
 

SUPPLEMENTARY NOTE: 
 
Dynamic range of in-gel digital assays  
When the input for digital MDA is very low (fewer than 100 per field), molecular counts are 
significantly inflated by contaminating fluorescence signals (contaminating DNA fragments or 
particles) that are not differentiated from true counts by our image analysis algorithm. At high 
target concentrations, the DNA clusters crowd one another, limiting the maximum useful 
concentration to 10,000 DNA molecules per field of view. For MDA, the smaller cluster sizes 
observed at higher template concentration (Supplementary Fig. 4) benefit assay dynamic 
range by improving cluster identifiability at the highest template concentrations. Based on our 
estimate of 10 pg DNA per cluster (Supplementary Fig. 2), 10,000 - 100,000 clusters per field 
of view in our setup approximates typical maximum product concentrations of about 800 ng/µL 
achieved in conventional liquid MDA reactions. The assay dynamic range can be improved by 
manipulating the DNA cluster size, increasing the volume of gel imaged (eg by combining 
multiple fields of view), improving image processing methods, and further reducing the number 
of fluorescent contaminants.  
 
Analysis of reaction extent limitation and local competition among MDA clusters  
We noticed smaller average cluster size at higher template concentrations (Supplementary 
Fig. 4).  Based on additional studies, we concluded that a global auto-inhibition mechanism 
limits the growth of MDA clusters (Supplementary Fig. 5). We analyzed variability in cluster 
number and DNA content around large and small reference clusters to test for local reagent 
competition among WGA reaction centers, finding little evidence for local competition. This 
observation is consistent with the high diffusion constants for enzymes, primers, and 
nucleotides measured in PEG hydrogels similar to ours1. No specific limiting reagent was 
identified when reactants were supplemented individually (data not shown). The final reaction 
pH in our hydrogel reactions was measured to be 6.5 (initial pH = 7.5), which may limit cluster 
growth due to global loss of polymerase activity. Altogether, these data are consistent with 
density-dependent average size variation by global auto-inhibition, possibly by pH drop. 
Variability of cluster size in a single experiment may result from variable initial template 
conformation, degree of template denaturation, or local inhomogeneities in the hydrogel 
structure.  
 
Random dispersion model for lab-cultured bacteria 
The expected number of punches that have both E. coli and S. aureus is (based on qPCR 
analysis of the 80 punches):  
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This result is in-line with our qPCR result of seven double positive punches (Supplementary 
Table 2), indicating the likelihood that the distributions of E. coli and S. aureus across the punch 
samples are independent as we expected. Furthermore, if we assume a random (Poisson) 
distribution of microbes in the hydrogel:  
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The low probability value for the occurrence of single S. aureus is calculated based on the high 
number of hydrogel punches that were identified as S. aureus by qPCR. To bring down the 
value, a more dilute sample of S. aureus should be used.  
 

 
 
 

PE. coli (0) = 0.825 PE. coli (1) = 0.158 PE. coli (2) = 0.01 

PS. aureus (0) = 0.463  0.38 0.073 0.0046 
P S. aureus (1) = 0.356  0.29 0.056 0.0036 
P S. aureus (2) = 0.138  0.114 0.022 0.0014 

 
 
Genome coverage completeness estimation  
Note that some studies in the field report data from quality-filtered (‘cherry-picked’) cells, which 
dramatically improves quality statistics such as average coverage. In this study, we report data 
on complete sets of single-cell MDA reactions.  
 
Potential for amplification bias reduction  
Up to 10 pg of DNA is produced by MDA from each template in the hydrogel format using our 
protocol. Although we re-amplified punch samples in this study to microgram quantities, 10 pg 
is, in principle, enough product (of order 1000 bacterial genome equivalents) to support deep 
sequencing directly. Given that we obtain good coverage distribution with our high-yield re-
amplification protocol, there seems to be substantial potential for coverage distribution 
improvement by direct library construction from the 10 pg hydrogel product. Notably, the 
trendline in the bias/fold amplification curve (Fig. 2d) intersects with the non-amplified gDNA 
value at approximately 1000-fold amplification, promising much improved amplification 



 

uniformity from such limited fold-amplification. Recent advances in ultra-efficient library 
construction allows library construction from sub-nanogram input levels2.  
 
