Supporting Information (SI)

A Spectrum of CodY Activities Drives Metabolic Reorganization and Virulence Gene Expression in

Staphylococcus aureus

Nicholas R. Waters, David J. Samuels, Ranjan K. Behera, Jonathan Livny, Kyu Y. Rhee, Marat R. Sadykov, and Shaun R. Brinsmade*

Strain or	Genotype	Source or
plasmid		Reference ^a
E. coli		
NEB 5α	fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17	New England Biolabs
Plasmids		
pMAD	Gram-positive allelic exchange vector, Ap ^R Em ^R	(Arnaud <i>et al.</i> , 2004)
pCN38	Source of <i>cat194</i> cassette	(Charpentier <i>et</i> al., 2004)
pMRSI	sGFP-sDsRed double reporter shuttle vector. Ap ^R Cm ^R	, ,
pMRSI-nuc	pMRSI with <i>nuc-gfp</i> reporter, Ap ^R Cm ^R	
pSRB44	pMAD with s <i>ucD::cat194</i> allele, Ap ^R Em ^R Cm ^R	
pSRB57	pMAD mutated codY fragment to generate codY57, Ap ^R Em ^R	
pSRB58	pMAD mutated <i>codY</i> fragment to generate <i>codY58</i> , Ap ^R Em ^R	
pSRB65	pMAD with in-frame deletion fragment to generate $\Delta i l v E1$, Ap ^R Em ^R	
pSRB66	pMAD mutated <i>codY</i> fragment to generate <i>codY66</i> , Ap ^R Em ^R	
pTET	pTnT with <i>tet</i> (M)	(Bose <i>et al.,</i> 2013)

Table S1. Additional strains and plasmids.

^aUnless otherwise noted, strains and plasmids were constructed during the course of this study.

Oligo	Sequence $(5' \rightarrow 3')$	Purpose	Source or reference ^a
KPPE-TIR-f	GGTACCAGCTGCAGAATTCTGATTAACTTTATAAGGAG GAAAAACATATGC	pMRSI construction	
NNSB-TIR*-r	GCCGGCTAGCACTAGTGGATCCAGATAATCTATAAAAG GAGG	pMRSI construction	
oSRB198	TGG AGG TAG AAT TCA AGC AGG CGG AGT	sucD deletion allele	
oSRB199	TTT CCT AGG CAT CTT AGT GCT CCC ATC CTT T	sucD deletion allele	
oSRB200	GCA CTA AGA TGC CTA GGA AAA AAC TCG AGT AAA GTT AAA AGA TGA TAT AA	sucD deletion allele	
oSRB201	ATA AAG ATG GAT CCA ATA TAC ATT AAC	sucD deletion allele	
oSRB233	AGG ATC GAG TCT AAA TGA ATT ATT AAA AAG TCA AGA AAT TAT TCA AAT GT	R61E allele	
oSRB234	ACA TTT GAA TAA TTT CTT GAC TTT TTA AT	R61E allele	
oSRB235	AGG ATC GAG TCT AAA TGA ATT ATT AAA AAG TCA AAA AAT TAT TCA AAT GT	R61K allele	
oSRB236	ACA TTT GAA TAA TTT TTT GAC TTT TTA AT	R61K allele	
oSRB237	AGG ATC GAG TCT AAA TGA ATT ATT AAA AAG TCA ACA TAT TAT TCA AAT GT	R61H allele	
oSRB238	ACA TTT GAA TAA TAT GTT GAC TTT TTA AT	R61H allele	
oSRB248	TTT CAT TCC TAT GGA TCC TGA TTC AAT T	codY cloning flank	
oSRB249	ACG AAA GTT GCC ATG GAT TAA ACA ATA TGA A	codY cloning flank	
oSRB316	GAA ACA AGG ATC CGT TAT AAT TTA	ilvE deletion allele	
oSRB317	CAT GGT GAT TGC CTC CTA ATA ATA	ilvE deletion allele	
oSRB318	TAT TAT TAG GAG GCA ATC ACC ATG CCC GGG TAA TAA AAA TTG AAT ATG ATC ATG	<i>ilvE</i> deletion allele	
oSRB319	TAA CAC CGT CGA CCC AAT TAA TTT	ilvE deletion allele	
oSRB320	TCTATAAAAATATACAAAAGGAGA	codY sequencing	
oSRB321	GTTACGACTAGGACATTGAATTAT	codY sequencing	
oSRB451	ATC GTG TAC TCG ATC AAG TAC TAA TGT	G129D allele	
oSRB452	ACA TTA GTA CTT GAT CGA GTA CAC GAT	G129D allele	
oSRB453	TAC AAA TAT TGG ATC CTT TAC ACA ATC A	G129D allele	

