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S1. Derivation of the iNMF algorithm. We show here that the multiplicative up-
dates used to solve iNMF ensure that the objective function F(W,H, V ) is monotonically
decreasing:

F(W,H, V ) =
∑
k

‖Xk − (W + Vk)Hk‖2
F + λ

∑
k

‖VkHk‖2
F .

All quantities Xk,W,Hk, Vk are as defined in the main article. For convenience, we use H
and V to denote {H1, . . . , HK} and {V1, . . . , VK}, respectively.

1. The bulk of the proof involves auxilliary functions and some algebraic manipulation,
but an application of duality theory reveals some useful relations. The corresponding
dual problem of iNMF is:

max
Θ

inf
W,H,V

F(W,H, V ) + tr(ΦW T ) +
∑
k

tr(ΨkH
T
k ) +

∑
k

tr(ΞkV
T
k ) (1)

subject to: Φ ≥ 0,Ψk ≥ 0,Ξk ≥ 0, k = 1, . . . , K,

where Θ = {Φ,Ψ1, . . . ,ΨK ,Ξ1, . . . ,ΞK} are matrices whose elements are the La-
grangian multipliers for the elements of {W,H1, . . . , HK , V1, . . . , VK}, respectively. By
definition, we have Φ ∈ RN×D, Ψk ∈ RD×Mk , and Ξk ∈ RN×D for all k = 1, . . . , K.

From the first order conditions of the Lagrangian function in (1), we may solve for the
Lagrangian multipliers:

Φ = 2
∑
k

(
XkH

T
k − (W + Vk)HkH

T
k

)
Ψk = 2

(
(W + Vk)

TXk − (W + Vk)
T (W + Vk)Hk − λV T

k VkHk

)
, k = 1, . . . , K

Ξk = 2
(
XkH

T
k − (W + Vk)HkH

T
k − λVkHkH

T
k

)
, k = 1, . . . , K.

By the complementary slackness property, we have the following relations at the opti-
mal solution for all indices (i, j):

Wij

∑
k

(
XkH

T
k − (W + Vk)HkH

T
k

)
ij

= 0

(Hk)ij
(
(W + Vk)

TXk − (W + Vk)
T (W + Vk)Hk − λV TV Hk

)
ij

= 0, k = 1, . . . , K

(Vk)ij
(
XkH

T
k − (W + Vk)HkH

T
k − λVkHkH

T
k

)
ij

= 0, k = 1, . . . , K.
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These relations lead to our multiplicative updates after some algebraic manipulation.

2. The last portion of the proof involves auxiliary functions, defined below:

Definition. G(h, h′) is an auxiliary function for F (h) if the following are satisfied:

G(h, h′) ≥ F (h) ∀h,

G(h, h) = F (h).

Auxiliary functions have the following property:

Lemma 1. If G is an auxiliary function for F , and h(t+1) = arg minhG(h, h(t)), then

F (h(t+1)) ≤ F (h(t)).

Proof. F (h(t+1)) ≤ G(h(t+1), h(t)) ≤ G(h(t), h(t)) = F (h(t)).

If G is easier to minimize than F , then we may take repeated iterations of h(t+1) =
arg minhG(h, h(t)) instead of directly dealing with F .

3. Each of the iNMF updates may be derived with an appropriate auxiliary function. We
outline here only the derivation for Vk update, but the updates for W,Hk are similarly
derived. Since the updates are performed element-wise, it is enough to show that the
update (Vk)

(t+1)
ij satisfies:

F((Vk)
(t+1)
ij ) ≤ F((Vk)

(t)
ij ). (2)

The first two derivatives of F with respect to (Vk)ij are:

F ′ij = F ′((Vk)ij) =
(
−2XkH

T
k + 2(W + Vk)HkH

T
k + 2λVkHkH

T
k

)
ij

F ′′ij = F ′′((Vk)ij) = 2(1 + λ)
(
HkH

T
k

)
jj
.

Lemma 2. The function:

G(h, (Vk)ij) = F((Vk)ij)+F ′((Vk)ij)(h−(Vk)ij)+

(
(W + Vk + λVk)HkH

T
k

)
ij

(Vk)ij
(h−(Vk)ij)

2,

is an auxiliary function for F .
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Proof. G((Vk)ij, (Vk)ij) = F((Vk)ij) is easy to see. To show that G(h, (Vk)ij) ≥ F(h),
we write out the Taylor expansion of F at (Vk)ij:

F(h) = F((Vk)ij) + F ′((Vk)ij)(h− (Vk)ij) + (1 + λ)
(
HkH

T
k

)
jj

(h− (Vk)ij)
2.

