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Datasets
We screened the Gene Expression Omnibus (GEO)1 repository for gene expression profiles of B-cell Non-Hodgkin
lymphomas obtained with the Affymetrix HGU133 plus 2.0 microarray and downloaded 47 series of RMA-
normalized datasets (GSE) as txt files, together with gene sets from Gene Ontology,2 KEGG (http://www.
genome.jp/kegg/pathway.html) from the Molecular Signatures Database (MSigDB 3.0)3 as well as from
TM224, 5 and gene sets defined in text. Each series of transcriptomes were collapsed to common protein-encoding
genes (HUGO nomenclature) and the compatibility for merging of the datasets was assessed. The gene expression
data of each GSM were transformed into van der Waerdens scores,6, 7 each dataset was reduced to a per gene
median of samples and the pairwise correlation matrix of these 47 datasets was computed (Supplemental Figure
1A).8 The 33 datasets with correlations >0.8 were deemed compatible for merging while the less homogeneous
others were discarded (Supplemental Table 1). Since these 33 datasets comprised malignant samples as well as
various normal cell controls, the compatibility screening was repeated at the sample level for the group of GSM
from all malignant samples on the one hand, and for the group of all non-cancer cell controls on the other hand
(Supplemental Figure 1B). The samples deemed irrelevant for this meta-analysis (e.g. d microarray-based study of
invitro drug activity on cell lines) were rejected. This yielded a dataset composed of 1446 samples from 7 distinct
malignant histologies. These included 489 diffuse large B cell lymphoma (DLBCL), 149 follicular lymphoma
(FL), 125 mantle cell lymphoma (MCL), 12 small marginal zone lymphoma (MZL), 4 Burkitts lymphomas (BL),
630 chronic lymphocytic leukemia (CLL), 5 hairy cell leukemia (HCL), and control cells which encompassed
32 normal B cell samples including CD20 B cell purified from peripheral blood, nave B cells, centrocytes and
centroblasts purified from tonsils of non-cancer donors.

Sample enrichment scores (SES)
The RMA-normalized expression data from each collapsed sample (GSM) were rank-ordered by decreasing ex-
pression level along the [0-1] segment (highest expr. level=0, lowest expr. level=1) yielding v, a vector of ranks.
Since each series from the NHL data set had been pre-selected for high pairwise correlation (see above), their
rank-ordered gene distributions were highly correlated as well, despite distinct batch RMA normalizations (Sup-
plemental Figure 3). Let gene set g be a subset of v, then assessing enrichment of g means testing g versus v. How-
ever the human genome comprises many pleiotropic genes involved in several different pathways, functions, and
cell compartment more frequently up-regulated in any sample, and over-represented in gene sets and databases.9

Since genes are far from equiprobable in gene sets, the adequate null hypothesis for g versus v gives genes with
probabilities proportional to their frequency in the gene set database10 and requires Kolmogorov-Smirnov (KS),
T-test (T) and Wilcoxon (W) tests with frequency-corrected null hypothesis (see11–13 for review). In addition scor-
ing enrichment of the ∼1500 KEGG and GO gene sets in >1000 samples means computing ∼1.5 million tests
with high accuracy for the most significant results. So, algoritmic optimization was necessary i) to compute scores
in a reasonable time, ii) to perform a precise computing of the most significant (smallest) P values, iii) to allow the
gene frequency correction, and iv) to allow testing of the 3 alternatives ”greater” (enriched geneset),”less” (down-
regulated geneset) and ”two.sided” (the geneset is enriched or down-regulated). We developped an R script which
current version computes enrichment of ∼5000 gene sets for a single sample within ∼5 seconds (Statistical tests
have been implemented as R functions http://www.R-project.org/. Source codes are available here:
https://sites.google.com/site/fredsoftwares/products/autocompare_ses).

