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INTRODUCTION

This set of supplementary materials describes our sinomatiudy in details in Section A. In particular,
we present our numerical performances as comparisons widr existing methods. It also covers, in

Sections B and C, proofs for some technical results thatsed in the main text.

A. SIMULATIONS

Simulation studies were conducted to assess the effeetigasf the proposed method. In our simulations,
we considered the linear regression model (2.1pgfl" = —3’Z + ¢ where the random variablewas
assumed to follow a standard Normal distribution with thesiy function(27)~'/2 exp{—x2/2}. Co-
variatesZ, andZ, were generated from uniform (0,1) that are independentaf ether. The parameters
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Bo = (B1, 32) were chosen to be 1.0 and1.0 respectively. The censoring time was generateethy-5Y
whereU is a standard uniform variable. Valueswivere set to attain the desired censoring proportion.

The four biased sampling designs that are under the scogeeqgfroposed framework include (i)
length-biased sampling, (ii) case-cohort design, (iiingmlised case-cohort design and (iv) a combo
biased sampling: case-cohort analysis on length-biased keall of the following sets of simulations,
500 resamplings were preformed in order to obtain the estidnstandard error of the estimat@s_og-
rank and Gehan weights were chosen for illustration puigpose

For length-biased sampling, given the data generated(ﬁyA), we resampled those units with
U; < TZ-/'y, whereU; follows the uniform distribution and is constant which is larger thah for all
1 =1,...,n. Computation was conducted on the resampled individuaizes 100 and 200. Simulations
were based on 500 replications. Results are presented lia Talhle also compared our performance with
that suggested iMandel and Rito\(2010 for observations. It can be observed from our numericalltes
thatMandel and Rito2010Q’s approach does not significantly outperform the propasethod and the
edge diminishes as the sample size grows. When the censateimncreases, the biases of the estimator
given byMandel and Rito2010 inflate; this agrees with our intuition because their mdtisadesigned
for handling life-time data with no censoring.

For the case-cohort design, a full cohort of sample size@y0&s generated and then case-cohort
samples were selected from each full cohort by selecting frases with a probability gfsuch that about
two thirds of the selected samples in the subcohort are @isnffhe average sample size of a subcohort
is 1,000 with censoring rates 0.8 or 0.9, which mimics a disease study. Estimates computed were
based on 500 simulations. The numerical results are surs@tkin Table2. For comparison, we applied
the methodology oNan, Kalbfleisch and Y2009 to the same simulated data. We randomly drew 10%
of the samples to form a subsample regardless of individuafssoring status. That corresponds to the
predictable weight as discussedNian, Kalbfleisch and Y§2009. It can be seen from Tabthat the

proposed method is comparatively more efficient espeaiatly high censoring cases.



For generalised case-cohort design (K&m et al, 2013, a full cohort of sample size 3,000 was
generated and then case-cohort samples were selecteddobnfiudl cohort by selecting from cases with
a probability ofp; = 1 — {1 +exp(1+7;)} ! and controls with a probability of; = 1 — {1 +exp{—3+
Qﬂ}}—l. The average size for a subcohort is 1,000, with one thircanfpdes are cases. The censoring
rates chosen include 0.8 and 0.9. 500 replications werdedtda assess the performance. Readers are
referred to Tables for the corresponding numerical performance. Comparisateeen our procedure
and that ofNan, Kalbfleisch and Y2009 with predictable weights for observed failures and ceedor
subjects reveal that our procedure yields more efficiemnases as reflected by the smaller of SE’s (and
SEE’s) values.

For the case-cohort design on length biased data (comb@)waae generated in the same way as in
length-biased sampling case after which a case-cohortlsapwas applied. Same as the previous two
studies, one third, on average, of the samples selectedoases. Tabld tabulates the simulation results.
SinceNan, Kalbfleisch and Y2009 method is not decided to handle this type of biased samples,
can see from the results that their method leads to largedb@swell as poor estimates for the standard
errors and empirical coverage probabilities.

The results presented in Tablegl reveal that the proposed estimators of the regression paeasn
are virtually unbiased for all the cases. Furthermore, thadard error estimators depict well the true
variability of the parameter estimators. Both 90% and 95%idonal coverage probabilities are close to

the nominal levels.