Although a number of modified protocols have been proposed to improve coverage distribution 
in MDA, none has yet been widely adopted, with major single-cell genomics centers continuing 
to use phi29 DNA polymerase reaction conditions very similar to those originally developed 30 
years ago3. By contrast, limiting fold-amplification is mathematically guaranteed to reduce 
coverage bias, since the ratio of maximum possible fold amplification to minimum possible fold 
amplification is necessarily reduced when the average degree of amplification is reduced. When 
combined with the cost savings of micro-scaled reactions and increasingly efficient sequence 
library construction procedures, such an approach is clearly the future of single-cell WGA4,5. 
 
Today, investigators limit amplification-fold by reducing reaction volumes6,7 or by limiting 
reaction time. Although it is currently unknown which approach is more fruitful in bias reduction, 
both approaches have drawbacks. The hydrogel reaction format offers unique advantages in 
limited-extent WGA, as the product clusters from each template molecule only reach a few 
microns in size, even under dilute template conditions. This suggests that one can achieve 
uniform (limited) reaction extent across single-cell WGA reactions, even when the reactions 
occur asynchronously. The hydrogel format also enables maintenance of optimal amplification 
conditions for each template throughout the reaction time course if desired by reagent 
supplementation, possibly reducing sequence content and template fragment length biases.  
 
Suitability of in-gel amplification format for product cluster labeling  
In some applications, the demand for single-cell assay throughput is not driven by the need to 
amass a large number of single-cell datasets, but rather to access cells that are rare in the 
population. The hydrogel format is ideally suited for this case as the WGA reaction endpoint is 
an opportune moment to genotype product clusters using hybridization probes in order to 
identify products from cells of interest for retrieval and deep sequencing analysis8,9. In the post-
reaction hydrogel, genomic sequences have been amplified and are not protected by a cell 
envelope. In addition, the thin gel slab format facilitates the application of reagents for rapid 
template denaturation, labeling, and de-staining. Once labeled, the desired targets can be 
selectively retrieved for further analysis by image-guided selection. Sequence-specific labeling 
also has potential to reduce the number of false-positive background spots that challenged the 
interacting dye-based approach we used in this study and/or to lend molecular specificity to 
quantification assays. In fact, sequential FISH could be used to probe for large sets of functional 
genes within the gel itself, enabling the application of complex selection criteria10. 
 
BLAST analysis and read assignment for E. coli and S. aureus 
To characterize all samples after quality trimming, each sample (R1 from each read pair) was 
blasted (task megablast) with the parameters listed in supplementary figure 6. The BLAST 
database for E. coli consists of three E. coli genomes (strain BL21, MG1655 and W3110). The 
S. aureus database consists of the genomes of strain 8325, TW20 and USA300. Univec, 
Plasmid and Human genome (GRCH38) databases were downloaded from NCBI. All databases 
were produced using makeblastdb and blastdb_aliastool. Each read was mapped to all five 



 

databases (E. coli, S. aureus, Univec, Plasmid, and Human db) and the results were ranked 
based on bit score, e-value and percent identity. We assigned each read to one of the source 
databases based on the top hit. Using the filter_fasta.py tool in QIIME11, we selected reads that 
did not map to any of the five databases for further analysis. We ran BLAST against the nt 
database to characterize these reads (Supplementary Table 6).  
 