Thus, it is sufficient to show that:(
(W + Vk + λVk)HkH

T
k

)
ij

(Vk)ij
≥ (1 + λ)

(
HkH

T
k

)
jj
.

By nonnegativity of the matrix factors, we have:(
(W + Vk + λVk)HkH

T
k

)
ij

(Vk)ij
≥ (1 + λ)

(
VkHkH

T
k

)
ij

(Vk)ij

= (1 + λ)

∑
l(Vk)il

(
HkH

T
k

)
lj

(Vk)ij

= (1 + λ)
(
HkH

T
k

)
jj
.

Combining Lemmas 1 & 2, we have that the update:

(Vk)
(t+1)
ij = arg min

h
G(h, (Vk)

(t)
ij ),

guarantees (2). But this minimizer can be expressed as:

arg min
h
G(h, (Vk)

(t)
ij ) = (Vk)ij − (Vk)ij

F ′((Vk)ij)
2 ((W + Vk + λVk)HkHT

k )ij

= (Vk)ij − (Vk)ij

(
−2XkH

T
k + 2(W + Vk)HkH

T
k + 2λVkHkH

T
k

)
ij

2 ((W + Vk + λVk)HkHT
k )ij

= (Vk)ij

(
XkH

T
k

)
ij

((W + Vk + λVk)HkHT
k )ij

,

which is exactly our iNMF update for (Vk)ij.

S2. Intuition for the tuning selection procedure.
We discuss here the intuition behind the stopping threshold R

(λ)
I − RJ > 2(RJ − RS)

from the tuning selection procedure. Let Xk, k = 1, . . . , K be observationally linked data
sets, and let XS

k , X
J
k , X

I
k be the approximating solutions of sNMF, jNMF, and iNMF:

XS
k = W S

k H
S
k , XJ

k = W JHJ
k , XI

k = (W I + V I
k )HI

k .
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(a) λ=1

x̃S

x̃I,h

x̃J

(b) λ=0.1

x̃S

x̃I,h

x̃J

(c) λ=0.01

x̃S

x̃I,h

x̃J

(d) λ=1 (sorted)

x̃S

x̃I,h

x̃J

(e) λ=0.1 (sorted)

x̃S

x̃I,h

x̃J

(f) λ=0.01 (sorted)

x̃S

x̃I,h

x̃J

Adjusted solutions of sNMF, jNMF, & iNMF

Figure S1: Adjusted sNMF, jNMF, and iNMF solutions with different λ choices for iNMF, computed from
generated data (σu, σs, σh = (0.01, 0.2, 0.01)). First row: unsorted; second row: sorted with respect to the

adjusted iNMF solution.

Suppose that we adjust these solutions entry-wise with respect to the jNMF solution:

x̃Sk,ij = xSk,ij − xJk,ij, x̃Jk,ij = xJk,ij − xJk,ij, x̃I,hk,ij = (W IHI
k)k,ij − xJk,ij.

Note that for iNMF we consider only the homogeneous portion. We will omit subscripts for
the sake of brevity.

Figure S1 plots the entries of the adjusted solutions x̃S, x̃I,h, x̃J computed from simulated
data (see Supplementary Section S3) over different choices of λ for iNMF. Naturally, x̃S

(sNMF) are centered around x̃J (jNMF). Also, x̃I,h (iNMF, homogeneous) generally lie below
x̃J (jNMF), since the other heterogeneous portion of iNMF is nonnegative. As the choice of
λ shrinks, the iNMF solution becomes less homogeneous and x̃I,h becomes less resembling of
x̃J . When λ is small enough, iNMF begins to overfit the data. Our tuning selection procedure
selects λ = 0.1 for this particular example, which in fact leads to optimal performance.

When we sort the adjusted solutions by x̃I,h, we see some interesting relations. At the
optimal λ (Figure S1e), the iNMF homogeneous solutions x̃I,h lie slightly above the minimum
of the distribution of the sNMF solutions x̃S. If the level of x̃I,h had been higher (Figure
S1d), then the full iNMF solution would deviate from the sNMF solution, and hence yield
a poor approximation of the data. If the level of x̃I,h had been lower (Figure S1f), then the
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approximation accuracy of iNMF will be slightly improved at the expense of losing detection
of the joint signal. In principle, the optimal iNMF solution must (1) achieve good fit on the
data and (2) maximize the homogeneous portion used to achieve that fit.

