#### Figure S1. Rabbit mAb Binding to BG505 gp120 and SOSIP.664 Immunogen, Related to Figure 1.

Binding of rabbit mAbs was assayed by ELISA using streptavidin-coated plates to capture avi-tagged biotinylated (A-F) BG505 SOSIP.664 or (G-L) BG505 gp120. 96-well plates were coated overnight at 4°C with streptavidin (Jackson Immunoresearch) at 2 µg/ml in PBS. Plates were washed 4 times with PBS, 0.05% (v/v) Tween, and blocked with 3% (w/v) BSA PBS for 1 h. Subsequently, 1 µg/ml of purified BG505 SOSIP.664 specifically biotinylated via a C-terminal Avi-tag was added for 2 h. Plates were washed four times and incubated with serial dilutions of rabbit mAbs for 1 h, then washed again and binding detected with anti-rabbit Fc conjugated to alkaline phosphatase (Jackson Immunoresearch) at 1:1000 for 1 h. The gp120 and gp41 proteins were directly coated onto the ELISA plates and the 2 h antigen capture step omitted. The positive control was the anti-V3 mAb R56 (PDB: 4JO1) and the negative control was a hybrid using the heavy chain of R56 and light chain of R20, which cannot bind HIV envelope (PDB: 4JO3).



### Figure S2. Reproducible 241-Dependent Neutralization Activity Induced by BG505 SOSIP.664 Immunization, Related to Figure 2.

(A)  $ID_{s0}$  values calculated in the TZM-bl assay for serum samples taken 2 weeks after the final boost in the studies described in Sanders et al., 2015). Neutralization curves from which the  $ID_{s0}$  values were generated, serum samples were titrated 3-fold from 1:20, except for rabbits 1410, 1411 and 1412 where serum samples were titrated 3-fold from 1:100. Potent neutralization categorized as an  $ID_{s0}$  >2000 is shaded red, intermediate neutralization categorized as an  $ID_{s0}$  of >200 <2000 is shaded pink, weak neutralization categorized as an  $IC_{s0}$  of >20 <200 is shaded pale pink. No neutralization activity is indicated by an  $ID_{s0}$  of <lowest serum dilution tested. (B) In a separate study 3 groups of New Zealand White rabbits (4 animals per group) were immunized according to the outlined scheme. For liposome formation, BG505 SOSIP.664 was reacted with SPDP crosslinker to achieve approximately 1 linker per SOSIP trimer. The protein was desalted into 100 mM sodium acetate (pH 5.5) to preserve the disulfide bonds in the protein in the next step. Following a 10-minute incubation with 25 mM DTT, protein was again desalted and immediately reacted overnight with maleimide-PEG<sub>2000</sub>-DSPE (NOF America). The following day, conjugated protein was isolated by running over a Sephadex G100 column. Lipid-conjugated BG505 SOSIP was then used to hydrate dried lipids to make liposomes made as previously described (Macauley et al., 2013) that consisted of 5 mol% MPLA (Avanti) as adjuvant and 0.1 mol% of the of the protein immunogen. (C)  $ID_{s0}$  values calculated in the TZM-bl assay for plasma samples taken 2 weeks after the final boost against the indicated viruses. (C) Neutralization curves from which the  $ID_{s0}$  values were generated, plasma samples from the study described in (B) were titrated 2-fold from a 1:100.

С

| Α | Immunogen                          | Rabbit | BG505 | MG505 | MG505<br>K241S |                |
|---|------------------------------------|--------|-------|-------|----------------|----------------|
|   | BG505 SOSIP.664 293S GnT -/-       | 1256   | 3452  | <20   | 2688           | e              |
|   | BG505 SOSIP.664 293S GnT -/- EndoH | 1284   | 2653  | 309   | >4860          | suod           |
|   | BG505 SOSIP.664 293S GnT -/-       | 1257   | 1874  | 585   | 3453           | res            |
|   | BG505 SOSIP.664 293S GnT -/-       | 1279   | 1519  | 121   | 3719           | rum            |
|   | BG505 SOSIP.664 293T               | 1411   | 877   | <100  | 1981           | it se          |
|   | BG505 SOSIP.664 293S GnT -/- EndoH | 1285   | 835   | 226   | 4613           | nden           |
|   | BG505 SOSIP.664 293S GnT -/-       | 1278   | 805   | 92    | 4631           | eper           |
|   | BG505 SOSIP.664 293S GnT -/- EndoH | 1283   | 564   | <20   | >4860          | 41-d           |
|   | BG505 SOSIP.664 293T               | 1410   | 298   | <100  | 230            | 2,             |
|   | BG505 SOSIP.664 293T               | 1274   | 3660  | 108   | 173            | ы<br>t         |
|   | BG505 SOSIP.664 293S GnT -/-       | 1254   | 508   | 54    | 138            | lo 2₄<br>∋ffec |
|   | BG505 SOSIP.664 293T               | 1412   | 340   | 178   | 264            | ZΨ             |

Original study described in (Sanders et al., 2015)

| 3 | Week        | 0                                | 4                                | 8                                  | 12                                 | 16                |
|---|-------------|----------------------------------|----------------------------------|------------------------------------|------------------------------------|-------------------|
|   | Dose        | 20 µg protein<br>liposome<br>I.D | 20 µg protein<br>liposome<br>I.M | 20 µg protein<br>iscomatrix<br>I.M | 20 µg protein<br>iscomatrix<br>I.M | 100 µg<br>protein |
|   | Group I     | empty                            | empty                            | В                                  | В                                  | В                 |
|   | Group II    | A                                | A                                | В                                  | В                                  | В                 |
|   | Group III   | В                                | В                                | В                                  | В                                  | В                 |
|   | (A) SF162 g | pp41 post fusior                 | n trimer (Li et a                | I., 2015)                          |                                    |                   |