Custom reference generation by de novo assembly for E. coli and S. aureus 
The gDNA E. coli (BL21) and S. aureus (NCTC 8325) positive-control data were assembled and 
curated to create custom reference genome sequences. Raw sequencing files were quality 
trimmed using Trimmomatic (Supplementary Fig. 6). We blasted and filtered the trimmed files 
against respective reference database, with the parameters listed in supplementary figure 6. 
The filtered and trimmed files were assembled into unordered contigs with velvet. We mapped 
(BWA) unordered contigs to their closest NCBI reference genome (NC_012971 and 
NC_007795.1 respectively). The resulting SAM files were ranked on mapped length in 
descending order. Using a custom MATLAB script, we created a reference genome backbone 
consisting of only the null character ‘-’ with the same size as the reference genome and wrote 
nucleotide sequences on it with the top-scoring SAM-mapped sequence for each contig. We 
conducted the same assembly process for the genomic DNA (E. coli DH10B) data from de 
Bourcy et al 2014 using reference genome NC_010473.1. Assembly Statistics are listed in the 
supplementary table 5.  
 
NGS data analysis for E. coli and S. aureus 
Data quality was first visualized using FastQC (Babraham Bioinformatics). All data were 
trimmed using TRIMMOMATIC12 and human reads were filtered out with BLAST and QIIME. 
Each pair of trimmed and filtered reads was piped into BWA and mapped to the custom 
reference sequences (unordered contigs). Picard tools SortSam was used to produce BAM files 
and MarkDuplicates was deployed to mark duplicate reads. The data analysis workflow is 
illustrated in supplementary figure 6. The samples included two positive-control purified 
genomic DNA samples, seven hydrogel MDA punches identified as E. coli only by qPCR, seven 
punch samples identified as S. aureus only by qPCR, and seven punch samples identified by 
qPCR as double negative. Mapping statistics were obtained using the GAEMR (Broad Institute) 
get_simple_bam_stats.py tool. Genome coverage was obtained using Bedtools genomecov. 
Lorenz curve ranks the depth of coverage across the genome sequences in each sample and 
plots the fraction of total coverage needed to recover a fraction of the genome sequences 
represented in each dataset (at 20✕ or maximum depth if sequenced shallow). An area-under-
Lorenz-curve (AUC) value of 0.5 represents perfectly uniform representation. Gini Index = 2 × 
(0.5 − AUC). A Gini index of 0 indicates perfect uniformity and a Gini index of 1 indicates 
maximal non-uniformity. Lorenz curves were obtained by first processing down-sampled BAM 
files (duplicates marked) using samtools mpileup, then ranking the ascending coverage per 
base pair, and plotting with a custom MATLAB script. Single-cell E. coli MDA data from de 
Bourcy et al 2014 were downloaded from NCBI Sequence Read Archive (SRA) and analyzed 
the same way.  
 
 



 

Chimera statistics for E. coli and S. aureus 
In order to obtain chimera statistics, we mapped read 1 and read 2 from each sample separately 
using BWA. To make the chimera statistics comparable, we used de novo assembled genome 
(described below) from all bulk genomic DNA samples. We sorted the SAM file by read index 
and filtered out repetitive mapping results. We used a custom python code to import pysam in 
order to pair up the ‘mapping position’, ‘is-reverse’, ‘read length’ and ‘read index’ information 
into a .mat file. With a customized MATLAB script, we calculated the insert size for each read 
pair and checked their relative orientation. We filtered out pairs that were mapped one-ended. 
The chimera percentage was calculated as the (number of properly orientated read pairs with 
insert size more than 1000 bp + number of read pairs of wrong orientation)/Total number of read 
pairs.  
 
Random subsampling of mapped reads for E. coli and S. aureus 
Duplicates-marked BAM files were down-sampled using samtools and bootstrapped with 
random number seed 0 to 9 for each depth. See supplementary table 7 for more information.   
 