Validation of SES by distribution analysis
We considered the issue of false discovery rates and checked whether the test discriminates biologically relevant
and irrelevant sets of data. To address this, we compared the scores of actual NHL samples for all gene sets
defined in GO and KEGG to irrelevant scores for enrichment of (n=1000, size 10-1000) random gene sets in
(n=500) simulated samples. All the corresponding SES were computed and the respective distributions were
compared. The right skewed distribution of scores from empirical data compared to all others (e.g. 29% of
SES>1.3 for KEGG and GO gene sets in NHL samples vs<5% of SES in all other settings) demonstrated this
test discriminates relevant and irrelevant sets of data (Supplemental Figure 2A). Despite the expected effect of the
data conversion to ranks, we considered the confounding influence of batch effects for assigning consistent SES
though distinct datasets. To determine whether the independent normalization from different studies introduced
significant differences of gene expression rank in the same type of samples, we computed the correlation of all
gene ranks though three independent studies of CLL samples. The high Pearson correlation (0.895 to 0.966,
Supplemental Figure 2B) of these data ruled out an elusive confounding influence of independent normalization
of the datasets. Furthermore, both consistency and homogeneity of scoring for gender (Figure 1), proliferation,
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(Figure 1, and not shown) or metabolic gene sets (Figure 2) in the 1446 samples from the 33 different GSE datasets
demonstrated that the SES are minimally affected by the independent pre-processing (data normalization and gene
collapsing) of each series composing of the NHL dataset.
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Supplemental Figure 1: Screening datasets and sample sets compatibility for merging
A Pairwise correlation matrix plots for visualization homogeneity of the NHL datasets. For each of the 47 GSE data matrices of Supplemental Table 1, the median
column value of each of the 21228 gene symbol was computed. This gave 47 dataset median columns which pairwise correlations are shown as colour plots. Only
33 datasets with r2 > 0.8 (group from GSE12195 to GSE65135) were considered homogeneous and kept for merging. B,C Pairwise correlation matrix at the
sample level for respectively, normal B cells (B) and NHL samples (C) from the above 33 datasets. The samples with correlation above 0.8 were kept from each
group, and pooled together in the integrated NHL dataset.
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Supplemental Figure 2: SES scores of DLBCL subtype gene sets
A Plots of SES for the ABC gene set vs GCB gene set (left) and ABC gene set vs PMBL gene set (right) in annotated subtypes of DLBCL samples: ABC (empty
black dots), GCB (empty red dots) and PMBL (empty blue dots). Each line of panel specifies the clinical annotation of samples shown in pannels as full black
dots. This indicates that all but one CNS DLBCL and all testicular DLBCL are of ABC type, and both nodal DLBCL and unclassified DLBCL comprise samples
from both ABC and GCB subtypes. B The ABC, GCB and PMBL gene sets as defined in.14
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Supplemental Figure 3: Scoring gene set enrichment in samples
A Distribution of Wilcoxon-based SES of the NHL and simulated samples for the actual (GO and KEGG) and random gene sets. Shown are the % of scores above
1.3 (corresponding to p ¡ 0.05). B Comparison of whole transcriptome gene expression ranks in three CLL datasets RMA-normalized independently of each other.
Shown are per gene median of ranks from all samples of the specified series (GSE), genes are decreaseing-ordered along the [0-1] segment: highest expression
level=0, lowest expression level=1. The Pearson correlation of ranks are GSE10139 vs GSE14973: R=0.895, GSE10139 vs GSE: R=0.904 and GSE14973 vs
GSE12734: R=0.966.
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Supplemental Figure 4: SES of the NHL dataset match to the phenotype of these samples
Sample enrichment scores (SES) were computed for each of the 1446 samples of the NHL data set and for the gene sets indicated on the Y axis. Each sample
is shown by a dot, red bars are means of the specified group. CC: centroblasts, CB: centrocytes. SES for gene sets related to proliferation (A), metabolic (B)
phenotype. C: SES for ’acetyltransferase activity’ and ’histone modification’ and ’T cell activation’ pathways. Nearly all SES for T cell activation were low in the
dataset as expected for samples essentially composed of B cells, nevertheless, the scores of FL (group mean of SES= 0.8) and DLBCL (group mean of SES= 0.5)
suggested the presence of some activated T cells in these samples. On the other hand, the SES for histone modifications and acetyl transferase activities are higher
in CLL than in DLBCL and FL (not shown), possibly reflecting the frequent genomic deletions or inactivating mutations of histone acetyl transferases and histone
methyl transferases in these lymphomas.15, 16
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Supplemental Figure 5:Comparison of DLBCL subtypes
The SES of the various DLBCL subtypes for the 22 leucocyte subsets evidenced the B cell origin of these lymphomas, while plots of scores for B cell-nave versus B
cell-memory illustrated the distinct signature of each subtype except for ABC and testicular DLBCL (A). Plots for myeloid vs (non-B) lymphoid subsets confirmed
the relatedness of ABC and testicular DLBCL, and refined the analysis of the subtypes. Summarizing, ABC, testicular, and GCB have very similar lymphoid and
myeloid compositions (e.g. mean of SES for CD8 T cells = 4.8 in ABC versus 4.9 in GCB, Wilcoxon P = 0.9). PMBL have a similar lymphoid level too, but a
myeloid enrichment of M1-type macrophages and activated DC (unpaired Student P= 0.0033). Both nodal and unclassified DLBCL have similar myeloid profiles
as ABC, GCB and testicular DLBCL, but twice higher scores for all lymphoid subsets (both NK, CD4, CD8 and gd) (Wilcoxon P=0.003 to 0,0001 according to
subset), suggesting they have the richest TILs compartment. By contrast, the CNS subtype of DLBCL has the same B cell signature as the other DLBCL but the
SES of all lymphoid subsets are strikingly lower, suggesting they have little immune cell infiltrate in line with brains unique lymphoid composition.17, 18