(B) BG505 SOSIP.664 293F (Sanders et al., 2013)

| .M | = | In | trai | mu | scu | lar; | I.D | = | Int | trad | lern | nal |  |
|----|---|----|------|----|-----|------|-----|---|-----|------|------|-----|--|
|    |   |    |      |    |     |      |     |   |     |      |      |     |  |

| Rabbit | Group | BG505 | MG505 | MG505<br>K241S |              |
|--------|-------|-------|-------|----------------|--------------|
| 3409   | Ι     | 300   | <100  | 392            | mu           |
| 3412   | I     | 673   | <100  | 842            | seri         |
| 3414   | Ш     | 144   | <100  | 126            | dent<br>ons€ |
| 3415   | =     | 343   | <100  | 150            | pend<br>espo |
| 3417   | Ш     | 645   | <100  | 1082           | l-de         |
| 3420   | Ш     | 555   | <100  | 612            | 24           |
| 3410   | Ι     | 168   | <100  | <100           | 241<br>ect   |
| 3416   | =     | 162   | <100  | <100           | No<br>eff    |
| 3411   | Ι     | <100  | <100  | <100           | ß            |
| 3413   | =     | <100  | <100  | <100           | on<br>Nizir  |
| 3419   | III   | <100  | <100  | <100           | N.<br>eutra  |
| 3418   | Ш     | <100  | <100  | <100           | Ъ            |

### Figure S3. Negative-stain EM Data, Related to Figure 3 and 4.

(A) Reference-free 2D class averages, (B) 2D back-projections of the final model, (C) 3D reconstructions (top and side views), and (D) FSC curves with estimated resolution for rabbit mAbs in complex with BG505 SOSIP.664. All samples were stained using 2% (w/v) uranyl formate. The total particles included in the final reconstruction and the estimated resolution using a Fourier shell correlation (FSC) cutoff of 0.5 are as follow: BG505+10A Fab – 7,050 particles (~ 20 Å); BG505+11A – 5,072 particles (~ 20 Å); BG505+11B Fab – 8,586 particles (~ 22 Å); BG505+12A – 6,798 particles (~ 22 Å). Complexes containing Fabs 10A, 11A, and 11B were refined with C3 symmetry imposed, while the complex with Fab 12A, where the most common 2D classes showed 1 or 2 Fabs per trimer, was refined asymmetrically. An initial common-lines model was generated using 2D class averages in EMAN2 (Tang et al., 2007) followed by refinement against all particles in Sparx (Penczek et al., 1994). 2D back projections were calculated using EMAN2.



### Figure S4. Rabbit mAb Binding Kinetics as Measured by Biolayer Interferometry, related to Figure 3.

BG505 SOSIP.664 trimers containing a C-terminal 8x-HisTag and either a Ser or Asn at position 241 (HXB2 numbering) were loaded onto Ni-NTA biosensors and dipped into varying concentrations of rabbit Fabs (1000, 500, 250, 125, 62.5, 32.25, 16 nM). All samples were previously diluted in 1X kinetics buffer. Anti-HIV Fabs b6 and PGT151 were included as negative and positive controls, respectively, to ensure trimer integrity. A 1:1 binding model (assumes first order kinetics and that binding rates to each ligand site are equal) was fit to the data (red lines) and antibody concentrations with best overall fit as judged by proper alignment association and dissociation curves were used to determine kinetics parameters. As the highest and lowest Fab concentrations (minimum of three) that resulted in the best overall fit as judged by proper alignment to association and dissociation curves ( $R^2 > 0.98$ ) were used to determine kinetics parameters by averaging the calculated Kd, on- and off-rates. No binding was observed for 11B and BG505 SOSIP.664 S241N. Assays were conducted at 25°C.



## Figure S5. Frequency and Incidence of Combinations of ≥50% Conserved Glycan Sites, Related to Figure 5.

(A) The % conservation of each indicated glycan site by sequence alignment to HXB2 across the set of 3792 filtered unique sequences. (B) The independent frequency of glycan pairs was computed by multiplying the observed frequencies of each glycan pair. The dependent frequency was then determined by calculating the frequency of isolates containing both glycosylation sites. For each glycan pair, the ratio of dependent frequency and independent frequency is shown. A ratio greater than 1.0 for a glycan pair indicates the glycans are more frequently found together than would be expected if the glycans occurred independently. (C) The number of unique patient Env sequences missing two or more  $\geq$ 50% conserved glycan sites, when one of the missing sites is 289, is shown in the third row. The number of unique patient Env sequences for those strains missing two or more  $\geq$ 50% conserved glycan sites, where one missing site is 289, are shown stratified for each  $\geq$ 50% conserved glycan site.