Pre-processing and assembly of single-cell genomes from stool 
First, we removed the adapter sequences from single-cell libraries using TRIMMOMATIC12 
(TRAILING:3 MINLEN:40). To ensure that human DNA was not captured in our single-cell 
libraries, we screened single-cell amplicons against the human genome (GRCh38 reference) 
using BMTagger13 (default). We screened our amplicons against E. coli references (BL21 and 
DH10B) using BMTagger. Overall, the level of contamination was small. We also screened 
against Pseudomonas (PAO1) and Staphylococcus (NCTC 8325) genomes, which were 
sequenced alongside our libraries, to ensure no chimeric reads formed during sample 
preparation confounded our analyses. Finally, single genome amplicons were quality filtered 
(Phred score ≥ 3), and filtered for reads that were less than 45 bp. Amplicons were then 
assembled using SPADES (v3.6.0) (--careful)14. We retained genomes where at least 100 kb 
could be assembled.  
 
Assessing the fidelity of single-cell genomes from stool 
To further vet the quality and purity of our assemblies, we used BLAST to assign taxonomies to 
a set of 31 predetermined core genes that are both phylogenetically conserved and single copy 
in almost all genomes15. Although we could not identify the full set of 31 core genes in any of the 
assemblies, we were able to easily distinguish cases where two or more cells were sequenced 
together from those in which there was a single cell. Additional validation of the single-cell 
assemblies included quantifying the levels of contamination using CheckM16 and examining the 
number and taxonomy identified using RNAMMER17. CheckM accesses the quality of a genome 
using a broader set of marker genes specific to its inferred lineage within a reference genome 
tree and provides estimates of genome completeness and contamination percentages16. 
RNAMMER uses hidden Markov models trained from ribosomal RNA databases to predict the 
rRNA species17. The extent and contiguity of our assemblies was documented by reporting 
assembled genome size, N50, the number of contigs, CheckM completeness %, CheckM 
contamination % and notes on RNAMMER classification (Supplementary Table 9). 
 



 

Notably, some microbes can be difficult to isolate from human stool samples due to the cells’ 
tendency to break or aggregate. Some of the punch samples with low numbers of AMPHORA 
genes could be the result of broken cells containing reduced genomic representation or free 
genomic DNA fragments, while samples with evidence for multiple taxonomies could have 
resulted from cell aggregates. Stool samples are also fairly complex and contain a lot particulate 
matter that complicates sample processing. In principle, genes from samples with sequences of 
variable taxonomy could arise for several reasons: the products of multiple cells being collected 
in a single punch, downstream contamination in the second round MDA or library construction 
steps, informatic demultiplexing, or from taxonomic mis-classification of hard-to-assign 
sequences.  
 
Analysis of metagenomic shotgun reads from stool 
FijiCOMP metagenomic samples, each containing roughly 50 million paired-reads, were profiled 
using MetaPhlAn18. Metagenomic samples were also aligned to the SILVA rRNA database 
(v.115) to determine the presence of organisms from the Succinivibrionaceae family. Based on 
alignments to the SILVA rRNA database, we find that organisms within the Succinivibrionaceae 
family are in fact highly abundant in the FijiCOMP metagenomic data, with average FPKM 
(Fragments Per Kilobase of transcript per Million mapped reads) values around 26,000.  
 
 
 
 
  



 

SUPPLEMENTARY TABLES:  
 

Supplementary Table 1 | A comparison of single-cell isolation technologies 
Single-cell 
isolation 

technology 

Segregation 
principle 

Engineering 
requirement 

Fixed spatial 
addressing 

Reagent 
addition 

Product 
recovery 

Characteristic 
reaction volume 

Max 
analytes 
per µL 

Max 
analytes 
per mm2 

SBS multi-well 
Plate 

Macro-scale 
container array 

Commodity 
plate & 

complex 
robotics 

 
 

Yes 
 

Liquid handler or manual 
pipetting 1 - 100 µL 1 0.10 

Lab-on-a-chip 
microfluidics 

(e.g. Fluidigm) 

Individually 
addressable 
microfluidic 
chambers 

 
Specialized 
microdevice 
& controller 

 