 Table S2. Oligonucleotides used in this study.

pCN51-S1-f	CTCACATGTTCTTTCCTGCGTTATCC	pMRSI sequencing	
pCN51-S-r	GTTCTTGTTGCTGTTCCTGTTCTG	pMRSI sequencing	
Pnuc1-r1	GGGCATAACTAACACCTCTTTCTTTTAGTTAATTTTAA	pMRSI-nuc	
	TATTAAACG	construction	
sDsRed-S-r	CTGTTGATGGTTCCCAACCC	pMRSI sequencing	
sGFP-S-r	GTAGCATCACCTTCACCCTCTC	pMRSI sequencing	
SphI-Pnuc-f	CATAGCATGCGTGAATAATAAGATAGAGAAAACTGAAA	pMRSI-nuc	
	AACGC	construction	
Nuc	Cy3—CCCCGGATCCACCCC—BHQ2	FRET assay	(Kiedrowski <i>et al.</i> , 2011)
substrate			

Quantitative, real-time RT-PCR oligos

Oligo	Sequence $(5' \rightarrow 3')$	Specificity	
oDS001	CGA AAG AAC AAT ACG CAA AGA GG	nuc	
oDS002	TGC ATT TGC TGA GCT ACT TAG A	nuc	
oNSF1	CAG GTG ACA CAG CGG GTA TT	poIC	
oNSR1	TGC CGG GTT GTG ATG CTA TT	poIC	
oNW043	TGA ACA AGA AGC CTG ACA TAA A	icaA	
oNW044	CGT ATT TGA GTG CAA GAA CAT TAG	icaA	
oSRB239	GGA TTG GCT TCA CCT GAA AA	rpoC	
oSRB240	CTT TCA CGA CGT ACT TTA GA	rpoC	
oSRB241	AAG GAG ATC ACC AAG CAC CA	ilvD	
oSRB242	CTG CAA GCT CTC TTA AAT GA	ilvD	
oSRB243	AAC ATA AAT TGG GAG CAG CA	fnbA	
oSRB244	TTG TCT TTT GTT CTG ATG CT	fnbA	
oSRB356	GTG AAT TTG TTC ACT GTG TCG ATA A	hld	
oSRB357	GGA GTG ATT TCA ATG GCA CAA G	hld	
oSRB454	GGT GTT GAA AGT GTA GGC AAT C	brnQ2	
oSRB455	AGC ACG TGG AAT ACC GTA AA	brnQ2	

^aUnless noted, oligos are from this study.

Figure S2: Variant CodY proteins achieve similar abundances during in vitro growth. Soluble protein extracts were prepared from exponentially growing *S. aureus* cells in TSB at 37°C as described in *Experimental Procedures*. An equal amount of each protein sample was separated using SDS-PAGE, transferred to nitrocellulose and analyzed by Western Blot with anti–CodY antibody raised against *Bacillus subtilis* CodY protein.

Figure S4: Map of the pMRSI double reporter shuttle vector used in this

study. Optimized translation initiation regions (TIR -

TGATTAACTTTATAAGGAGGAAAAA and TIR* -

AGATAATCTATAAAAGGAGGAA) are indicated upstream of the s*GFP* and s*DsRed* genes correspondingly. Unique recognition sequences for the Type II restriction endonucleases are indicated in blue. The pMRSI map was generated using pDRAW32 (AcaClone Software [http://www.acaclone.com]).

References

- Arnaud, M., A. Chastanet & M. Débarbouillé, (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. *Appl. Environ. Microbiol.* **70**: 6887-6891.
- Bose, J.L., P.D. Fey & K.W. Bayles, (2013) Genetic tools to enhance the study of gene function and regulation in Staphylococcus aureus. *Appl Environ Microbiol* **79**: 2218-2224.
- Charpentier, E., A.I. Anton, P. Barry, B. Alfonso, Y. Fang & R.P. Novick, (2004) Novel cassette-based shuttle vector system for gram-positive bacteria. *Appl Environ Microbiol.* **70**: 6076-6085.
- Kiedrowski, M., J. Kavanaugh, C. Malone, J. Mootz, J. Voyich, M. Smeltzer, K. Bayles & H. AR, (2011) Nuclease modulates biofilm formation in community-associated methicillin-resistant *Staphylococcus aureus*. *PLoS One.* **6**: e26714.