| <b>A</b> Glycan residue<br>number (HXB2) | 88    | 156   | 160   | 197   | 234   | 241      | 262   | 276   | 289   | 295   | 301   | 332   | 339   | 355   | 386        | 392       | 448                  | 611            | 616      | 625                                    | 637          |
|------------------------------------------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|------------|-----------|----------------------|----------------|----------|----------------------------------------|--------------|
| % conservation                           | 98.8% | 95.7% | 91.5% | 98.7% | 78.6% | 97.3%    | 99.6% | 94.5% | 72.0% | 62.5% | 92.0% | 67.0% | 64.2% | 76.0% | 86.8%      | 80.9%     | 88.5%                | 98.3%          | 92.9%    | 96.3%                                  | 96.7%        |
|                                          |       |       |       |       |       | <u> </u> |       |       |       |       |       | 1     |       | I     | ļ          |           | <u> </u>             | <u> </u>       |          |                                        | <u> </u>     |
| <b>R</b> 88                              |       |       |       |       |       |          |       |       |       |       |       |       |       |       | umber o    | of HIV st | rains                |                |          |                                        | 3792         |
| 156                                      |       |       |       |       |       |          |       |       |       |       |       |       |       |       | rains m    | issing 2  | 2+ glyca<br>2+ glyca | ns<br>ns inclu | idina 28 | 20                                     | 3407<br>1030 |
| 160                                      |       |       |       |       |       |          |       |       |       |       |       | 1.10  |       | S     | rains m    | issing 2  | 241 and              | 289            |          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 33           |
| 100                                      |       |       |       |       |       |          |       |       |       |       |       |       |       |       |            | <u> </u>  |                      |                |          |                                        |              |
| 197                                      |       |       |       |       |       |          |       |       |       |       |       |       | Ŧ     |       |            |           |                      |                |          |                                        |              |
| 234                                      |       |       |       |       |       |          |       |       |       |       |       |       | Ratic |       | <b>、</b> — |           |                      | T              |          |                                        |              |
| 241                                      |       |       |       |       |       |          |       |       |       |       |       |       | of    |       | ו          | miss      | ing 289              |                | Nu       | umber o                                | of           |
| 262                                      |       |       |       |       |       |          |       |       |       |       |       | 1.05  | dep   |       |            | and gl    | ycan si              | te             | HI       | v strain                               | s            |
| 276                                      |       |       |       |       |       |          |       |       |       |       |       |       | ben   |       |            |           | 88                   |                |          | 15                                     |              |
|                                          |       |       |       |       |       |          |       |       |       |       |       |       | den   |       |            |           | 156                  |                |          | 35                                     |              |
|                                          |       |       |       |       |       |          |       |       |       |       |       |       | t fre |       |            |           | 100<br>197           |                |          | <u>92</u><br>12                        |              |
|                                          |       |       |       |       |       |          |       |       |       |       |       | 1.00  | ique  |       |            |           | 234                  |                |          | 291                                    |              |
|                                          |       |       |       |       |       |          |       |       |       |       |       | 1.00  | ency  |       |            |           | 241                  |                |          | 33                                     |              |
| Ö <sup>332</sup>                         |       |       |       |       |       |          |       |       |       |       |       |       | /to   |       |            |           | 262                  |                |          | 3                                      |              |
|                                          |       |       |       |       |       |          |       |       |       |       |       |       | ind   |       |            |           | 295                  |                |          | 456                                    |              |
| 355                                      |       |       |       |       |       |          |       |       |       |       |       |       | epe   |       |            |           | 301                  |                |          | 45                                     |              |
| 386                                      |       |       |       |       |       |          |       |       |       |       |       | 0.05  | nde   |       |            |           | 332                  |                |          | 241                                    |              |
| 392                                      |       |       |       |       |       |          |       |       |       |       |       | 0.95  | int f |       |            |           | 339                  |                |          | 277                                    |              |
| 448                                      |       |       |       |       |       |          |       |       |       |       |       |       | req   |       |            |           | 335<br>386           |                |          | 160                                    |              |
| 448                                      |       |       |       |       |       |          |       |       |       |       |       |       | uen   |       |            |           | 392                  |                |          | 186                                    |              |
| 611                                      |       |       |       |       |       |          |       |       |       |       |       |       | cy    |       |            |           | 448                  |                |          | 90                                     |              |
| 616                                      |       |       |       |       |       |          |       |       |       |       |       | 0.00  |       |       |            |           | 611                  |                |          | 18                                     |              |
| 625                                      |       |       |       |       |       |          |       |       |       |       |       | 0.90  |       |       |            |           | 625                  |                |          | 70                                     |              |
| 637                                      |       |       |       |       |       |          |       |       |       |       |       |       |       |       |            |           | 637                  |                |          | 88                                     |              |

88 156 160 197 234 241 262 276 289 295 301 332 339 355 386 392 448 611 616 625 637 Glycosylation site

# Table S1. Rabbit Single-Cell PCR, Related to Figure 1.

cDNA was generated using Superscript III Reverse Transcription (Invitrogen) as previously described (Sok et al., 2014). First round PCR products were produced using 2.5 µl of cDNA and Hotstart Taq Master mix (Qiagen) for 50 cycles using the primers below designated "PCR 1". Subsequently, 2.5 µl of first round PCR product was used as template for the second round using the primers below designated "PCR 2". PCR products were sequenced and lineages identified using Clonify (Briney et al., 2016). Heavy and light chain variable regions were then amplified by PCR with primers containing homology arms specific for the expression vector. The final PCR products and vector were ligated using high fidelity assembly mix (NEB) and individual clones isolated and sequence verified.