B. MONOTONICITY OF U,, FOR LENGTH-BIASED SAMPLING

Recall that, as discussedmygenson and Rito{d994), a functioni¥ (3) : R? — R¢ is called a monotone
non-decreasing field if, for ang, ¢ € RY, ¢'W (3 + z¢) is a monotone non-decreasing function of the
real variabler. For any monotone non-decreasing fiéld, (3), all the generalised solutions Bf,, (5) =

0 belongs to a convex set whose diamete©ig: ). In other words, due to the monotonicity of the



estimating equation, the set of its generalised solutisrnvex, and it is relatively easy to locate an
estimator and to establish its properties. In fact, thevestr is,/n-consistent and asymptotically normal

under certain regularity conditions. If we define the righid side of (2.12) &8, (), we can write
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=1+1I, say.

It can be observed thdtis non-negative and so I9 as shown irFygenson and Rito{1994.

C. DERIVATION OF ASYMPTOTIC RESULTS

We assume the following regularity conditions that are kimtio those inYing (1993 and Kim et al.

(2013:

1. The covariates are uniformly bounded, and without loggakrality, we may assume thap, || Z;|| <

1.
2. The error density, and its derivativef! are bounded, satisfying th&t f/(t)/f(t))? f(t)dt < co.

3. The matrixA¢ is non-singular.
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4. E [ff‘;o SO (Bes ) Zi — Zw(Be: t)dN:(Be: t)(E; — 1)}]2 < .

Conditions 1 and 2 correspond to those imposeximg (1993 so as to ensure the asymptotic linearity of
the weighted log-rank estimating function. Condition 3 bareasily satisfied if the vector of covariates
does not lie in a lower dimensional hyperplane that leadggudarity. Condition 4 is a mild assumption
on the weight function(-) that allows the convergences in distributionlef andU¢, due to the central
limit theorem.

The termsn=' L andn~! LY, for both bias-sampling settings with or without time coment in-
volved, are convex functions. Due to the strong law of largenbers, both of them converge almost
surely to the same limiting function. Assuming that its setderivative af3,, the true value ofj, is Ag
is non-singular, the limiting function has a unique minierig,. It follows that almost surelyi — 3,

andﬁg — 0 asn — oo. By applying similar arguments of Theorem 2\Ghg (1993, we can write

Uc(Ba) = Ua(Bo) + nAc(Ba — Bo) + o(n? +nlBa — Boll), a-s. (0.1)

and
U&(B5) = U&(Bo) + nAc (B85 — Bo) + o(n® +n||Bs — Bol),  a-s.. 0.2)

Both functionsU/ and Ug have the same asymptotic slope matdy in (4.1) and (4.2) where the
latter follows from the argument presenteddim et al.(2006. The estimatorsj and Bg are consis-
tent. DenoteF the o-field generated by the original da(@, A, Zi,w;)i=1,.. n. Both TF%UG(BG) and
n=2UL(B), conditional onF, are normalised sums of independent zero-mean randomrsedioe
multivariate central limit theorem implies thar%Ug(/E’g) converges in distribution tav' (0, B¢). It
then follows from 0.2) that the conditional distribution of—éU(*; (Bg) givenF converges almost surely

