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Introduction

This set of supplementary materials describes our simulation study in details in Section A. In particular,

we present our numerical performances as comparisons with other existing methods. It also covers, in

Sections B and C, proofs for some technical results that are used in the main text.

A. Simulations

Simulation studies were conducted to assess the effectiveness of the proposed method. In our simulations,

we considered the linear regression model (2.1) oflog T = −β′Z + ε where the random variableε was

assumed to follow a standard Normal distribution with the density function(2π)−1/2 exp{−x2/2}. Co-

variatesZ1 andZ2 were generated from uniform (0,1) that are independent of each other. The parameters
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β0 = (β1, β2) were chosen to be−1.0 and1.0 respectively. The censoring time was generated byea+0.5U ,

whereU is a standard uniform variable. Values ofa were set to attain the desired censoring proportion.

The four biased sampling designs that are under the scope of the proposed framework include (i)

length-biased sampling, (ii) case-cohort design, (iii) generalised case-cohort design and (iv) a combo

biased sampling: case-cohort analysis on length-biased data. In all of the following sets of simulations,

500 resamplings were preformed in order to obtain the estimated standard error of the estimatesβ̂. Log-

rank and Gehan weights were chosen for illustration purposes.

For length-biased sampling, given the data generated byq(T̃ ,∆), we resampled those units with

Ui 6 T̃i/γ, whereUi follows the uniform distribution andγ is constant which is larger thañTi for all

i = 1, . . . , n. Computation was conducted on the resampled individuals ofsizes 100 and 200. Simulations

were based on 500 replications. Results are presented in Table 1. We also compared our performance with

that suggested inMandel and Ritov(2010) for observations. It can be observed from our numerical results

thatMandel and Ritov(2010)’s approach does not significantly outperform the proposedmethod and the

edge diminishes as the sample size grows. When the censoring rate increases, the biases of the estimator

given byMandel and Ritov(2010) inflate; this agrees with our intuition because their method is designed

for handling life-time data with no censoring.

For the case-cohort design, a full cohort of sample size 3,000 was generated and then case-cohort

samples were selected from each full cohort by selecting from cases with a probability ofp such that about

two thirds of the selected samples in the subcohort are controls. The average sample size of a subcohort

is 1,000 with censoring rates 0.8 or 0.9, which mimics a rare-disease study. Estimates computed were

based on 500 simulations. The numerical results are summarised in Table2. For comparison, we applied

the methodology ofNan, Kalbfleisch and Yu(2009) to the same simulated data. We randomly drew 10%

of the samples to form a subsample regardless of individuals’ censoring status. That corresponds to the

predictable weight as discussed inNan, Kalbfleisch and Yu(2009). It can be seen from Table2 that the

proposed method is comparatively more efficient especiallywith high censoring cases.
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For generalised case-cohort design (seeKim et al., 2013), a full cohort of sample size 3,000 was

generated and then case-cohort samples were selected from each full cohort by selecting from cases with

a probability ofpi = 1−{1+exp(1+ T̃i)}−1 and controls with a probability ofpi = 1−{1+exp{−3+

2T̃i}}−1. The average size for a subcohort is 1,000, with one third of samples are cases. The censoring

rates chosen include 0.8 and 0.9. 500 replications were created to assess the performance. Readers are

referred to Table3 for the corresponding numerical performance. Comparisonsbetween our procedure

and that ofNan, Kalbfleisch and Yu(2009) with predictable weights for observed failures and censored

subjects reveal that our procedure yields more efficient estimates as reflected by the smaller of SE’s (and

SEE’s) values.

For the case-cohort design on length biased data (combo), data were generated in the same way as in

length-biased sampling case after which a case-cohort sampling was applied. Same as the previous two

studies, one third, on average, of the samples selected werecases. Table4 tabulates the simulation results.

SinceNan, Kalbfleisch and Yu(2009) method is not decided to handle this type of biased samples,we

can see from the results that their method leads to large biases as well as poor estimates for the standard

errors and empirical coverage probabilities.

The results presented in Tables1-4 reveal that the proposed estimators of the regression parameters

are virtually unbiased for all the cases. Furthermore, the standard error estimators depict well the true

variability of the parameter estimators. Both 90% and 95% empirical coverage probabilities are close to

the nominal levels.