| PCR step    | Primer name | 5'-3' sequence                      |
|-------------|-------------|-------------------------------------|
| Kappa PCR 1 | RVK1        | GCGCCGGAGCTCGTGATGACCCAGACTCCA      |
| Kappa PCR 1 | RVK2        | GCGCCGGAGCTCGATATGACCCAGACTCCA      |
| Kappa PCR 1 | RCK1        | GCGCCGTCTAGACTAACAGTCACCCCTATTGAAGC |
| Kappa PCR 1 | RCK2        | GCGCCGTCTAGACTAACAGTTCTTCCTACTGAAGC |
| Kappa PCR 1 | IGк         | GATGCCAGTTGTTTGGGTGGT               |
| Kappa PCR 2 | kEcoRIA     | ACGAATTCGGACATCGTGATGACCCAGACTCCA   |
| Kappa PCR 2 | RkRBamhl    | GGAGGACAGAAGGCGCAACTGGATCACCTTTGACC |
| Heavy PCR 1 | RHFout      | ATGGAGACTGGGCTGCGCTGGCTTC           |
| Heavy PCR 1 | RHRout1     | GTCCTTGGGTTTTGGGGGAAAGATGAA         |
| Heavy PCR 1 | RHRout2     | GTCCCCGCAGCAGGGGGCCAGTGGGAA         |
| Heavy PCR 1 | RHRout3     | CTCCTCCCGGGGAGGGCCCATGGTGTA         |
| Heavy PCR 2 | RHFin       | CTGGCTTCTCCTGGTCGCTGTGCTCAAAG       |
| Heavy PCR 2 | RHRin1      | ACAGACGGTCCCCCAAGAGTTC              |
| Heavy PCR 2 | RHRin2      | GACTGATGGAGCCTTAGGTTGCCC            |
| Heavy PCR 2 | RHRin3      | ACCTTCGGCTCCAGGGGCTGCCC             |

# Table S2. Rabbit mAb Neutralization Activity, Related to Figure 2 and 4.

The rabbit mAbs were titrated against the indicated pseudoviruses in the TZM-bl luciferase reporter assay and the  $IC_{50}$  values shown were calculated using Prism. Potent neutralization categorized as an  $IC_{50} < 1$ , intermediate neutralization categorized as an  $IC_{50}$  of >1<10, weak neutralization categorized as an  $IC_{50}$  of >10<100. No neutralization activity is indicated by an  $IC_{50}$  of >100.

|     |      |       |      |      |       |         | Virus | strain |      |         |         |         |        |
|-----|------|-------|------|------|-------|---------|-------|--------|------|---------|---------|---------|--------|
|     |      | SF162 | ADA  | HXB2 | BAL   | 93IN905 | YU2   | JRCSF  | JRFL | 92RW020 | 92BR020 | 94UG109 | BG505  |
|     | 10A  | >100  | >100 | >100 | >100  | >100    | >100  | >100   | >100 | >100    | >100    | >100    | 0.37   |
|     | 10B  | >100  | >100 | >100 | >100  | 2.62    | >100  | >100   | >100 | >100    | >100    | >100    | >100   |
|     | 10C  | 6.38  | 0.68 | 0.59 | 11.54 | 9.23    | >100  | >100   | >100 | >100    | >100    | >100    | >100   |
|     | 11A  | >100  | >100 | >100 | >100  | >100    | >100  | >100   | >100 | >100    | >100    | >100    | 0.17   |
| Ab  | 11B  | >100  | >100 | >100 | >100  | >100    | >100  | >100   | >100 | >100    | >100    | >100    | 0.11   |
| t m | 11B1 | >100  | >100 | >100 | >100  | >100    | >100  | >100   | >100 | >100    | >100    | >100    | 1.14   |
| bi  | 11B2 | >100  | >100 | >100 | >100  | >100    | >100  | >100   | >100 | >100    | >100    | >100    | 0.67   |
| Ral | 11B4 | >100  | >100 | >100 | >100  | >100    | >100  | >100   | >100 | >100    | >100    | >100    | 0.35   |
|     | 11B5 | >100  | >100 | >100 | >100  | >100    | >100  | >100   | >100 | >100    | >100    | >100    | 0.24   |
|     | 11B7 | >100  | >100 | >100 | >100  | >100    | >100  | >100   | >100 | >100    | >100    | >100    | 0.23   |
|     | 12A  | >200  | >100 | >100 | >100  | >200    | >100  | >100   | >100 | >100    | >100    | >100    | 100.00 |
|     | 12A1 | >200  | >100 | >100 | >100  | >200    | >100  | >100   | >100 | >100    | >100    | >100    | 100.00 |

# Table S3. BG505 Pseudovirus Alanine-Scanning Mutagenesis, Related to Figure 2 and 4.

The rabbit mAbs were titrated against the indicated mutated pseudoviruses in the TZM-bl luciferase reporter assay and the  $IC_{50}$  values shown were calculated using Prism. Potent neutralization categorized as an  $IC_{50} < 1$ , intermediate neutralization categorized as an  $IC_{50}$  of >1<10, weak neutralization categorized as an  $IC_{50}$  of >10<100. No neutralization activity is indicated by an  $IC_{50}$  of >100. Fold change in  $IC_{50}$  value for mAbs was calculated and compared to previously described fold changes in  $ID_{50}$  (Sanders et al., 2015) seen with the serum samples from the source animals. NT = not tested.