We refined the analysis of GCB and ABC DLBCL by comparing their SES for various metabolic and signaling gene sets (B). Many KEGG and GO gene sets scored
similarly in both subtypes however, including B cell receptor signaling pathway (P= 0.36), oxidative phosphorylation (P= 0.11) or glycolysis and gluconeogenesis
(P= 0.06). Nevertheless, the DLBCL ABC scored significantly higher than DLBCL GCB for gene sets reflecting activated state19, 20 such as: pyrimidin metabolism
(mean of SES = 12 versus 10.8, respectively, unpaired Student P= 10−9), fatty acid metabolism (mean of SES = 2.3 versus 1.9, respectively, unpaired Student
P= 3x10−9),nucleotide metabolic process (mean of SES = 1.5 versus 1.2, respectively, unpaired Student P=7x10−13),cell cycle checkpoint (mean of SES =
3.4 versus 3.1, respectively, unpaired Student p= 0.02), DNA repair (mean of SES = 7.0 versus 6.3, respectively, unpaired Student p= 0.005) and mitochondrion
organization and biogenesis (mean of SES = 5.4 versus 4.7, respectively, unpaired Student p= 10−8), among others. On the other hand, the DLBCL GCB scored
significantly higher than DLBCL ABC for Notch signaling (mean of SES = 4.0 versus 3.6, respectively, P= 0.0001) TGFb signaling (mean of SES = 1.6 versus
1.1, respectively, P= 10−9), two pathways recently found activated in DLBCL21–23 and Tight junction (mean of SES = 1.4 versus 1.1, respectively, P= 8x10−5)
in line with its germinal center cell of origin.19
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Supplemental Figure 6: Per-gene analysis of immune escape gene up-regulation in FL and DLBCL samples (n=82).
Oncomine-based comparison (https://www.oncomine.org/resource/login.html) of log2 median-centered intensities of the immune escape genes
(defined in24) most differentially expressed between control B cells, FL and DLBCL samples from GEO dataset GSE12195.25 These immune escape genes
are shown above by decreasing order of significance when comparing samples groups, TIMP1 is up-regulated by all the FL and DLBCL samples relative to
normal control B cells, LGALS3 by 98%, IDO1 by 90%, HAVCR2 by 91%, TIGIT by 83%, CTLA4 by 78%, PDCD1 by 67%, PDCD1LG1 by 70% and CD274
(PDCD1LG2) by 80% of FL and DLBCL samples. Bold text indicate genes selected for Immune Escape Gene Set 33 (IEGS33).

Supplemental Figure 7: Stages of immune escape in the DLBCL samples (n=385).
SES dot plots for IEGS33 vs T cell activation through the DLBCL samples. Groups of phenotypes were arbitrarily defined according to the dotted lines: group I
(IEGS33- T cell activation-), group II (IEGS33- T cell activation+), group III (IEGS33+ T cell activation+), group IV (IEGS33+ T cell activation-).
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GSE number Compatible Cancer type First author reference
GSE10139 Yes CLL Friedman DR 26