tto (0, A;' B Ag'), which is the limiting distribution ofiz (B¢ — By). This completes the proof.
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n  Censoring Weight/Method Parameters  Bias SE SEE  90% ECP 95% ECP
100 0% Gehan Bo1 0.003 0.419 0.430 0.911 0.961
Bo2 0.020 0.369 0.349 0.930 0.957
Log-rank Bo1 0.008 0.301 0.244 0.920 0.952
Bo2 0.007 0.311 0.242 0.896 0.928
Mandel and Ritov (2010) Bo1 0.034 0.394 0.350 0.843 0.933
Boz 0.018 0.333 0.350 0.890 0.936
15% Gehan Bo1 -0.014 0.459 0.490 0.922 0.958
Bo2 0.015 0.472 0.490 0.896 0.944
Log-rank Bo1 -0.035 0.507 0.549 0.880 0.920
Bo2 0.034 0.485 0.545 0.920 0.934
Mandel and Ritov (2010) Bo1 0.041 0.364 0.352 0.876 0.940
Bo1 -0.096 0.302 0.350 0.940 0.972
25% Gehan Bo1 -0.018 0.506 0.537 0.916 0.946
Boz2 0.043 0.510 0.529 0.906 0.946
Log-rank Bo1 0.035 0.541 0.574 0.890 0.938
Bo2 0.012 0.556 0.584 0.919 0.952
Mandel and Ritov (2010) Bo1 0.189 0.437 0.363 0.754 0.850
Bo1 -0.127 0.360 0.357 0.882 0.928
200 0% Gehan Bo1 0.001 0.259 0.280 0.917 0.956
Bo2 -0.047 0.258 0.279 0.879 0.939
Log-rank Bo1 0.011 0.339 0.370 0.924 0.964
Boz -0.013 0.337 0.366 0.914 0.960
Mandel and Ritov (2010) Bo1 -0.049 0.265 0.245 0.886 0.964
Bo2 0.020 0.266 0.245 0.942 0.945
15% Gehan Bo1 -0.011 0.313 0.332 0.924 0.952
Bo2 0.017 0.334 0.331 0.882 0.928
Log-rank Bo1 -0.005 0.332 0.367 0.908 0.960
Bo2 0.009 0.313 0.336 0.916 0.950
Mandel and Ritov (2010) Bo1 0.104 0.233 0.250 0.872 0.936
Bo2 -0.058 0.253 0.249 0.856 0.941
25% Gehan Bo1 0.004 0.460 0.526 0.928 0.966
Bo2 0.025 0.473 0.523 0.918 0.956
Log-rank Bo1 0.015 0.535 0.572 0.902 0.944
Boz 0.037 0.567 0.515 0.914 0.958
Mandel and Ritov (2010) Bo1 0.106 0.227 0.260 0.882 0.931
Bo2 -0.122  0.238 0.250 0.864 0.937

Table 1. Estimates and standard errors for regression parantets&sed on 500 replications and 500 perturbed
resampling on length-biased data. Bias, SE, SEE&hECP are defined as the difference between the estimated
and the true parameter values, the standard error estimated, the dtarrdaof the resampled estimated parameter
values as well as the% empirical coverage probability respectively.
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n Censoring  Weight/Method  Parameters  Bias SE SEE  90% ECP 95% ECP

100  80% Gehan Bor -0.026 0431 0442  0.904 0.938
Boz 0.028 0.449 0.444  0.890 0.940

Log-rank Bor 0.067 0.353 0.359  0.876 0.932

Boz -0.075 0.364 0.353  0.872 0.932

Nanetal. (2009) Ao 0.023 0.491 0.489  0.856 0.931

Boz 0.077 0534 0.498  0.891 0.934

90% Gehan Bor 0.045 0363 0368 0884 0.936
Boz -0.087 0.358 0.359  0.878 0.928

Log-rank Bor 0.035 0.356 0.366  0.884 0.944

Boz -0.039 0342 0.368  0.910 0.946

Nanetal. (2009) Ao 0.088 0.655 0.608  0.878 0.910

Boz 0.003 0.650 0.683  0.868 0.924

200  80% Gehan Bor -0.007 0290 0291  0.904 0.948
Boz -0.012 0280 0.293  0.932 0.964

Log-rank Bo -0.060 0.346 0.338  0.888 0.938

Boz 0.044 0329 0.335  0.903 0.947

Nanetal. (2009) S -0.071 0.383 0.364  0.870 0.930

Boz 0.048 0.368 0.359  0.876 0.941

90% Gehan Bor 0.00L 0256 0242 0.876 0.922
Boz -0.008 0.239 0.244  0.880 0.936

Log-rank Bo -0.037 0.240 0.243  0.882 0.926

Boz -0.032 0231 0.242  0.888 0.940

Nan etal. (2009) S -0.039 0478 0424 0875 0.911

Boz 0.019 0.463 0.410  0.852 0.934

Table 2. Estimates and standard errors for regression parantetssed on 500 replications and 500 perturbed
resampling on case-cohort data. Bias, SE, SEEx8AHCP are defined as the difference between the estimated and
the true parameter values, the standard error estimated, the stamdaad #re resampled estimated parameter values
as well as the:% empirical coverage probability respectively.
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n Censoring  Weight/Method  Parameters  Bias SE SEE  90% ECP 95% ECP