|            |       |         |         | IC <sub>50</sub> | ıg/ml  |        |       |      | Fold change   |     |               |  |  |  |
|------------|-------|---------|---------|------------------|--------|--------|-------|------|---------------|-----|---------------|--|--|--|
|            |       | 10A     | 11A     | PGT151           | VRC01  | PGT121 | PG9   | 10A  | 1410<br>serum | 11A | 1411<br>serum |  |  |  |
|            | BG505 | 0.372   | 0.170   | 0.002            | 0.053  | 0.061  | 0.031 | -    | -             | -   | -             |  |  |  |
|            | E87A  | 0.674   | 0.298   | 0.003            | 0.052  | 0.027  | 0.026 | 2    | 2             | 2   | 1             |  |  |  |
|            | W112A | 0.139   | 0.216   | 0.004            | 0.061  | 0.048  | 0.040 | 0    | 2             | 1   | 1             |  |  |  |
|            | K121A | 0.943   | 0.048   | 0.008            | 0.135  | 0.114  | 0.067 | 3    | 3             | 0   | 1             |  |  |  |
|            | L125A | 0.713   | 0.189   | 0.004            | 0.042  | 0.022  | 0.036 | 2    | 4             | 1   | 1             |  |  |  |
|            | L165A | 0.219   | 0.045   | 0.033            | 0.022  | 0.038  | 0.020 | 1    | 4             | 0   | 2             |  |  |  |
|            | K168A | 0.285   | 0.172   | 0.004            | 0.059  | 0.047  | 0.133 | 1    | 10            | 1   | 6             |  |  |  |
|            | T198A | 0.652   | 0.020   | 0.004            | 0.247  | 0.064  | 0.050 | 2    | 4             | 0   | 1             |  |  |  |
| strain     | T257A | >100    | 84.790  | 0.003            | 0.059  | 0.023  | 0.027 | >600 | >50           | 499 | 1             |  |  |  |
|            | D279A | >100    | 0.064   | 0.004            | 89.300 | 0.028  | 0.040 | >600 | 2             | 0   | 1             |  |  |  |
|            | Y384A | 18.750  | 0.275   | 0.008            | 0.170  | 0.104  | 0.073 | 50   | 2             | 2   | 1             |  |  |  |
|            | N386A | 21.638  | 0.170   | 0.002            | 0.055  | 0.013  | 0.019 | 58   | 4             | 1   | 2             |  |  |  |
| sr         | N392A | 0.309   | 0.030   | 0.003            | 0.094  | 0.055  | 0.055 | 1    | >50           | 0   | 1             |  |  |  |
| <u>'ir</u> | 1396A | 0.612   | 0.126   | 0.003            | 0.132  | 0.068  | 0.046 | 2    | 10            | 1   | 1             |  |  |  |
| ~          | S397A | 1.719   | 0.334   | 0.004            | 0.092  | 0.058  | 0.046 | 5    | 10            | 2   | 1             |  |  |  |
|            | N398A | 6.222   | 0.491   | 0.007            | 0.065  | 0.033  | 0.041 | 17   | 10            | 3   | 1             |  |  |  |
|            | K421A | 0.376   | 0.095   | 0.005            | 0.044  | 0.040  | 0.032 | 1    | 9             | 1   | 7             |  |  |  |
|            | Q422A | 0.100   | 0.068   | 0.002            | 0.050  | 0.031  | 0.034 | 0    | 8             | 0   | 6             |  |  |  |
|            | 1424A | 0.337   | 0.119   | 0.004            | 0.052  | 0.034  | 0.047 | 1    | 12            | 1   | 1             |  |  |  |
|            | T455A | 100.000 | 50.787  | 0.002            | 0.093  | 0.018  | 0.040 | 269  | NT            | 299 | NT            |  |  |  |
|            | P470A | 100.000 | 68.536  | 0.006            | 0.042  | 0.012  | 0.012 | 269  | 3             | 403 | 1             |  |  |  |
|            | D474A | 24.690  | 0.091   | 0.005            | 0.004  | 0.020  | 0.652 | 66   | NT            | 1   | NT            |  |  |  |
|            | D477A | 100.000 | 100.000 | 0.002            | 0.076  | 0.016  | 0.030 | 269  | >50           | 588 | 6             |  |  |  |
|            | N488A | 2.955   | 0.545   | 0.003            | 0.103  | 0.206  | 0.066 | 8    | NT            | 3   | NT            |  |  |  |

# Table S4: Non-neutralizing rabbit mAb epitope mapping, Related to Figure 2,3 and 4.

96-well ELISA plates were coated overnight at 4°C with mouse anti-Avi-tag antibody (Genscript) at 2 µg/ml in PBS. Plates were washed 4 times with PBS, 0.05% (v/v) Tween, and blocked with 3% (w/v) BSA PBS for 1 h. Concurrently, 5-fold serial dilutions of non-biotinylated rabbit or human mAbs starting at 100 µg/ml were pre-incubated with 1 µg/ml of purified Avi-tagged BG505 SOSIP.664 protein for 1 h. The mAb-SOSIP mixture was then transferred to the blocked ELISA plates and incubated for 1 h. Plates were washed four times and incubated with 0.5 µg/ml of biotinylated mAb for 1 h, then washed again and binding detected with streptavidin-alkaline phosphatase (Jackson Immunoresearch) at 1:1000 for 1 h. mAbs were biotinylated using the NHS-micro-biotinylation kit (Pierce). Competition is expressed as percentage binding where 100% was the absorbance measured when BG505 SOSIP.664 protein only was captured on the anti-avi-tag ELISA plate. The V3-specific mAb 10B was used as a negative control for non-specific inhibition.

