yc(Ai, Aj) depended on the category of the
two residues, as defined above. This resulted in 136 + 21 =

157 adjustable parameters. Values of 'yP(Ai, C,) and yc(Ai, A)
are shown at the bottom of Tables 1 and 2, respectively; these
values are comparable to those obtained by optimizing each
part of the total Hamiltonian separately.
As illustrated in Table 3, the screening method resulted in

correct predictions for all 23 test proteins, even when there
was as little as 17% sequence identity between the test
protein and any of the training proteins. Although the R
values were lower than those obtained by using the associa-
tive memory Hamiltonian (8), this form of the Hamiltonian
did not rely on sequence alignment techniques for its con-
struction or on the ability to preassign structural class. The
screening method was able to correctly predict the structure
Qf the globin-like proteins even when the one globin protein
in the training set used to determine y, 5MBN, was deleted.
Likewise, this Hamiltonian was able to correctly identify the
structure of the four immunoglobulin and Bence Jones pro-
teins, even when the one immunoglobulin-like protein
[3HFM(H)] was omitted, and to identify the structure of the
L. casei and E. coli dehydrofolate reductase [3DFR and
4DFR(B)] when chicken dihydrofolate reductase (8DFR) was
omitted. The optimized Hamiltonian was also able to cor-
rectly correlate the sequences of the 13 leghemoglobins in the
Swiss-Prot 21 data base based on the structure of sperm
whale myoglobin, with only 15-20%o sequence identity.
The energetic contributions from the profile and contact

part of the combined Hamiltonian are highly correlated for
the test proteins in their native configurations (linear corre-
lation coefficient, 0.75), with the contact part of the Hamil-
tWnian contributing about two-thirds of the energy. In con-

trast, the respective contributions of the two parts to the
energy of the liquid-like states are almost completely uncor-
related (linear correlation coefficient, -0.01), offering evi-
dence of the "consistency principle" of Go (32) that the
various types of interactions appear to be consistent with
each other in the correctly folded state and that this state does
represent a state of "'minimum frustration" (3).

The results of this paper show that the optimization tech-
niques developed to apply spin-glass theory to associative
memory Hamiltonians may also be used to refine Hamilto-
nians outside the associative memory framework. Applying
this technique to a particularly simple form of Hamiltonian
involving local environmental preferences and residue con-
tacts, it is possible to generate an optimized Hamiltonian that
can correctly discriminate between similar and nonsimilar
possible tertiary structures in all of the test examples tried.
The Hamiltonian was able to select the correct fold for test
proteins even when no examples of that fold were included in
the training set, indicating that the Hamiltonian seems to be
learning general principles of tertiary structure formation
rather than details of specific structures.
The fact that there seems to be a consistency to different

forms of interactions in the correctly folded state but not in
the liquid-like states indicates that sensitivity in protein
structure prediction can be augmented through the use of
multiple forms of interactions. For instance, the predicted
structures of 2CRO and 2RHE, based on either the profile
Hamiltonian or the contact Hamiltonian, were incorrect; use
of the combined Hamiltonian yielded the correct structural
homolog for both of these examples. Combining the energy
contributions from the Hamiltonians discussed in this paper
with the associative memory Hamiltonians may yield even
more discrimination between possible structures. Merging
these interactions in a way to maximize predictive ability by

Table 3. Tertiary structure predictions using combination Hamiltonian
Target Prediction

PDB Name PDB Name % I R
351C P. aeruginosa cytochrome c-551 1CCR Rice cytochrome c 22.20 4.20
1R69 434 repressor (a domain) 1LRD A repressor 28.60 5.77
2CRO 434 Cro 1LRD A repressor 16.40 3.31
1ALC Baboon a-lactalbumin 2LYZ Hen egg white lysozyme 37.20 9.93
lRlA Human rhinovirus 1A coat (VP2) 2MEV Monkey mengovirus coat (VP2) 31.80 7.03
2PLV Human poliovirus coat (VP2) 2MEV Monkey mengovirus coat (VP2) 37.10 6.32
4RHV Human rhinovirus coat (VP2) 2MEV Monkey mengovirus coat (VP2) 35.00 7.19
lTEC Leech Eglin-C 2SNI Barley chymotrypsin inhibitor II 37.10 4.93
1FX1 D. vulgaris flavodoxin 3FXN Clostridium MP flavodoxin 31.10 9.00
IF19 Mouse Fab (L) 3HFM Mouse Fab (H) 23.60 10.27
1REI Human Bence Jones (variable) 3HFM Mouse Fab (H) 29.80 7.99
2RHE Human Bence Jones (variable) 3HFM Mouse Fab (H) 28.70 7.65
3HFM Mouse Fab (L) 3HFM Mouse Fab (H) 26.20 8.73
4FAB Mouse Fab (L) 3HFM Mouse Fab (H) 21.30 7.11
3ICB Bovine Ca-binding 5CPV Carp Ca-binding parvalbumin B 31.30 5.90
1FDH Human fetal hemoglobin (y) 5MBN Sperm whale myoglobin 22.90 8.05
1HDS Deer sickle cell hemoglobin (O) 5MBN Sperm whale myoglobin 24.80 6.58
1MBA Sea hare myoglobin 5MBN Sperm whale myoglobin 27.90 7.19
2HHB Human hemoglobin (a) 5MBN Sperm whale myoglobin 26.20 6.61
2LH4 Lupin leghemoglobin 5MBN Sperm whale myoglobin 19.00 7.37
2LHB Sea lamprey hemoglobin 5MBN Sperm whale myoglobin 26.30 8.17
3DFR L. casei DHFR 8DFR Chicken DHFR 30.60 7.72
4DFR E. coli DHFR 8DFR Chicken DHFR 34.00 8.52