Now consider the distributions of the unsorted adjusted solutions (Figure S1a-c). What
is notable about the iNMF solutions x̃I,h under optimal λ = 0.1 (Figure S1b) is that its
distribution appears to match the lower half of the distribution of x̃S. Similar to before,
this is a distinguishing feature of an optimal iNMF solution. Another way of describing this
is to say that the deviation between the iNMF (under optimal λ) and jNMF solutions is
roughly twice the deviation between the jNMF and sNMF solutions. In fact, our stopping
threshold R

(λ)
I −RJ > 2(RJ−RS) takes advantage of precisely this relation. As the selection

procedure iteratively evaluates choices of λ, it effectively tunes the relative magnitude of the
iNMF homogeneous solution to a level that matches that of the optimal solution.

In summary, selecting the optimal λ is akin to finding the iNMF solution with the most
appropriate level of deviation from the jNMF and sNMF solutions. What remains is to decide
how to quantify this deviation for each data source. We use the (unsquared) Frobenius norm
of the residuals for this task, summed across sources:

RS,k = ‖Xk −XS
k ‖F , RJ,k = ‖Xk −XJ

k ‖F , RI,k = ‖Xk −W IHI
k‖F .

Note the unconventional definition of the iNMF residual with respect to the homogeneous
part only. Since the sNMF and jNMF are minimizers of their respective objective functions,
we have RS,k ≤ RJ,k ≤ RI,k.

Our primary reasons for using the unsquared residuals are that (1) they are on approx-
imately the same scale as the solutions and (2) they are more robust than comparing the
solutions directly, particularly due to the relative non-identifiability of NMF-type solutions
with respect to scale and rotation. Also, our tuning selection procedure suggests searching
across a decreasing list of λ until the threshold is exceeded. This is slightly more conserva-
tive (to avoid overfitting) than finding the λ such that R

(λ)
I − RJ is closest to 2(RJ − RS),

although the latter is an option.

S3. Data generation for the simulation study. We outline here our method of gener-
ating data sets containing multi-dimensional modules with various types of perturbations.

1. Generate a joint block diagonal support:

(a) SetWN×D and (Hk)D×Mk
, k = 1, . . . , K to be binary and block diagonal (D blocks)

so that their products WHk align with the desired data and module dimensions.

(b) Independently assign each nonzero entry in W and Hk a random value according
to Beta(2, 2) ∗ 2 (this is arbitrary).

(c) Multiply to obtain the matrices WHk, k = 1, . . . , K.

2. Introduce heterogeneous perturbations:
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(a) Set (Vk)N×D to be zero matrices, and consider the D2 regions whose rows and
columns align with the D blocks (modules) in W .

(b) In each of the D2 regions, introduce a heterogeneous perturbation (with inde-
pendent probability σh) by assigning either the top or lower half (with equal
probability) to be ones.

(c) Independently assign to each nonzero entry of (Vk)N×D a random value according
to Beta(2, 2) ∗ 2

(d) Add the products VkHk to the previous results to obtain Xk = (W + Vk)Hk (the
data sets should resemble the ones in Scenario 2 of Figure 1a).

3. Introduce scattered and uniform error:

(a) For each entry in Xk, with independent probability σs, either replace a positive
value with zero, or replace a zero with a randomly generated (Beta(2, 2) ∗ 2)2

value.

(b) For each entry inXk, with independent probability σu, add a random Unif(−σu, σu)
value, and take the absolute magnitude as the new entry.

S4. Normalization for iNMF. In dealing with multiple data sources, integrative methods
must find a way to represent the information from each source in a balanced way. In iNMF,
we may consider attaching weights ck to each data matrix to control the level of influence of
each source over the analysis:

F(W,H, V ) =
∑
k

‖ckXk − (W + Vk)Hk‖2
F + λ

∑
k

‖VkHk‖2
F .

Of course, this is equivalent to scaling each data set Xk by a factor of ck. Here, we explore
how one should approach choosing these normalization coefficients.