|    |         |     |     |     |     |     |     |     | Biotir | nylated | rabbit ı | mAbs |     |     |     |     |     |     |     |
|----|---------|-----|-----|-----|-----|-----|-----|-----|--------|---------|----------|------|-----|-----|-----|-----|-----|-----|-----|
|    |         | 10A | 10B | 10C | 10D | 10H | 101 | 10J | 11A    | 11B     | 11C      | 11D  | 11E | 11G | 12C | 12J | 12M | 12N | 12A |
|    | B6      | 92  | 157 | 19  | 97  | 70  | 104 | 101 | 72     | 72      | 97       | 99   | 98  | 103 | 110 | 96  | 107 | 105 | NT  |
|    | A32     | 87  | 178 | 108 | 98  | 91  | 109 | 102 | 78     | 73      | 96       | 98   | 102 | 104 | 106 | 78  | 106 | 110 | NT  |
|    | 2F5     | 112 | 103 | 96  | 98  | 101 | 111 | 102 | 92     | 81      | 95       | 98   | 101 | 111 | 104 | 98  | 106 | 102 | NT  |
|    | F240    | 114 | 103 | 66  | 99  | 92  | 110 | 102 | 89     | 85      | 95       | 99   | 101 | 102 | 105 | 92  | 110 | 108 | NT  |
|    | 3D6     | 126 | 107 | 99  | 100 | 107 | 111 | 103 | 94     | 94      | 94       | 100  | 102 | 103 | 100 | 106 | 110 | 115 | NT  |
|    | PGT124  | 97  | 60  | 76  | 93  | 105 | 4   | 100 | 67     | 79      | 90       | 102  | 90  | 95  | 90  | 152 | 97  | 91  | NT  |
|    | PGT128  | 97  | 56  | 57  | 87  | 100 | 7   | 97  | 79     | 75      | 88       | 92   | 82  | 87  | 84  | 163 | 87  | 89  | NT  |
| ĺ  | 10-1074 | 146 | 72  | 71  | 108 | 177 | 4   | 101 | 116    | 102     | 95       | 98   | 101 | 99  | 103 | 181 | 108 | 107 | NT  |
| ٩  | PGV04   | 122 | 97  | 27  | 112 | 126 | 110 | 103 | 96     | 103     | 99       | 104  | 108 | 104 | 114 | 211 | 120 | 109 | NT  |
| An | VRC01   | 88  | 82  | 21  | 89  | 100 | 107 | 100 | 72     | 91      | 107      | 96   | 85  | 93  | 91  | 193 | 84  | 87  | NT  |
| 2  | PG9     | 97  | 87  | 85  | 118 | 92  | 83  | 103 | 88     | 88      | 101      | 103  | 113 | 102 | 117 | 151 | 126 | 121 | NT  |
| it | CAP256  | 98  | 93  | 83  | 125 | 107 | 95  | 103 | 83     | 93      | 102      | 104  | 118 | 104 | 121 | 102 | 137 | 127 | NT  |
| be | 3BC176  | 96  | 105 | 109 | 71  | 83  | 107 | 96  | 79     | 90      | 84       | 87   | 73  | 86  | 72  | 83  | 82  | 87  | 70  |
| on | 3BC315  | 79  | 94  | 100 | 34  | 55  | 92  | 53  | 62     | 76      | 49       | 71   | 32  | 73  | 29  | 34  | 35  | 44  | 24  |
|    | 8ANC915 | 37  | 72  | 74  | 80  | 41  | 105 | 94  | 54     | 61      | 89       | 52   | 80  | 14  | 106 | 194 | 90  | 71  | 23  |
|    | 35022   | 107 | 91  | 109 | 72  | 98  | 112 | 95  | 95     | 99      | 85       | 95   | 71  | 92  | 75  | 157 | 68  | 75  | 83  |
|    | PGT152  | 109 | 80  | 108 | 70  | 90  | 111 | 95  | 93     | 99      | 108      | 102  | 75  | 102 | 58  | 158 | 79  | 75  | NT  |
|    | D3724   | 95  | 73  | 91  | 98  | 83  | 101 | 103 | 81     | 92      | 97       | 103  | 100 | 100 | 102 | 104 | 112 | 103 | NT  |
|    | PGT145  | 102 | 78  | 112 | 117 | 91  | 79  | 104 | 84     | 101     | 104      | 103  | 115 | 98  | 117 | 114 | 146 | 123 | NT  |
|    | CH03    | 111 | 86  | 116 | 99  | 93  | 93  | 103 | 96     | 104     | 99       | 102  | 98  | 97  | 102 | 129 | 107 | 101 | NT  |
|    | SELF    | 13  | 32  | 19  | 5   | 32  | 11  | 5   | 12     | 5       | 5        | 4    | 4   | 3   | 5   | 22  | 8   | 6   | 4   |
|    | 11A     | 12  | 81  | 85  | 43  | 90  | 99  | 51  | 12     | 5       | 73       | 73   | 57  | 97  | 64  | 161 | 43  | 46  | NT  |
|    | Blank   | 106 | 99  | 118 | 100 | 103 | 101 | 103 | 110    | 103     | 100      | 100  | 100 | 100 | 100 | 101 | 100 | 100 | 96  |

## Table S5. Ability of All Isolated Rabbit mAbs to Compete in ELISA with Biotinylated nAbs 10A, 11A, 11B and 12A, Related to Figure 2, 3 and 4.

