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Simulation of decision consistency 
  

Simulation 1 

We conducted a simulation (Simulation 1) to confirm that the decision consistency is 

unaffected by the problem described by Chen and Risen 1, in which choice-induced preference 

changes are apparent in the free choice paradigm, even if no preference change exists. One cause of 

this problem is the use of noise-contaminated subjective ratings to assess the preference change. The 

change of decision consistency can avoid that problem by avoiding use of pre-subjective and post-

subjective ratings to observe the choice-induced change. Results of the following simulation 

confirmed that no change of decision consistency was found in cases where no preference change 

exists (Fig. S1). 

In the simulation, 24 hypothetical participants’ data were generated: 28 word stimuli and 

112 word pairs (trials) were used for our experiment. Following the method reported by Izuma and 

Murayama 2, we first assigned a true preference to each word stimulus of each participant. The true 

preference was assigned randomly by sampling from a normal distribution with mean 5.5 and 

standard deviation (SD) 2, as Izuma and Murayama reported2. For each participant and task, 112 

pairs were generated randomly with the restriction that each term was used eight times. Then, a 

response series to 112 trials of decision task was generated: we added random noise (decision noise) 

to the true preference of each word stimulus. Then words with higher (decision-noise contaminated) 

preference from word pairs were selected. Decision noise was generated randomly from a normal 

distribution with mean 0 and SD 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, or 2.5. We calculated 

the decision consistency score (for details see Methods), and the changes of decision consistency by 

subtracting that score of the first-half trials from the last-half trials. We conducted 10,000 simulation 

iterations for each magnitude of noise. 

Figures S1(a) and S1(b) present mean results of 10,000 simulations. No change of decision 

consistency was found for any decision noise setting. These results indicate that decision consistency 
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is not changed when no preference change exists. Consequently, the change of decision consistency 

is unaffected by the difficulty pointed out by Chen and Risen1. 

 

Simulation 2 

Moreover, we conducted an additional simulation (Simulation 2) to confirm that the increase 

of decision consistency is observed when choice-based learning (CBL) occurs. We used a simple 

CBL model in which the value of the chosen item (𝑄𝑖
𝑐ℎ𝑜𝑠𝑒𝑛(𝑡)) was increased (equation 1), whereas 

the value of the rejected item(𝑄𝑖
𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

(𝑡)) was decreased (equation 2) as follows (i is the index of 

the item; t is the index of the trial). 

 

𝑄𝑖
𝑐ℎ𝑜𝑠𝑒𝑛(𝑡 + 1) = 𝑄𝑖

𝑐ℎ𝑜𝑠𝑒𝑛(𝑡) + 𝛼 ∙ (1 − 𝑄𝑖
𝑐ℎ𝑜𝑠𝑒𝑛(𝑡))   (equation 1) 

                    𝑄𝑖
𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑(𝑡 + 1) = 𝑄𝑖

𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑(𝑡) − 𝛼 ∙ (1 − 𝑄𝑖
𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑(𝑡))  (equation 2) 

 

Therein, 𝛼 is the learning rate that determines how much the model updates the item value. 𝛼 was 

varied from 0 to 0.7 at intervals of 0.05. The upper limit (0.7) was determined based on the 95% 

confidence interval (0.18–0.68) of the learning rate parameter estimate of the previous studies of 

CBL3, which used computational model fitting of behavioral data. The range of the item value 

𝑄𝑖(𝑡) is restricted to values between 0 and 1. 𝛼 is multiplied by (1 − 𝑄𝑖(𝑡)) to restrict 𝑄𝑖(𝑡 + 1) 

between 0 and 1, after updating the item value. We generated hypothetical data almost identically to 

the method described for Simulation 1, except when the item value was between 0 and 1 (the range 

was approximately 1/10 of Simulation 1). The true preference was assigned randomly by sampling 

from a normal distribution with mean 0.55 and SD 0.1. Decision noise was generated randomly from 

a normal distribution with mean 0 and SD 0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, or 

0.25. 

Figure S1(c) presents mean results of 10,000 simulations by applying both equations 1 and 

2. An increase of decision consistencies was observed when the learning rate (𝛼) was neither 0 nor 

0.7. When the learning rate was 0.7 and the decision noise was greater than 0.15, the change of 

decision consistency was around 0. These results indicate that the decision consistency is increased 

when CBL occurs without too high a learning rate and decision noise. 