B. Monotonicity of Un for length-biased sampling

Recall that, as discussed inFygenson and Ritov(1994), a functionW (β) : R
d → R

d is called a monotone

non-decreasing field if, for anyβ, ξ ∈ R
d, ξ′W (β + xξ) is a monotone non-decreasing function of the

real variablex. For any monotone non-decreasing field,Wn(β), all the generalised solutions ofWn(β) =

0 belongs to a convex set whose diameter isO(n−1). In other words, due to the monotonicity of the
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estimating equation, the set of its generalised solutions is convex, and it is relatively easy to locate an

estimator and to establish its properties. In fact, the estimator is
√

n-consistent and asymptotically normal

under certain regularity conditions. If we define the right-hand side of (2.12) asUn(β), we can write

ξ′Un(β + xξ)

= ξ′





n
∑

i=1

n
∑

j=1

∆i(Zi − Zj)

{

T̃i

T̃j

e(β+xξ)′(Zi−Zj)

}

× I
{

log T̃i + (β + xξ)′Zi 6 log T̃j + (β + xξ)′Zj

}]

:= ξ′





n
∑

i=1

n
∑

j=1

∆i(Zi − Zj)

{

T̃i

T̃j

e(β+xξ)′(Zi−Zj)

}

I{ei(β + xξ) 6 ej(β + xξ)}



 .

With a slight abuse of notation, we consider

∂

∂x
ξ′Un(β + xξ)

= ξ′





n
∑

i=1

n
∑

j=1

∆i(Zi − Zj)
T̃i

T̃j

∂

∂x

[

e(β+xξ)′(Zi−Zj)I {ei(β + xξ) 6 ej(β + xξ)}
]





+ξ′





n
∑

i=1

n
∑

j=1

∆i(Zi − Zj)

{

T̃i

T̃j

e(β+xξ)′(Zi−Zj)

}

∂

∂x
I {ei(β + xξ) 6 ej(β + xξ)}





= I + II, say.

It can be observed thatI is non-negative and so isII as shown inFygenson and Ritov(1994).

C. Derivation of asymptotic results

We assume the following regularity conditions that are similar to those inYing (1993) andKim et al.

(2013):

1. The covariates are uniformly bounded, and without loss ofgenerality, we may assume thatsupi ‖Zi‖ 6

1.

2. The error densityfε and its derivativef ′

ε are bounded, satisfying that
∫

(f ′

ε(t)/f(t))2f(t)dt < ∞.

3. The matrixAG is non-singular.
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4. E
[

∫

∞

−∞
S

(0)
ω (β̂G; t){Zi − Z̄ω(β̂G; t)dNi(β̂G; t)(ξi − 1)}

]2

< ∞.

Conditions 1 and 2 correspond to those imposed inYing (1993) so as to ensure the asymptotic linearity of

the weighted log-rank estimating function. Condition 3 canbe easily satisfied if the vector of covariates

does not lie in a lower dimensional hyperplane that leads to singularity. Condition 4 is a mild assumption

on the weight functionω(·) that allows the convergences in distribution ofUG andU∗

G due to the central

limit theorem.

The termsn−1LG andn−1L∗

G, for both bias-sampling settings with or without time component in-

volved, are convex functions. Due to the strong law of large numbers, both of them converge almost

surely to the same limiting function. Assuming that its second derivative atβ0, the true value ofβ, is AG

is non-singular, the limiting function has a unique minimiser β0. It follows that almost surelŷβG → β0

andβ̂∗

G → 0 asn → ∞. By applying similar arguments of Theorem 2 ofYing (1993), we can write

UG(β̂G) = UG(β0) + nAG(β̂G − β0) + o(n
1

2 + n‖β̂G − β0‖), a.s. (0.1)

and

U∗

G(β̂∗

G) = U∗

G(β0) + nAG(β̂∗

G − β0) + o(n
1

2 + n‖β̂∗

G − β0‖), a.s.. (0.2)

Both functionsU∗

G and UG have the same asymptotic slope matrixAG in (4.1) and (4.2) where the

latter follows from the argument presented inJin et al.(2006). The estimatorŝβG and β̂∗

G are consis-

tent. DenoteF theσ-field generated by the original data(T̃i,∆i, Zi, ωi)i=1,...,n. Bothn−
1

2 UG(β̂G) and

n−
1

2 U∗

G(β̂∗

G), conditional onF , are normalised sums of independent zero-mean random vectors. The

multivariate central limit theorem implies thatn−
1

2 U∗

G(β̂∗

G) converges in distribution toN (0, BG). It

then follows from (0.2) that the conditional distribution ofn−
1

2 U∗

G(β̂∗

G) givenF converges almost surely

ttoN (0, A−1
G BGA−1

G ), which is the limiting distribution ofn
1

2 (β̂G − β0). This completes the proof.
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n Censoring Weight/Method Parameters Bias SE SEE 90% ECP 95% ECP
100 0% Gehan β01 0.003 0.419 0.430 0.911 0.961