96-well ELISA plates were coated overnight at 4°C with mouse anti-Avi-tag antibody (Genscript) at 2 µg/ml in PBS. Plates were washed 4 times with PBS, 0.05% (v/v) Tween, and blocked with 3% (w/v) BSA PBS for 1 h. Concurrently, 5-fold serial dilutions of non-biotinylated rabbit mAbs starting at 100 µg/ml were pre-incubated with 1 µg/ml of purified Avi-tagged BG505 SOSIP.664 protein for 1 h. The mAb-SOSIP mixture was then transferred to the blocked ELISA plates and incubated for 1 h. Plates were washed four times and incubated with 0.5 µg/ml of biotinylated mAb for 1 h, then washed again and binding detected with streptavidin-alkaline phosphatase (Jackson Immunoresearch) at 1:1000 for 1 h. mAbs were biotinylated using the NHS-micro-biotinylation kit (Pierce). Competition is expressed as percentage binding where 100% was the absorbance measured when BG505 SOSIP.664 protein only was captured on the anti-avi-tag ELISA plate. The V3-specific mAb 10B was used as a negative control for non-specific inhibition.

|          |            | 10A-biotin |                       |           | 10B-biotin |          |     |     | 11A-biotin |          |          |     | 11B-biotin |          |     |     | 12A-biotin |          |          |        |         |
|----------|------------|------------|-----------------------|-----------|------------|----------|-----|-----|------------|----------|----------|-----|------------|----------|-----|-----|------------|----------|----------|--------|---------|
|          | µg/ml:     | 100        | 20                    | 4         | 0.8        | 100      | 20  | 4   | 0.8        | 100      | 20       | 4   | 0.8        | 100      | 20  | 4   | 0.8        | 100      | 20       | 4      | 0.8     |
|          | 10A        | 5          | 5                     | 5         | 16         | 83       | 92  | 98  | 83         | 5        | 5        | 5   | 17         | 5        | 5   | 5   | 8          | 4        | 4        | 5      | 12      |
|          | 10A1       | 4          | 4                     | 5         | 80         | 80       | 77  | 74  | 85         | 5        | 5        | 5   | 86         | 4        | 4   | 5   | 56         | 5        | 5        | 5      | 39      |
|          | 10B        | 100        | 99                    | 101       | 112        | 4        | 4   | 5   | 10         | 102      | 104      | 103 | 113        | 96       | 96  | 98  | 102        | 113      | 103      | 104    | 71      |
|          | 10C        | 99         | 99                    | 100       | 113        | 127      | 126 | 124 | 123        | 102      | 104      | 103 | 115        | 97       | 99  | 97  | 101        | 17       | 106      | 94     | 113     |
|          | 10D        | 62         | 64                    | 66        | 72         | 95       | 82  | 81  | 80         | 72       | 76       | 76  | 84         | 6        | 6   | 7   | 23         | 5        | 49       | 90     | 64      |
|          | 10E        | 101        | 101                   | 101       | 112        | 102      | 100 | 99  | 85         | 102      | 105      | 103 | 119        | 98       | 97  | 96  | 99         | 65       | 103      | 103    | 117     |
|          | 10F        | 101        | 102                   | 100       | 107        | 92       | 87  | 83  | 85         | 103      | 105      | 103 | 111        | 93       | 97  | 98  | 99         | 61       | 107      | 101    | 97      |
|          | 10H        | 80         | 79                    | 78        | 89         | 106      | 101 | 78  | 102        | 91       | 92       | 87  | 95         | 86       | 87  | 88  | 92         | 34       | 63       | 58     | 81      |
|          | 101        | 100        | 101                   | 101       | 100        | 102      | 87  | 80  | 79         | 103      | 105      | 105 | 104        | 97       | 98  | 100 | 97         | 64       | 99       | 101    | 101     |
|          | 10J        | 100        | 100                   | 101       | 100        | 104      | 86  | 77  | 78         | 103      | 104      | 104 | 105        | 95       | 94  | 95  | 96         | 70       | 107      | 115    | 108     |
|          | 11A        | 4          | 3                     | 4         | 6          | 83       | 97  | 83  | 75         | 4        | 4        | 4   | 6          | 3        | 3   | 3   | 4          | 5        | 4        | 4      | 4       |
|          | 11A1       | 5          | 4                     | 4         | 5          | 83       | 84  | 75  | 81         | 4        | 4        | 4   | 6          | 4        | 4   | 4   | 6          | 5        | 4        | 5      | 5       |
|          | 11A2       | 4          | 3                     | 4         | 6          | 83       | 83  | 95  | 103        | 3        | 3        | 3   | 6          | 3        | 3   | 3   | 11         | 3        | 3        | 3      | 5       |
|          | 11A3       | 13         | 13                    | 14        | 36         | 85       | 86  | 103 | 104        | 13       | 13       | 14  | 32         | 27       | 28  | 31  | 68         | 10       | 11       | 11     | 27      |
|          | 11B        | 4          | 4                     | 4         | 16         | 77       | 77  | 77  | 85         | 4        | 4        | 5   | 17         | 4        | 4   | 4   | 7          | 4        | 4        | 5      | 6       |
|          | 11B1       | 7          | 8                     | 10        | 64         | 72       | 66  | 67  | 99         | 8        | 9        | 11  | 70         | 10       | 11  | 13  | 53         | 7        | 6        | 7      | 25      |
| q        | 11B2       | 8          | 8                     | 9         | 40         | 77       | 67  | 70  | 103        | 8        | 9        | 9   | 47         | 9        | 10  | 11  | 29         | 7        | 7        | 8      | 24      |
| itor mAt | 11B4       | 24         | 26                    | 27        | 64         | 75       | 69  | 72  | 106        | 29       | 28       | 30  | 69         | 35       | 37  | 39  | 67         | 18       | 17       | 19     | 43      |