Automated by  
microdevice 0.1 - 500 nL 10,000 0.10 

Open 
microfabricated 

array 
Micro-fabricated 
container array 

Liquid handler or manual 
pipetting (largest volume 

only) 
0.05 pL* - 10 nL 20,000,000 20,000 

Monodisperse 
microdroplets 

Multi-phase 
system No Droplet 

merging 
Droplet 

breakdown 5 - 1000 pL 200,000 10,000 

Hydrogel 
Selective 
diffusion 

restriction 

No special 
equipment 

needed 
Yes 

Diffusion into 
or out of 
hydrogel 

Physical 
punch or 
hydrogel 

breakdown 

0.05 - 1 pL** 20,000,000 20,000 

* Men et al, Anal. Chem., 2012 used 3.3 micron diameter by 4.2 micron deep wells 
** Defined by physical extent of product; reagents likely drawn from a larger volume 

 

 

Supplementary Table 2 | QPCR characterization of hydrogel punches 
Total hydrogel 

punches 
E. coli positive 

punches 
S. aureus positive 

punches  
Double  
positive 

Double 
negative 

80 7 36 7 30 
 

 
Supplementary Table 3 | Primer sequences 

Complete Primer list 

MDA hexamer 5’-NNNN*N*N-3’ 
S. aureus G1 F TGC ACA TTT AAA CCC AGC GG 
S. aureus G1 R ATC GCA TGT GCA ATT CTC GG 
S. aureus arc F TTG ATT CAC CAG CGC GTA TTG TC 
S. aureus arc R AGG TAT CTG CTT CAA TCA GCG 

E. coli G2 F CAA CCA AAT TAT TGC CGC GC 
E. coli G2 R GCC ACG GTA ATT ACT GTC GC 

E. coli uspA F CCG ATA CGC TGC CAA TCA GT 
E. coli uspA R ACG CAG ACC GTA GGC CAG AT 
λDNA 780bp F CGG CAA ACG GGA ATG AAA CGC C 
λDNA 780bp R TGC GGC AAA GAC AGC AAC GG 

* Represents phosphorothioated DNA bases 
All sequences are listed from 5’ to 3’ 

 
 
 



 

Supplementary Table 4 | Mapping statistics, E. coli and S. aureus 

 
# Raw 
reads 

Median 
insert length 

(E. coli) 

Median  
insert length 
(S. aureus) 

Mapping 
to E. coli 

(%) 

Mapping to 
S. aureus 

(%) 

Coverage of 
E. coli 

genome 

Coverage of 
S. aureus 
genome 

Percent 
chimera on 
E. coli ref 

(%) 

Percent 
chimera on 
S. aureus 

(%) 

E. coli 
genomic DNA 1,888,337 120  89.86% 0.83% 99.99%  0.08%  

S. aureus 
genomic DNA 987,244  144 3.04% 88.70%  99.99%  0.12% 

S1 873,658  150 1.81% 90.89%  64.35%  0.62% 

S2 361,857  178 2.07% 89.02%  70.44%  0.84% 

S3 594,951  153 5.17% 53.30%  53.85%  0.39% 

S4 654,669  160 2.17% 90.16%  67.87%  0.57% 

S5 470,077  155 5.32% 69.80%  66.95%  0.61% 

S6 803,684  148 5.27% 64.47%  86.46%  0.49% 

S7 450,240  166 1.39% 93.04%  47.34%  0.90% 

E1* 822,345 137  9.81% 0.59% 7.14%  0.68%  
E2 473,648 134  61.12% 0.64% 23.85%  0.69%  
E3 425,227 135  77.35% 2.38% 47.59%  0.55%  
E4 527,854 142  55.20% 1.01% 30.52%  0.78%  
E5* 1,200,678 121  9.76% 3.36% 14.10%  0.56%  
E6 745,092 124  85.31% 1.56% 16.77%  0.84%  
E7 1,053,059 124  68.43% 0.38% 23.79%  0.52%  

NTC1 972,597   10.89% 16.96%     
NTC2 671,370   0.51% 1.59%     
NTC3 715,428   0.23% 0.20%     
NTC4 508,975   0.12% 0.07%     
NTC5 784,944   0.99% 3.27%     
NTC6 579,921   84.03% 0.06%     
NTC7 605,265   22.64% 0.13%     
Mock 27,429   25.71% 16.81%     