Figures S1(d) and S1(e) respectively present mean results of 10,000 simulations by applying 

only equations 1 or 2. In both results, the increase of decision consistency was observed except for 

the case in which the learning rate was 0. These results confirmed that the decision consistency 

increased when CBL occurs. 
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Figure S1. Simulation 1 results (replication = 10,000) of decision consistency for each epoch (a) and 

the change of decision consistency (b). (c) Simulation 2 results (replication = 10,000) of the change 

of decision consistency by application of equations 1 and 2. (d) Simulation 2 results (replication = 

10,000) of the change of decision consistency by application of only the equation 1. (e) Simulation 2 

results (replication = 10,000) of the change of decision consistency by the application of equation 2. 
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Supplemental Methods 
 

Controls of stimuli 

To confirm that the averaged annual salary does not covariate with the used-frequency of 

each occupation-related term, Google (http://www.google.jp) web page hits (collected on 10 July 

2013) were used to estimate the used-frequency of each term, as in previous studies.4–6 No 

correlation was found between the average annual salary and used-frequency (Pearson’s r=0.14). A 

lack of correlation was confirmed between the average annual salary and the word length (Pearson’s 

r=-0.12). 

 

Trial-based decision consistency 

To observe the change of decision consistency at an individual trial level, we calculated the 

index of the CBL at the trial level (trial-based decision consistency; Figure S2). The trial-based 

decision consistency score represents the rate of consistently chosen or rejected stimuli for each pair 

of consecutive trials including the same stimuli. To calculate the index, the consistently chosen or 

rejected stimuli were counted for each pair of consecutive trials including the same stimuli (e.g., first 

time trial including “Lawyer” and second time trial including “Lawyer”). For each pair of 

consecutive trials (e.g., first time - second time, second time - third time…), the stimuli that were 

consistently chosen or rejected were counted. Then that number was converted to a rate of 

consistently chosen or rejected stimuli (i.e., trial-based decision consistency) by dividing the total 

number of stimuli (i.e., 28). 

 

Figure S2. Schematic showing calculation of trial-based decision consistency. 
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Ratings for respective occupations and consistency between the pre-rating and decision making 

task (pre-rating – decision consistency) 

Before judgment tasks, participants were asked to rate the two dimensions (preference and 

salary) using a computer-based visual analog scale for all occupation words. The following questions 

and scales were used for the ratings: Preference (“How much would you like to do the job?” 1 = not 

at all, 100 = very much) and salary (“How much pay is given for the following occupations?; 1 = 

very little, 100 = very much). The order used to rate these items was randomized across participants. 

Pre-ratings for preference and salary were used to confirm whether participants’ criteria for 

internally guided decision making (IDM) and externally guided decision making (EDM) differed. 

For this, we counted trials that are consistent between the rating value of each word stimulus and the 

judgment of the decision-making task. For example, for a case in which the participant rated 

occupation A as 100 (very much) and occupation B as 1 (not at all) regarding one’s preference, and 

chose occupation A (100) compared to B (1) in the IDM (occupational preference judgment), we 

counted the trial as consistent. The sum of the number of consistent trials was divided by the total 

number of trials in each task. This index (pre-rating – decision consistency) represents how often 

participants' decisions were consistent with pre-ratings of the same dimension (i.e., preference or 

salary). 

 

 

Average annual salary – decision consistency 

Average annual salary – decision consistency represents how often participants' decisions 

were consistent with actual average annual salary based on a statistical survey by the Ministry of 

Health, Labour and Welfare of Japan. This index was calculated in the same way as the pre-rating – 

decision consistency. However, instead of the subjective pre-rating, we used data of a statistical 

survey of average annual salaries. 

 

EEG recordings 

EEG were recorded using 30 silver – silver chloride cup electrodes attached to an electrocap 

(Quik-Cap; NeuroScan), with electrodes placed at Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, 

FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, and O2 

according to extended International 10–20 Systems. Although the averages of C3 and C4 electrodes 

were used as the reference during on-line recording, all electrodes were later re-referenced to 

averaged earlobes. Blink and eye movements were monitored with electrodes above and below the 

left eye (vertical electrooculogram, VEOG) and at the right and left outer canthi of the eyes 

(horizontal electrooculogram, HEOG). The electrode impedance was maintained as less than 5 kΩ. 