|          | 11B5       | 6          | 6                     | 6         | 20         | 66       | 65  | 67  | 105        | 6        | 6        | 7   | 22         | 6        | 6   | 7   | 14         | 7        | 6        | 7      | 13      |
| etit     | 11B7       | 11         | 13                    | 13        | 43         | 61       | 66  | 68  | 105        | 12       | 12       | 14  | 48         | 15       | 15  | 17  | 39         | 12       | 11       | 13     | 25      |
| du       | 11C        | 70         | 73                    | /2        | //         | 90       | //  | 104 | 101        | 87       | 91       | 88  | 87         | 90       | 92  | 90  | 91         | 98       | 111      | 88     | 85      |
| ပိ       | 11D        | 95         | 94                    | 94        | 96         | 75       | 95  | 81  | 110        | 97       | 98       | 97  | 98         | 93       | 91  | 98  | 95         | 5        | 5        | 6      | 6       |
|          | 11E        | 57         | 68                    | 63        | 72         | 81       | 96  | 81  | 113        | 89       | 90       | 91  | 90         | 84       | 87  | 87  | 87         | 11       | 76       | 80     | 72      |
|          | 11F        | 75         | 69                    | 61        | 64         | 89       | //  | //  | 107        | 91       | 92       | 8/  | 85         | 89       | 87  | 84  | 84         | 40       | 35       | 19     | 21      |
|          | 116        | 94         | 90                    | 95        | 94         | 91       | 0/  | 91  | 107        | 100      |          | 100 | 98         | 93       | 95  | 94  | 93         | <u>р</u> | <u>р</u> | о<br>7 | 10      |
|          | 12A        | 75         | 94<br>02              | 90        |            | 04<br>06 | 112 | 107 | 107        | 50<br>52 | 00       | 93  | 94         | 67       | 09  | 93  | 94         | 5        | 0<br>5   | 1      | 6       |
|          | 12A1       | 29         | 03                    | 94        | 90         | 00<br>94 | 100 | 107 | 109        | 55<br>72 | 02<br>90 | 92  | 95         | 07<br>Q1 | 00  | 93  | 97         | 5        | 5        | 6      | 0       |
|          | 12A2       | 100        | 9 <del>4</del><br>100 | 90<br>101 | 97<br>103  | 04<br>85 | 103 | 107 | 104        | 07       | 09       | 101 | 90         | 01       | 100 | 94  | 97<br>102  | 6        | 6        | 0<br>8 | 7<br>20 |
|          | 120        | 00         | 02                    |           | 00         | 05       | 80  | 70  | 104        | 97       | 99       | 07  | 06         | 00       | 100 | 00  | 00         | 115      | 102      | 106    | 104     |
|          | 120        | 87         | 82                    | 89        | 106        | 100      | 101 | 105 | 105        | 85       | 86       | 97  | 103        | 93<br>Q1 | 95  | 93  | 100        | 103      | 84       | 100    | 94      |
|          | 121        | 92         | 84                    | 87        | 95         | 82       | 106 | 100 | 100        | 87       | 88       | 86  | 93         | 91       | 95  | 93  | 97         | 58       | 59       | 65     | 56      |
|          | 12.1       | 103        | 101                   | 102       | 120        | 92       | 100 | 92  | 85         | 104      | 102      | 103 | 113        | 103      | 90  | 100 | 103        | 112      | 116      | 116    | 107     |
|          | 126<br>12K | 86         | 80                    | 77        | 68         | 97       | 103 | 91  | 85         | 79       | 82       | 79  | 75         | 91       | 91  | 87  | 85         | 75       | 80       | 67     | 50      |
|          | 12L        | 90         | 94                    | 99        | 124        | 82       | 104 | 86  | 85         | 84       | 94       | 100 | 118        | 90       | 94  | 96  | 98         | 83       | 103      | 119    | 109     |
|          | 12M        | 70         | 71                    | 71        | 96         | 94       | 100 | 93  | 91         | 62       | 68       | 76  | 93         | 81       | 83  | 83  | 85         | 58       | 71       | 81     | 74      |
|          | 12N        | 64         | 68                    | 71        | 76         | 105      | 109 | 115 | 113        | 56       | 63       | 65  | 72         | 82       | 81  | 89  | 87         | 45       | 37       | 39     | 41      |
|          | 120        | 94         | 92                    | 91        | 93         | 107      | 95  | 111 | 110        | 89       | 91       | 89  | 92         | 98       | 102 | 101 | 99         | 92       | 93       | 88     | 86      |
|          | 12R        | 101        | 100                   | 100       | 99         | 106      | 104 | 86  | 103        | 98       | 100      | 98  | 99         | 99       | 98  | 102 | 103        | 9        | 9        | 10     | 18      |
|          | Blank      | 101        | 100                   | 100       | 99         | 111      | 83  | 109 | 97         | 100      | 101      | 100 | 99         | 98       | 97  | 105 | 99         | 117      | 93       | 98     | 92      |

### **Supplemental Information References**

Macauley, M.S., Pfrengle, F., Rademacher, C., Nycholat, C.M., Gale, A.J., von Drygalski, A., and Paulson, J.C. (2013). Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. The Journal of clinical investigation *123*, 3074-3083.

Penczek, P.A., Grassucci, R.A., and Frank, J. (1994). The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53, 251-270.

Sanders, R.W., van Gils, M.J., Derking, R., Sok, D., Ketas, T.J., Burger, J.A., Ozorowski, G., Cupo, A., Simonich, C., Goo, L., et al. (2015). HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 349, aac4223.

Sok, D., van Gils, M.J., Pauthner, M., Julien, J.P., Saye-Francisco, K.L., Hsueh, J., Briney, B., Lee, J.H., Le, K.M., Lee, P.S., *et al.* (2014). Recombinant HIV envelope trimer selects for quaternarydependent antibodies targeting the trimer apex. Proceedings of the National Academy of Sciences of the United States of America 111, 17624-17629.

Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., and Ludtke, S.J. (2007). EMAN2: an extensible image processing suite for electron microscopy. Journal of structural biology 157, 38-46.