β02 0.020 0.369 0.349 0.930 0.957
Log-rank β01 0.008 0.301 0.244 0.920 0.952

β02 0.007 0.311 0.242 0.896 0.928
Mandel and Ritov (2010) β01 0.034 0.394 0.350 0.843 0.933

β02 0.018 0.333 0.350 0.890 0.936
15% Gehan β01 -0.014 0.459 0.490 0.922 0.958

β02 0.015 0.472 0.490 0.896 0.944
Log-rank β01 -0.035 0.507 0.549 0.880 0.920

β02 0.034 0.485 0.545 0.920 0.934
Mandel and Ritov (2010) β01 0.041 0.364 0.352 0.876 0.940

β01 -0.096 0.302 0.350 0.940 0.972
25% Gehan β01 -0.018 0.506 0.537 0.916 0.946

β02 0.043 0.510 0.529 0.906 0.946
Log-rank β01 0.035 0.541 0.574 0.890 0.938

β02 0.012 0.556 0.584 0.919 0.952
Mandel and Ritov (2010) β01 0.189 0.437 0.363 0.754 0.850

β01 -0.127 0.360 0.357 0.882 0.928
200 0% Gehan β01 0.001 0.259 0.280 0.917 0.956

β02 -0.047 0.258 0.279 0.879 0.939
Log-rank β01 0.011 0.339 0.370 0.924 0.964

β02 -0.013 0.337 0.366 0.914 0.960
Mandel and Ritov (2010) β01 -0.049 0.265 0.245 0.886 0.964

β02 0.020 0.266 0.245 0.942 0.945
15% Gehan β01 -0.011 0.313 0.332 0.924 0.952

β02 0.017 0.334 0.331 0.882 0.928
‘ Log-rank β01 -0.005 0.332 0.367 0.908 0.960

β02 0.009 0.313 0.336 0.916 0.950
Mandel and Ritov (2010) β01 0.104 0.233 0.250 0.872 0.936

β02 -0.058 0.253 0.249 0.856 0.941
25% Gehan β01 0.004 0.460 0.526 0.928 0.966

β02 0.025 0.473 0.523 0.918 0.956
Log-rank β01 0.015 0.535 0.572 0.902 0.944

β02 0.037 0.567 0.515 0.914 0.958
Mandel and Ritov (2010) β01 0.106 0.227 0.260 0.882 0.931

β02 -0.122 0.238 0.250 0.864 0.937

Table 1. Estimates and standard errors for regression parametersβ based on 500 replications and 500 perturbed
resampling on length-biased data. Bias, SE, SEE andx%ECP are defined as the difference between the estimated
and the true parameter values, the standard error estimated, the standard error of the resampled estimated parameter
values as well as thex% empirical coverage probability respectively.
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n Censoring Weight/Method Parameters Bias SE SEE 90% ECP 95% ECP
100 80% Gehan β01 -0.026 0.431 0.442 0.904 0.938

β02 0.028 0.449 0.444 0.890 0.940
Log-rank β01 0.067 0.353 0.359 0.876 0.932

β02 -0.075 0.364 0.353 0.872 0.932
Nan et al. (2009) β01 0.023 0.491 0.489 0.856 0.931

β02 0.077 0.534 0.498 0.891 0.934
90% Gehan β01 0.045 0.363 0.368 0.884 0.936

β02 -0.087 0.358 0.359 0.878 0.928
Log-rank β01 0.035 0.356 0.366 0.884 0.944

β02 -0.039 0.342 0.368 0.910 0.946
Nan et al. (2009) β01 0.088 0.655 0.608 0.878 0.910

β02 0.003 0.650 0.683 0.868 0.924
200 80% Gehan β01 -0.007 0.290 0.291 0.904 0.948

β02 -0.012 0.280 0.293 0.932 0.964
Log-rank β01 -0.060 0.346 0.338 0.888 0.938

β02 0.044 0.329 0.335 0.903 0.947
Nan et al. (2009) β01 -0.071 0.383 0.364 0.870 0.930

β02 0.048 0.368 0.359 0.876 0.941
90% Gehan β01 0.001 0.256 0.242 0.876 0.922

β02 -0.008 0.239 0.244 0.880 0.936
Log-rank β01 -0.037 0.240 0.243 0.882 0.926

β02 -0.032 0.231 0.242 0.888 0.940
Nan et al. (2009) β01 -0.039 0.478 0.424 0.875 0.911