The EEG and EOG signals were amplified with a bandpass of 0.0159–120 Hz, and were digitized at 

a 1,000 Hz sampling rate using an EEG recorder (EEG-1100; Nihon Kohden Corp., Tokyo, Japan). 
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Artifact rejection from EEG data 

Epochs with irregular noise were identified and rejected using a computer algorithm and 

inferences from visual inspection.7 Typical physiological artifacts such as eye blinks, eye movement, 

and muscle potentials were retained for the following independent component analysis (ICA). 

Extended infomax ICAs were conducted to obtain 32 ICs from response-locked epochs in 

each participant. An equivalent current dipole was estimated for each IC (DIPFIT 2.2, EEGLAB 

plug-in using Fieldtrip toolbox). ICs representing typical physiological artifacts and electrode 

artifacts were identified by visual inspection of their time course data, multi-trial event-related 

potential (ERP) image plots, the power spectrum, scalp topography, and dipole. On average, 9.38 ICs 

were rejected from each participant’s data. The remaining ICs were back-projected onto the scalp 

electrodes to obtain artifact-free EEG data. 

 

Statistical analysis of group averaged ERSP 

Regarding group averaged ERSP, we conducted the following comparisons of three types. 

First, we performed sample t-tests for ERSP in first and last-half trials of each task to examine 

whether the increased beta–gamma power after response was observed in each task and each epoch 

(i.e., the first-half or the last-half trials). Second, we conducted paired t-tests to compare ERSPs in 

first and last-half trials of each task to examine whether the beta–gamma power was altered with trial 

progress. Third, we conducted paired t-tests to compare ERSPs in IDM (preference judgment) and 

EDM (salary judgment) tasks of each epoch. 

We performed a cluster-based permutation test8 for each t-test to avoid multiple 

comparisons in the large time-frequency space. In step 1, we calculated the t-value for each pixel 

datum of the time-frequency window (-200 ms – 600 ms, 2–60 Hz) at FCz. Those were thresholded 

using uncorrected parametric p-values (p<0.05). Step 2, the bwconncomp Matlab function was 

applied to identify clusters in the thresholded map. The sum of the t-value in each cluster was 

calculated. Step 3, to generate the probability distribution of the sum of t-value under the null 

hypothesis, 2,000 iterations of the following three steps were conducted: First, the condition label 

(e.g., first vs. last trials) was shuffled randomly. Second, as with the steps 1 and 2 described above, 

we calculated the t-value for each pixel data. Those were thresholded using uncorrected parametric 

p-value (p<0.05). Third, we collected the largest sum of the absolute t-value in the cluster. The 

distribution generated by the iterations was used to calculate the critical value. 

 

Statistical analysis of correlation analyses 

As with the case with group-averaged ERSP comparison (t-tests), we performed a cluster-

based permutation test 8 to avoid issues of multiple comparisons in the large time-frequency space. 

The procedure was almost identical to that of the case of t-tests: the differences were that we 

calculated Pearson's correlation coefficients (r-values) instead of t-values. Moreover, the mapping of 
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a variable to participants was shuffled randomly (instead of the condition label) for the 2,000 

iterations. For this permutation test, the frequency range was limited to the beta–gamma band (14–60 

Hz). 

 

Phase-Amplitude cross-frequency coupling 

For further exploratory analysis for the physiological feature of beta–gamma power after 

response in the first-half trials of the IDM (preference) task, we computed phase–amplitude 

couplings between the beta–gamma (25–40 Hz) power and theta–alpha phase (4–13 Hz) around 425 

ms. The time window size was defined by the three cycles of lower frequency for phase. The 

measure of phase–amplitude coupling (PAC; Canolty et al., 2006) was calculated for each 

combination between the theta–alpha (for phase) and the beta–gamma (for power/amplitude) 

frequencies. The PAC is transformed to a normalized z-value (PACz) using permutation method 8: we 

computed the PAC values 2,000 times by shuffling the power time series within trials. Then we used 

the mean and the standard deviation of that distribution of the PACs to calculate the z-value. For 

group level statistical analysis, permutation one-sample t-tests were used in the same manner as in 

the case of group-averaged ERSP analysis. For reference, the couplings in the other conditions (the 

last-half trials in the IDM task, and the first and the last-half trials of the EDM task) were calculated 

as they were in the first-half trials in the IDM task. 