GSE10524 Yes DLBCL Booman M 27

GSE10846 Yes DLBCL Lenz G 28

GSE11318 Yes DLBCL Lenz G 29

GSE12195 Yes DLBCL Compagno M 25

GSE12453 No FL, BL, DLBCL Brune V 30

GSE12734 Yes DLBCL Stamatopoulos B 31

GSE14879 No ALCL Eckerle S 32

GSE14973 Yes CLL Stamatopoulos B 33

GSE15490 Yes CLL Shehata M 34

GSE15913 Yes CLL Giannopoulos K 35

GSE16024 Yes FL, MCL Hamoudi R
GSE16455 Yes MCL Fernandez V 36

GSE17372 Yes BL, DLBCL Deffenbacher KE 37

GSE18736 Yes FL, MCL Hamoudi RA 38

GSE19243 No MCL Leshchenko VV 39

GSE21029 Yes CLL Herishanu Y 40

GSE21452 Yes MCL Hartmann EM 41

GSE21554 Yes MZL Watkins AJ 42

GSE22762 Yes CLL Herold T 43

GSE25571 Yes CLL Herold T 44

GSE25613 No MCL Beltran E 45

GSE26526 No CLL Saiya-Cork K 46

GSE26725 No CLL Vargova K 47

GSE27858 Yes CLL Durig J 48

GSE28654 Yes CLL Trojani A 49

GSE29605 Yes CLL Davidson-Mocada JK
GSE31048 Yes CLL Wang L 50

GSE31312 No DLBCL Frei E 51

GSE33135 Yes CLL Baptista MJ 52

GSE34171 Yes DLBCL Monti S 53

GSE34339 No DLBCL Hogfeldt T
GSE35426 Yes MZL Watkins AJ 42

GSE35935 Yes CLL Chiaretti S
GSE36000 Yes MCL Navarro A 54

GSE36907 No CLL Seifert M 55

GSE37168 Yes CLL Landau DA 56

GSE38816 Yes FL Green MR 57

GSE39671 No CLL Chuang HY 58

GSE52435 No MCL Rahal R 59

GSE53786 Yes DLBCL Scott DW 60

GSE53820 Yes FL Brodtkorb M 61

GSE55267 Yes FL Guo S 62

GSE6338 No PTCL Piccaluga PP 63

GSE64555 No DLBCL Linton K
GSE65135 Yes FL, DLBCL, MZL Newman AM 5

GSE9250 No CLL Ouillette P 64

Supplemental table 1: List of studies tested for their compatibility
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Gene Protein Chr.
AZI2 5-Azacytidine-Induced Gene 2 3
EREG Epiregulin 4

GPM6B Neuronal Membrane Glycoprotein M6b X
XIST X Inactivation-Specific Transcript X

Supplemental table 2A: female specific gene set for showing highly sex-biased expression patterns in Affymetrix HG U133 plus microarrays from human tissues65

Gene Protein Chr.
CD24L4 CD24 molecule like 4 Y

CYORF14 Chromosome Y open reading frame 14 Y
CYORF15A Chromosome Y open reading frame 15A Y
CYORF15B Chromosome Y open reading frame 15B Y

DDX3Y Dead/H Box 3, Y-Linked Y
EIF1AY Eukaryotic Translation Initiation Factor 1a, Y-Linked Y

JARID1D Jumonji, AT rich interactive domain Ad Y
PRKY Protein Kinase, Y-Linked Y

RPS4Y1 Ribosomal Protein S4, Y-Linked Y
USP9Y Ubiquitin-Specific Protease 9 Y

UTY Ubiquitously Transcribed Tetratricopeptide Repeat Gene On Y Chromosome Y
ZFY Zinc Finger Protein, Y-Linked Y

Supplemental table 2B: male specific gene set for showing highly sex-biased expression patterns in Affymetrix HG U133 plus microarrays from human tissues65

GENE ID protein, alias names
CCL2 Chemokine (CC motif) ligand 2, MCP1
CCL22 Chemokine (CC motif) ligand 22
CD163 CD163
CD274 Programmed cell death 1 ligand 1
CD86 CTLA4 ligand, B7.2
CSF1 ”Colony stimulating factor 1 (macrophage), MCSF1”

CTLA4 Cytotoxic T-lymphocyte-associated protein 4, CD152
FOXP3 Forkhead box P3
GDF15 Growth differentiation factor 15

HAVCR2 TIM3
HGF Hepatocyte growth factor
ICOS CD278, Inducible T-cell co-stimulator
IDO1 Indoleamine 2,3 dioxygenase 1
IDO2 Indoleamine 2,3 dioxygenase 2
IL10 Interleukin 10

IL23A Interleukin 23
IL6ST Interleukin 6 signal transducer, CD130
JAK2 Janus kinase 2

KIR2DL1 CD158A, NK cell inhibitory receptor p58
LAG3 Lymphocyte-activation gene 3, CD223
LAIR1 Leukocyte-associated Ig-like receptor 1

LGALS1 Galectin 1
LGALS3 Galectin 3

MCL1 Myeloid cell leukemia 1, BCL2-related
MRC1 Mannose receptor C type 1, CD206
MSR1 Macrophage scavenger receptor 1, CD204

PDCD1 PD-1, programmed cell death 1, CD279
PDCD1LG2 CD273,PD-L2, PD-1L2, butyrophilin B7DC,

PVR Polyovirus receptor, CD155
SOCS3 Puppressor of cytokine signaling 3
TIGIT T cell immunoreceptor with Ig and ITIM domains
TIMP1 Tissue inhibitor of metalloproteinase 1
VEGFA Vascular endothelial growth factor A

Supplemental table 3: The IEGS33 immune escape gene set
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XXXXXXXXDLBCL
Group I II III IV

ABC 34 1 99 33
GCB 46 11 103 35
PMBL 2 0 16 5
Unclassified 6 2 42 13
NA 10 0 28 20

Fisher’s Exact Test p-value=0.042

XXXXXXXXIPI
Group I II III IV

low 37 9 124 39
Low-intermediate 26 5 64 23
High-intermediate 17 0 31 11
High 2 0 7 1
NA 16 0 62 32

Fisher’s Exact Test p-value=0.6222

Supplemental Table 4: Distribution of patients according to groups defined by IEGS33 and T-cell activation gene set scores. Tables show results according to
different clinical parameters: type of DLBCL (top) and International Prognostic Index (IPI, bottom).
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