Results of screening method with a combination Hamiltonian, showing the test proteins, predicted structural homolog,
sequence similarity of the two proteins as measured by percentage identity (% I) using GCG BESTFIT alignments, and the
value ofR = Ay/(yBy)1/2 of the predicted structure. All of the test proteins were correctly paired with a protein of similar
structure, as defined by q > 0.4. Organisms used were Pseudomonas aeruginosa, Desulfovibrio vulgaris, Clostridium MP,
Lactobacterium casei, and Escherichia coli. DHFR, dihydrofolate reductase.
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using earlier statistical treatments of known protein struc-
tures would be problematic, given their high degree of
correlation. The techniques that we have developed based on
spin-glass theory provide a simple way to optimize any
particular combination of forms of interactions. Continued
development of these techniques will allow even greater
accuracy in structure prediction and give insight into the
dominant interactions in folding.

Helpful interactions with Henrik Bohr, David Evensky, Pia Grat-
ton, and Mark Sandrock, and critique of the text by Anthony Crofts,
Hans Frauenfelder, and Klaus Schulten are gratefully acknowl-
edged. Computations were carried out at the National Center for
Supercomputing Applications in Urbana. This work was supported
by National Institutes of Health Grant PHS 5 R01 GM 44557-03.

1. Friedrichs, M. S. & Wolynes, P. G. (1989) Science 246, 371-
373.

2. Bryngelson, J. D. & Wolynes, P. G. (1987) Proc. Natl. Acad.
Sci. USA 84, 7524-7528.

3. Bryngelson, J. D. & Wolynes, P. G. (1990) Biopolymers 30,
171-188.

4. Garel, T. & Orland, H. (1988) Europhys. Lett. 6, 597-601.
5. Shakhnovich, E. I. & Gutin, A. (1988) Europhys. Lett. 8,

327-332.
6. Shakhnovich, E. I. & Gutin, A. (1989) Stud. Biophys. 132,

47-56.
7. Wolynes, P. G. (1991) in Spin Glasses and Biology, ed. Stein,

D. (World Sci., New York), in press.
8. Goldstein, R. A., Luthey-Schulten, Z. A. & Wolynes, P. G.

(1992) Proc. Natl. Acad. Sci. USA 89, 4918-4922.
9. Bowie, J. U., Luthy, R. & Eisenberg, D. (1991) Science 253,

164-170.
10. Friedrichs, M. S., Goldstein, R. A. & Wolynes, P. G. (1991) J.

Mol. Biol. 222, 1013-1034.
11. Luthy, R., Bowie, J. U. & Eisenberg, D. (1992) Nature (Lon-

don) 356, 83-85.

12. Miyazawa, S. & Jernigan, R. L. (1985) Macromolecules 18,
534-552.

13. Skolnick, J. & Kolinski, A. (1990) Science 250, 1121-1125.
14. Sasai, M. & Wolynes, P. G. (1990) Phys. Rev. Lett. 65,

2740-2743.
15. Mezard, M., Parisi, G. & Virasoro, M. A. (1987) Spin Glass

Theory and Beyond (World Sci., Singapore).
16. Crippen, G. M. (1991) Biochemistry 30, 4232-4237.
17. Finkelstein, A. & Reva, B. (1991) Nature (London) 351, 497-

499.
18. Sippl, M. J. & Weitckus, S. (1992) Proteins 13, 258-271.
19. Hinds, D. A. & Levitt, M. (1992) Proc. Natl. Acad. Sci USA

89, 2536-2540.
20. Richardson, J. (1981) Adv. Protein Chem. 34, 167-339.
21. Finkelstein, A. V. & Ptitsyn, 0. B. (1987) Prog. Biophys. Mol.

Biol. 50, 171-190.
22. Murzin, A. G. & Finkelstein, A. V. (1988) J. Mol. Biol. 204,

749-770.
23. Devereux, J., Haeberli, P. & Smithies, 0. (1984) Nucleic Acids

Res. 12, 387-395.
24. Kabsch, W. & Sander, C. (1983) Biopolymers 22, 2577-2637.
25. Richards, F. M. (1977) Annu. Rev. Biophys. Bioeng. 6, 151-

176.
26. Ferrin, T. E., Huang, C. C., Jarvis, L. E. & Langridge, R.

(1988) J. Mol. Graphics 6, 13-27.
27. Shrake, A. & Rupley, J. A. (1973) J. Mol. Biol. 79, 351-371.
28. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer,

E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shima-
nouchi, T. & Tasumi, M. (1977) J. Mol. Biol. 112, 535-542.

29. Abola, E. E., Bernstein, F. C., Bryant, S. H., Koetzle, T. F.
& Weng, J. (1987) in Crystallographic Databases-Information
Content, Software Systems, Scientific Applications, eds. Allen,
F. H., Bergerhoff, G. & Sievers, R. (Data Comm. Int. Union
Crystallogr., Bonn), pp. 107-132.

30. Chou, P. & Fasman, G. (1974) Biochemistry 13, 222-275.
31. George, D. G., Hunt, L. T. & Barker, W. C. (1988) in Mac-

romolecular Sequencing and Synthesis, ed. Schlesinger, D. H.
(Liss, New York), pp. 127-149.

32. Go, N. (1983) Annu. Rev. Biophys. Bioeng. 12, 183-210.

Biophysics: Goldstein et al.