 

 

Supplemental Results 

 
Trial-based decision consistency score 

Results of this index are presented in Figure S3(a). Two-way repeated measures of ANOVA 

(2 tasks × 7 pairs of consecutive trials including the same stimuli) revealed marginally significant 

interaction (F(6, 138)=2.14, p=0.053, ηg
2=0.04). Post hoc analysis revealed a simple main effect of 

pairs of consecutive trials (F(6, 138)= 2.88, p<0.05, ηg
2=0.09) for the preference judgment task. 

Shaffer’s test revealed that this index was increased significantly from third time – fourth time 

presented trials to fourth time – fifth time presented trials in the IDM (preference judgment). No 

significant increase of this index was found in the EDM (salary judgment). The index at the fourth 

time – fifth time presented trials and fifth time – sixth time presented trials in the IDM (preference 

judgment) were significantly larger than those in EDM (salary task) (Fs(6, 138)>5.72, ps<0.05, 

ηg
2s>0.09). 

Different from the results of epoch-based decision consistency (Last-half – first half; Fig. 

1(d)), no main effect of trials was found (F(6, 138)=0.58, p=0.16, ηg
2=0.03). A possible reason for 

the discrepancy is that the trial-based decision consistency can be affected strongly by the 

combination of stimulus: if participants selected “Lawyer” in the trial of “Lawyer” vs. “Designer” 

for preference judgment, the choice would be affected if the more preferred or less preferred 
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occupation was paired with “Lawyer”, whether the “Lawyer” is chosen or rejected at the next 

opportunity. The combination of the two option was determined randomly across trials. Therefore, if 

no CBL exists, no change of epoch-based decision consistency would be observed (presented in Fig. 

1s(a) and (b)). However, that effect from the combination of the two options functions as noise to 

decrease the statistical power to observe decision consistency (both in the epoch-based and trial-

based decision consistency), and trial-based decision consistency would be affected strongly by that 

noise because fewer trials were used to calculate one index value. 

 

Pre-rating decision consistency 

Pre-rating decision consistency represents how often participants' decisions were consistent 

with pre-ratings of the same dimension (i.e., occupational preference or salary). The results of this 

index (see Fig. S3(b)) confirmed that criteria for the IDM and the EDM differed. Two-way repeated-

measures ANOVA (two decision tasks (IDM, EDM) × two dimensions of pre-rating) revealed a 

significant main effect of task (F(1,23)=8.56, p<0.01, ηg
2=0.028), a significant main effect of 

dimension (F(1,23)=10.57; p<0.01, ηg
2=0.099), and significant interaction (F(1,23)=169.85; 

p<0.001, ηg
2=0.69). Post-hoc tests of the interaction revealed that the index was higher in the IDM 

(preference judgment) task than in the EDM (salary judgment) tasks (p<0.001) in the dimensions of 

preference. In the dimension of salary, the index was higher in the EDM (salary judgment) task than 

in the IDM (preference judgment) task (p<0.001). These results indicate that participants 

differentiated the decision criteria for the two decision-making task types. 

 

Reaction time 

Figure S3(c) presents a summary of mean reaction times (RTs) and shows that RTs were 

shorter in the last-half trials than in first-half trials both in IDM (preference) and EDM (salary) tasks. 

Consistent with this observation, two-way repeated-measures ANOVA (two tasks (IDM, EDM) × 

two epochs (first and last-half trials)) revealed a significant main effect of epoch (F(1,23)=10.80, 

p=0.003, ηG
2=0.02). No significant main effect of task (F(1,23)=1.88, p=0.18, ηG

2=0.004) and 

interaction (F(1,23)=0.02, p=0.89, ηG
2=0.00) was found. 
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Figure S3. Supplemental behavioral data. (a) Trial-based decision consistency for each decision 

making task. IDM denotes internally guided decision-making. EDM denotes externally guided 

decision-making. * denotes significant difference (p<0.05). *** denotes significant difference 

(p<0.001). (b) Pre-rating decision consistency for each combination of pre-rating and decision-

making task. *** denotes significant difference (p<0.001). (c) Reaction times for the first-half and 

the last-half trials in the IDM (preference) and EDM (salary) tasks. ** denotes a significant main 

effect of epoch (p<0.005). Error bars represent standard errors. 