In our application, we normalized with respect to the within-source variance of each
data set (i.e. ck = 1/std(Xk)). This accounts for the inherent levels of variation within the
sources, but not the numbers of variables (about a 19:20:1 ratio). Therefore, we also consider
here normalizing with respect to the sum-of-squares of each data set (i.e. ck = 1/

√
SS(Xk)).

Table S1 shows the validation results from repeating the analysis under this alternative
normalization. Compared with those of the previous normalization, the GE clusters are less
concordant with the reference while the ME clusters are more concordant. The scores for the
DM clusters remain roughly consistent, likely due to these clusters having poor concordance
to begin with.

In principle, the normalization weights should be chosen to address discrepancies in the
variability of data and the number of variables in each source. However, the integrative value
of a data source may depend on many other factors such as the reliability of each source,
the relevance of each source to the research purpose, and the clarity of each source’s signal.
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I P
DM GE ME DM GE ME

Null clusters
mean 61 58 44 49 50 65
st.dev. 4 7 2 5 8 1

λs = 1
jNMF 58 23 36 50 77 74
iNMF 56 49 24 58 62 85

λs = 0.1
jNMF 58 26 30 50 77 79
iNMF 55 43 27 58 69 82

λs = 0.01
jNMF 62 30 26 50 77 82
iNMF 46 31 27 67 69 82

λs = 10−3 jNMF 45 56 30 67 54 79
iNMF 48 48 27 67 62 82

λs = 10−4 jNMF 56 31 41 58 69 68
iNMF 54 62 27 58 54 82

Table S1: Impurity (I) and purity (P ) scores (in percentages) of empirical clusters obtained from jNMF
and iNMF with respect to three reference clusters, under sum-of-squares normalization. Shading indicates

significantly (≥ 2 sd) higher concordance compared to both the alternative method and the null
distribution.

Therefore, dimensionality and variability should not completely dictate the normalization.
As we have seen, applying the sum-of-squares normalization does not necessarily produce
a more concordant joint approximation of modules, possibly due to differences in signal
strength and fidelity between the sources.

As a general rule, dimensionality and data variability should guide the choice of normal-
ization, but the nature of the sources themselves should also be taken into account. In our
application, our follow-up analysis takes place in the space of genes, so it was natural to use
the standard deviation normalization which produced more concordant GE results.

In any case, it is recommended to check the robustness of the findings under different
normalizations. Under the sum-of-squares normalization, iNMF produced the most concor-
dant results under λs = 0.01 (Table S1). Using this result, we applied the same procedure
as used before to obtain the visualization in Figure S2. Apart from minor discrepancies, all
four modules (I/P/D/M) are distributed in roughly the same topological regions as before.
The empirical memberships of the genes in these pathways appear stable between the two
normalizations.

S5. Reference variable clusters.
GE reference cluster:

• CXCL11, CXCL10, CXCR3

• HMGA2, SOX11, MCM2, PCNA

• MUC16, MUC1, SLPI

• FAP, ANGPTL2, ANGPTL1
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Figure S2: Module memberships of genes (from iNMF with alternative sum-of-squares normalization)
arranged according to pathways derived from BioCarta and relevant literature.

DM reference cluster:

• cg08046471, cg01288089, cg08843314

• cg03251079, cg20088964, cg08432727, cg20008332, cg10691006, cg15057726, cg02689825,
cg04562739, cg25984124

• cg06420088, cg07399355, cg17257175, cg24512973, cg12966875, cg23889010

• cg08826839, cg09427311, cg11213150, cg07044282

ME reference cluster:

• hsa-miR-19a, hsa-miR-19b, hsa-miR-136, hsa-miR-376c, hsa-miR-483-5p, hsa-miR-
572, hsa-miR-575, hsa-miR-638, hsa-miR-671-5p, hsa-miR-769-5p, hsa-miR-923, hsa-
miR-1225-5p

• hsa-miR-15b, hsa-miR-98, hsa-miR-135b, hsa-miR-146a, hsa-miR-148a, hsa-miR-148b,
hsa-miR-150, hsa-miR-221*, hsa-miR-342-5p, hsa-miR-361-3p, hsa-miR-362-3p, hsa-
miR-374a, hsa-miR-374b, hsa-miR-450a, hsa-miR-454, hsa-miR-502-5p, hsa-miR-505,
hsa-miR-532-3p, hsa-miR-582-5p, hsa-miR-625, hsa-miR-652, hsa-miR-660
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