*  False-positive E. coli single-cell samples  
 

Supplementary Table 5 | de novo assembly statistics, E. coli and S. aureus 

Assembly statistics E. coli gDNA S. aureus gDNA 
E. coli gDNA 

(de Bourcy et al) 
# Contigs ≥ 0bp 126 113 115 
# Contigs ≥ 1kbp 101 86 91 
Total length ≥ 0bp 4,406,278 2,678,216 4,432,657 
Total length ≥ 1kbp 4,396,297 2,666,092 4,422,013 

Largest contig 295,162 148,028 326,226 
Coverage 97% 95% 95% 

GC % 50.80 32.69 50.75 
N50 75,214 48,471 85,192 



 

Supplementary Table 6 | Sequence read classification (“other reads”), E. coli and S. aureus  

 
 

 
 

 
 
 
 

 
"Other 
reads" 

% 
Identifie

d 

Cloning/ex
pression 
vector % 

Other  
E. coli 

% 

Other  
S. aureus 

% 

Synthetic 
construct 

% 

Propoioniba
cterium 

acens % 
Other major categories Percent 

listed 

E. coli 
genomic 

DNA 
42941 64.27% 21.30% 6.07% 0.01% 72.33% 0.12%     99.82% 

S.aureus 
genomic 

DNA 
4720 38.24% 1.16% 0.11% 61.83% 3.66% 10.80% Staphylococcus phage: 

349 ( 19.34% ) 96.90% 

S1 11887 4.85% 1.22% 0.17% 20.31% 4.34% 19.62% Assorted bacteria and 
fungus: 248 ( 43.06% ) 88.72% 

S2 1306 16.62% 3.23%  11.52% 1.84% 77.42%     94.01% 

S3 34963 0.24% 9.64%  28.92% 15.66% 12.05% Assorted bacteria and 
fungus: 28 ( 33.73% ) 100.00% 

S4 1800 25.78% 0.65%  61.64% 2.80% 16.16%     81.25% 

S5 4571 27.28% 0.88% 0.24% 62.63%  16.84% Staphylococcus phage: 
214 ( 17.16% ) 97.75% 

S6 4899 46.87%   18.60%  57.23% Assorted bacteria and 
fungus: 506 ( 22.04% ) 97.87% 

S7 14074 14.53% 0.29%  77.65% 1.32%  
Staphylococcus phage: 

361 ( 17.65% ) 96.92% 

E1* 352603 11.23% 1.15% 0.01%  3.99%  
Assorted bacteria and 

fungus: 35284 ( 89.12% ) 94.26% 

E2 32744 76.79% 25.00% 2.57%  71.89% 0.14%     99.60% 
E3 20547 59.69% 27.47% 0.21%  71.67% 0.44%     99.79% 

E4 47915 77.10% 13.09% 0.03%  46.17% 0.92% Malassezia globosa 
CBS: 13804 ( 37.36% ) 97.57% 

E5* 430977 12.60% 5.95% 0.33%  21.91% 15.95% Assorted bacteria and 
fungus: 26635 ( 49.07% ) 93.20% 

E6 46757 1.64% 1.56% 0.65% 7.16% 5.34% 39.71% Listeria seeligeri serovar 
1/2b str : 245 ( 31.90% ) 86.33% 

E7 55490 77.20% 20.42% 0.01%  79.24%      99.67% 

NTC1 365936 0.94% 1.51%  3.22%  12.73% Assorted bacteria and 
fungus: 2809 ( 81.47% ) 98.93% 

NTC2 303923 86.55%   0.08%  2.99% Human: 247884 ( 94.24% ) 97.31% 

NTC3 251727 89.49%     0.26% Assorted bacteria and 
fungus: 218140 ( 96.84% ) 97.09% 