 

Correlation between the post-response beta-gamma power during the first-half trials and 

change of decision consistency using pre-stimulus baseline corrected ERSP data 

In the main text, we avoided using the pre-stimulus baseline because post-response 

activities (i.e., the target activities of the present study) of the preceding trial can contaminate the 

pre-stimulus baseline. However, if the observed correlation during the post-response duration (Fig. 

2a) is not caused by the pre-response activities, then similar patterns of post-response correlation are 

expected to remain after applying pre-stimulus baseline (-442 – 0 ms), even if the effect size is 

decreased. The pre-stimulus baseline ERSP was calculated using the same setings with response-

locked ERSP. Although no significant cluster was found using permutation tests, positive correlations 

after response were observable in IDM after applying the pre-stimulus baseline (see Fig. S4). In 

addition, when extracting the averaged power from the time-frequency window of interest (350–500 
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ms and 25–40 Hz), significant correlation with the change of decision consistency was observed 

(r=0.46, p<0.05). Although the effect size was decreased, which might result from the contamination 

of post-response activities of the preceding trial in the pre-stimulus baseline, these results confirm 

that the post-response beta-gamma activities in the first-half trials correlate with the change of 

decision consistency in IDM. 

 

Figure S4.  Correlation results between the response-locked event-related spectral perturbations 

(ERSP) at FCz for the first-half trials and the change of decision consistency (last-half trials – first-

half trials) for each decision-making task. Pre-stimulus baseline (-442 – 0 ms) activities were used 

for the baseline to calculate ERSP. Scatter plots between the change of decision consistency and 

mean beta–gamma power within the time-frequency window of interest (350–500 ms and 25–40 Hz) 

are shown on the right side. * denotes a significant main effect of epoch (p<0.05). 

 

Group averaged ERSP 

Figure S5 presents response-locked ERSP for each task (IDM and EDM tasks) and each 

epoch (first-half and last-half trials) at FCz, significant clusters from one sample permutation t-tests, 

and scalp topographies of mean ERSP within the significant cluster. In every four conditions, the 

permutation one sample t-tests yield significant beta–gamma power increase after around 400 ms 

(cluster t-value sum= 4098.69, cluster count = 1057, corrected p<0.05 for first-half trials of IDM 

task; cluster t-value sum= 5565.87, cluster count = 1522, corrected p<0.05 for last-half trials of IDM 
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task; cluster t-value sum= 4024.64, cluster count = 1274, corrected p<0.05 for first-half trials of 

EDM task; cluster t-value sum= 5689.70, cluster count = 1465, corrected p<0.05 for last-half trials of 

EDM task). Furthermore, a significant theta power decrease after around 200 ms (cluster t-value 

sum= 5509.61, cluster count = 1028, corrected p<0.05 for first-half trials of IDM task; cluster t-value 

sum= 8093.47, cluster count = 1760, corrected p<0.05 for last-half trials of IDM task; cluster t-value 

sum= 7359.06, cluster count = 1586, corrected p<0.05 for first-half trials of EDM task; cluster t-

value sum= 3370.11, cluster count = 807, corrected p<0.05 for last-half trials of EDM task) was 

found. 

Although we conducted permutation paired t-tests for first-half vs. last-half trials in each 

task and IDM vs. EDM in each epoch, no significant cluster was found. 
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Figure S5. Response-locked event-related spectral perturbations (ERSP) images at FCz for the first-

half and the last-half trials in the IDM (preference) and EDM (salary) judgment tasks. Scalp 

topographies of mean power within each significant cluster are shown on the right side. IDM denotes 

internally guided decision-making. EDM denotes externally guided decision-making. 
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Phase–Amplitude coupling 

Figure S6 presents phase–amplitude coupling between the theta–alpha phase and beta–

gamma power around 425 ms after response for each task (IDM and EDM tasks) and each epoch 

(first-half and last-half trials) at FCz. No significant coupling was found after applying corrected 

p<0.05. Although conducted correlation analyses were also between the PACz in the first-half trial 

and the change of decision consistency in the IDM and EDM tasks, no significant correlation was 

found after applying corrected p<0.05. 

 

Figure S6. Results of phase–amplitude coupling around 425 ms after response at FCz for each 

condition. IDM denotes internally guided decision-making. EDM denotes externally guided decision-

making. 
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