β02 0.019 0.463 0.410 0.852 0.934

Table 2. Estimates and standard errors for regression parametersβ based on 500 replications and 500 perturbed
resampling on case-cohort data. Bias, SE, SEE andx%ECP are defined as the difference between the estimated and
the true parameter values, the standard error estimated, the standard error of the resampled estimated parameter values
as well as thex% empirical coverage probability respectively.
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n Censoring Weight/Method Parameters Bias SE SEE 90% ECP 95% ECP
100 80% Gehan β01 0.043 0.455 0.424 0.876 0.920

β02 -0.026 0.427 0.430 0.888 0.948
Log-rank β01 -0.003 0.425 0.439 0.912 0.956

β02 -0.017 0.431 0.435 0.894 0.944
Nan et al. (2009) β01 -0.019 0.422 0.406 0.910 0.961

β02 -0.003 0.458 0.399 0.893 0.964
90% Gehan β01 0.012 0.367 0.383 0.904 0.968

β02 0.025 0.401 0.388 0.882 0.944
Log-rank β01 0.041 0.382 0.387 0.886 0.938

β02 0.009 0.382 0.390 0.892 0.936
Nan et al. (2009) β01 0.011 0.443 0.416 0.880 0.965

β02 0.008 0.401 0.408 0.901 0.968
200 80% Gehan β01 0.011 0.302 0.307 0.906 0.948

β02 -0.008 0.293 0.304 0.912 0.960
Log-rank β01 0.012 0.304 0.310 0.896 0.950

β02 -0.014 0.296 0.308 0.892 0.962
Nan et al. (2009) β01 0.004 0.325 0.328 0.892 0.919

β02 0.003 0.312 0.316 0.884 0.932
90% Gehan β01 -0.033 0.259 0.286 0.910 0.955

β02 0.016 0.284 0.283 0.900 0.945
Log-rank β01 0.002 0.304 0.295 0.882 0.938

β02 -0.024 0.284 0.295 0.900 0.948
Nan et al. (2009) β01 0.047 0.328 0.341 0.832 0.939

β02 0.001 0.342 0.344 0.839 0.881

Table 3. Estimates and standard errors for regression parametersβ based on 500 replications and 500 perturbed
resampling on generalised case-cohort data. Bias, SE, SEE andx%ECP are defined as the difference between the
estimated and the true parameter values, the standard error estimated, thestandard error of the resampled estimated
parameter values as well as thex% empirical coverage probability respectively.
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n Censoring Weight/Method Parameters Bias SE SEE 90% ECP 95% ECP
100 80% Gehan β01 -0.020 0.520 0.556 0.884 0.938

β02 0.016 0.572 0.551 0.890 0.932
Log-rank β01 0.001 0.542 0.577 0.904 0.954

β02 -0.011 0.547 0.575 0.884 0.942
Nan et al. (2009) β01 -0.131 1.085 1.548 0.830 0.920

β02 0.206 1.059 2.067 0.890 0.940
90% Gehan β01 -0.027 0.487 0.490 0.914 0.950

β02 0.009 0.458 0.484 0.914 0.958
Log-rank β01 -0.025 0.517 0.519 0.906 0.940

β02 0.008 0.493 0.511 0.908 0.956
Nan et al. (2009) β01 -0.355 1.989 3.028 0.880 0.951

β02 0.079 1.112 2.541 0.840 0.939
200 80% Gehan β01 -0.018 0.379 0.385 0.888 0.936

β02 0.025 0.367 0.390 0.914 0.946
Log-rank β01 0.015 0.392 0.404 0.906 0.958

β02 -0.016 0.390 0.406 0.908 0.954
Nan et al. (2009) β01 -0.108 0.728 0.977 0.890 0.915

β02 0.151 0.715 1.179 0.880 0.931
90% Gehan β01 -0.024 0.341 0.351 0.898 0.944

β02 0.010 0.335 0.346 0.906 0.960
Log-rank β01 -0.001 0.346 0.375 0.892 0.950

β02 0.017 0.358 0.373 0.910 0.968
Nan et al. (2009) β01 -0.157 0.597 0.755 0.899 0.932

β02 0.156 0.684 0.750 0.909 0.929

Table 4. Estimates and standard errors for regression parametersβ based on 500 replications and 500 perturbed
resampling on case cohort sampling on length-biased (combo) data. Bias, SE, SEE andx%ECP are defined as the
difference between the estimated and the true parameter values, the standard error estimated, the standard error of the
resampled estimated parameter values as well as thex% empirical coverage probability respectively.