NTC4 243833 96.26%     99.96%     99.96% 
NTC5 213052 90.75%     2.20% Human: 187178 ( 96.81% ) 99.02% 
NTC6 45986 95.44%    0.04% 0.03% Human: 43806 ( 99.81% ) 99.87% 
NTC7 74719 0.54%   37.87%  45.30%     83.17% 

Mock 7204 11.30% 8.60%   29.85% 14.74% Assorted bacteria and 
fungus: 373 ( 45.82% ) 99.02% 

*  False-positive E. coli single-cell samples  
** Values less than 0.01% were omitted for clarity       

      



 

Supplementary Table 7 | Down sampling on mapped reads from single-cell MDA samples 

Filename Mapped 
reads Fraction:    20X 10X 5X Source 

SRR1614004 1,953,388 0.181 0.091 0.045 de Bourcy tube 
SRR1614005 124,353 0 0 0.712 de Bourcy tube  
SRR1614006 1,552,882 0.228 0.114 0.057 de Bourcy tube  
SRR1614007 222,175 0 0.798 0.399 de Bourcy tube  
SRR1614011 2,191,740 0.162 0.081 0.040 de Bourcy MF  
SRR1614012 2,034,992 0.174 0.087 0.044 de Bourcy MF  
SRR1614013 5,476,888 0.065 0.032 0.016 de Bourcy MF 
SRR1614014 2,631,391 0.135 0.067 0.034 de Bourcy MF  
SRR1614015 11,448,119 0.031 0.015 0.008 de Bourcy MF  
SRR1614016 3,833,180 0.092 0.046 0.023 de Bourcy MF+T  
SRR1614017 2,720,938 0.13 0.065 0.033 de Bourcy MF+T  
SRR1614018 2,377,409 0.149 0.075 0.037 de Bourcy MF+T  
SRR1614019 2,217,047 0.16 0.08 0.04 de Bourcy MF+T  
SRR1614020 5,331,247 0.066 0.033 0.017 de Bourcy MF+T  

LX1 1,690,339 0.208 0.104 0.052 E.coli gDNA (No MDA) 
LX11 283,308 0 0.62 0.31 E.coli hydrogel 
LX12 324,651 0 0.54 0.27 E.coli hydrogel 
LX21 259,540 0 0.68 0.34 E.coli hydrogel 
LX23 571,435 0.62 0.31 0.15 E.coli hydrogel 
LX24 708,610 0.5 0.25 0.12 E.coli hydrogel 

LX3 728,290 0.29 0.15 0.07 S.aureus hydrogel 
LX4 335,567 0.64 0.32 0.16 S.aureus hydrogel 
LX5 321,849 0.66 0.33 0.17 S.aureus hydrogel 
LX6 609,813 0.35 0.18 0.09 S.aureus hydrogel 
LX7 335,862 0.64 0.32 0.16 S.aureus hydrogel 
LX8 528,641 0.4 0.2 0.1 S.aureus hydrogel 
LX9 435,904 0.49 0.25 0.12 S.aureus hydrogel 

 0 means the total mapped depth are less than the target coverage 
 
 
 
 
 
 
 
 
 
 
 



 

Supplementary Table 8 | Metagenomic shotgun profiling weighted with single-cell samples 
Sample ID M1.20 W2.21 WL.26 W2.33 M2.41 Weighted average 

Prevotellaceae 27.0 46.0 61.9 28.9 52.1 44.0 

Succinivibrionaceae 0.0 0.0 0.0 0.0 0.0 0.0 

Clostridiaceae 0.6 0.0 0.9 0.0 0.0 0.2 

Bacteroidaceae 0.0 0.1 1.3 0.0 4.1 1.2 

Veillonellaceae 0.4 3.4 2.9 4.4 9.0 4.6 

Firmicute 0.0 0.0 0.0 0.0 0.0 0.0 

Enterobacteriaceae 0.1 33.3 1.2 0.3 0.3 6.4 

Lachnospiraceae 8.1 4.2 4.7 16.5 4.1 8.4 

Eubacteriaceae 19.3 3.4 7.1 29.5 6.6 14.2 

Ruminococcaceae 16.7 5.6 2.8 13.5 7.3 8.7 

Megasphaera 0.0 0.0 0.0 0.0 0.0 0.0 

Acetobacteraceae 0.0 0.0 0.0 0.0 0.0 0.0 

Acidaminococcaceae 8.3 0.6 11.0 0.6 0.0 3.2 

Clostridiales  0.0 0.0 0.0 0.0 0.0 0.0 

Erysipelotrichaceae 16.0 2.0 0.8 3.4 1.3 3.0 
Total (%) 96.5 98.5 94.7 97.0 84.7 94.0 