100 80% Gehan Bo1 0.043 0.455 0.424  0.876 0.920
Boz -0.026 0.427 0.430  0.888 0.948

Log-rank Box -0.003 0425 0.439  0.912 0.956

Boz -0.017 0431 0435  0.894 0.944

Nan et al. (2009) Bo1 -0.019 0.422 0406  0.910 0.961

Boz -0.003 0.458 0.399  0.893 0.964

90% Gehan Bo1 0.012 0.367 0.383  0.904 0.968
Bo2 0.025 0.401 0.388 0.882 0.944

Log-rank Box 0.041 0.382 0.387  0.886 0.938

Boz 0.009 0.382 0.390  0.892 0.936

Nan et al. (2009) Bot 0.011 0.443 0.416  0.880 0.965

Boz 0.008 0.401 0.408  0.901 0.968

200 80% Gehan Bot 0.011 0.302 0.307  0.906 0.948
Boz -0.008 0.293 0.304  0.912 0.960

Log-rank Bos 0.012 0.304 0.310 0.896 0.950

Boz -0.014 0296 0.308  0.892 0.962

Nan et al. (2009) Bo1 0.004 0.325 0.328 0.892 0.919

Boz 0.003 0.312 0.316  0.884 0.932

90% Gehan Bot -0.033 0259 0.286 0.910 0.955
Boz 0.016 0.284 0.283  0.900 0.945

Log-rank Bos 0.002 0.304 0.295 0.882 0.938

Boz -0.024 0.284 0.295  0.900 0.948

Nan et al. (2009) Bo1 0.047 0.328 0.341 0.832 0.939

Boz 0.001 0.342 0.344  0.839 0.881

Table 3. Estimates and standard errors for regression paraniets&sed on 500 replications and 500 perturbed
resampling on generalised case-cohort data. Bias, SE, SEE%BEP are defined as the difference between the
estimated and the true parameter values, the standard error estimatgdntterd error of the resampled estimated
parameter values as well as th# empirical coverage probability respectively.
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n Censoring  Weight/Method  Parameters  Bias SE SEE  90% ECP 95% ECP

100 80% Gehan Box -0.020 0520 0556  0.884 0.938
Bo2 0.016 0.572 0.551  0.890 0.932

Log-rank Box 0.001 0.542 0.577  0.904 0.954

Boz -0.011 0547 0575  0.884 0.942

Nan et al. (2009) Bo1 -0.131 1.085 1548  0.830 0.920

Boz 0.206 1.059 2.067  0.890 0.940

90% Gehan Box -0.027 0.487 0490 00914 0.950
Bo2 0.009 0.458 0.484  0.914 0.958

Log-rank Box -0.025 0517 0519  0.906 0.940

Boz 0.008 0.493 0.511  0.908 0.956

Nan et al. (2009) Bo1 -0.355 1.989 3.028  0.880 0.951

Boz 0.079 1.112 2541  0.840 0.939

200 80% Gehan Bot -0.018 0.379 0.385  0.888 0.936
Boz 0.025 0.367 0.390 0.914 0.946

Log-rank Box 0.015 0.392 0.404  0.906 0.958

Boz -0.016 0.390 0.406  0.908 0.954

Nan et al. (2009) Bo1 -0.108 0.728 0.977  0.890 0.915

Boz 0151 0.715 1.179  0.880 0.931

90% Gehan Bot -0.024  0.341 0351  0.898 0.944
Boz 0.010 0.335 0.346  0.906 0.960

Log-rank Bos -0.001 0.346 0.375  0.892 0.950

Boz 0.017 0.358 0.373  0.910 0.968

Nan et al. (2009) Bo1 -0.157 0597 0.755 0.899 0.932

Boz 0.156 0.684 0.750  0.909 0.929

Table 4. Estimates and standard errors for regression paraniet&sed on 500 replications and 500 perturbed
resampling on case cohort sampling on length-biased (combo) dat.$a SEE and%ECP are defined as the
difference between the estimated and the true parameter values, trerdtamdr estimated, the standard error of the
resampled estimated parameter values as well as%thempirical coverage probability respectively.