Single cell count 8 21 25 37 26 All =117 
Single cell percentage 7% 18% 21% 32% 22%    All= 100% 
We first acquired the taxonomy ranking from single-cell data including all five samples. In this table we list the 
taxonomic composition of the samples predicted from standard shotgun metagenomic data.  For comparison with the 
taxonomic profile obtained from our single-cell data, we computed a weighted average taxonomic composition based 
on the number of single-cell datasets obtained from each sample.  
 
 
 
Supplementary Table 9 | Features of 117 FijiCOMP single-cell assemblies  
See a separate Excel file 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Supplementary References:  
 
1. Weber, L. M., Lopez, C. G. & Anseth, K. S. Effects of PEG hydrogel crosslinking density 

on protein diffusion and encapsulated islet survival and function. J Biomed Mater Res A 
90, 720–729 (2009). 

2. White, R. A., Blainey, P. C., Fan, H. C. & Quake, S. R. Digital PCR provides sensitive and 
absolute calibration for high throughput sequencing. BMC Genomics 10, 116 (2009). 

3. Blanco, L. & Salas, M. Replication of phage phi 29 DNA with purified terminal protein and 
DNA polymerase: synthesis of full-length phi 29 DNA. Proc. Natl. Acad. Sci. U.S.A. 82, 
6404–6408 (1985). 

4. Blainey, P. C. The future is now: single-cell genomics of bacteria and archaea - Blainey - 
FEMS Microbiology Reviews - Wiley Online Library. FEMS Microbiol. Rev. 37, 407–427 
(2013). 

5. de Bourcy, C. F. A. et al. A quantitative comparison of single-cell whole genome 
amplification methods. PLoS ONE 9, e105585 (2014). 

6. Marcy, Y. et al. Nanoliter reactors improve multiple displacement amplification of 
genomes from single cells. PLoS Genet. 3, 1702–1708 (2007). 

7. Landry, Z. C., Giovanonni, S. J., Quake, S. R. & Blainey, P. C. in Methods in Enzymology 
531, 61–90 (Elsevier, 2013). 

8. Niki, H. & Hiraga, S. Subcellular distribution of actively partitioning F plasmid during the 
cell division cycle in E. coli. Cell 90, 951–957 (1997). 

9. Yamada, N. A. et al. Visualization of Fine-Scale Genomic Structure by Oligonucleotide-
Based High-Resolution FISH. Cytogenet Genome Res 132, 248–254 (2011). 

10. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA 
profiling by sequential hybridization. Nat Meth 11, 360–361 (2014). 

11. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing 
data. Nat Meth 7, 335–336 (2010). 

12. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics 30, 2114–2120 (2014). 

13. Rotmistrovsky, K. & Agarwala, R. BMTagger: Best Match Tagger for removing human 
reads from metagenomics datasets. (2011). 

14. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to 
single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). 

15. Wu, M. & Scott, A. J. Phylogenomic analysis of bacterial and archaeal sequences with 
AMPHORA2. Bioinformatics 28, 1033–1034 (2012). 

16. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: 
assessing the quality of microbial genomes recovered from isolates, single cells, and 
metagenomes. Genome Res. 25, 1043–1055 (2015). 

17. Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. 
(2007). 

18. Segata, N., Waldron, L., Ballarini, A. & Narasimhan, V. Metagenomic microbial 
community profiling using unique clade-specific marker genes. Nature (2012). 

 


